GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods
•Landslide modeling use optimized KLR with different kernel functions.•Optimization of factors using FR analysis and multicollinearity analysis.•Comparison of landslide susceptibility maps to reveal difference affected by factors. Globally, but especially in China, landslides are considered to be on...
Saved in:
Published in | Catena (Giessen) Vol. 196; p. 104833 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Landslide modeling use optimized KLR with different kernel functions.•Optimization of factors using FR analysis and multicollinearity analysis.•Comparison of landslide susceptibility maps to reveal difference affected by factors.
Globally, but especially in China, landslides are considered to be one of the most severe and significant natural hazards. In this study, bivariate statistical-based kernel logistic regression (KLR) models with different kernel functions (Polynomial, PUK, and Radial Basis Function), named the PLKLR, PUKLR, and RBFKLR models, were proposed for landslide susceptibility evaluation in Zichang City, China. Meanwhile, the present study aims to build landslide susceptibility maps based on bivariate statistical correlation analysis, optimization of different kernel functions, comparison of three landslide susceptibility maps and systematic analysis of spatial patterns. The steps of this article are organized as follows: Firstly, a landslide inventory containing 263 historical landslide locations was constructed. For the purpose of training and validation of models, 263 landslide locations were randomly divided into two parts with a ratio of 70/30. Secondly, 14 landslide conditioning factors were extracted from the spatial database. Subsequently, correlation analysis between the conditioning factors and the occurrence of landslides was conducted using frequency ratios. Then, the conditioning factors with normalized frequency ratios values were used as inputs to build the landslide susceptibility maps using the three models. A multicollinearity analysis was performed using collinearity statistics. Finally, the area under the receiver operating characteristic curve (AUC) was used for comparison and validation of models for recognizing the prediction capability. By further quantitative comparing mapped susceptibility values on a pixel-by-pixel basis, which can acquire underestimations and overestimations of factors (distance to river and slope) and susceptibility area. The results indicated that the PUKLR model had superior performance in landslide susceptibility assessment, with the highest AUC values of 0.884 and 0.766 for training and validation datasets, respectively. This model was followed by the RBFKLR model and the PLKLR model for the training datasets (AUC values of 0.879 and 0.797, respectively), and the PLKLR model and the RBFKLR model for the validation datasets (AUC values of 0.758 and 0.752, respectively). The landslide susceptibility map could help government agencies and decision-makers make wise decisions for future natural hazards prevention in Zichang region. |
---|---|
AbstractList | Globally, but especially in China, landslides are considered to be one of the most severe and significant natural hazards. In this study, bivariate statistical-based kernel logistic regression (KLR) models with different kernel functions (Polynomial, PUK, and Radial Basis Function), named the PLKLR, PUKLR, and RBFKLR models, were proposed for landslide susceptibility evaluation in Zichang City, China. Meanwhile, the present study aims to build landslide susceptibility maps based on bivariate statistical correlation analysis, optimization of different kernel functions, comparison of three landslide susceptibility maps and systematic analysis of spatial patterns. The steps of this article are organized as follows: Firstly, a landslide inventory containing 263 historical landslide locations was constructed. For the purpose of training and validation of models, 263 landslide locations were randomly divided into two parts with a ratio of 70/30. Secondly, 14 landslide conditioning factors were extracted from the spatial database. Subsequently, correlation analysis between the conditioning factors and the occurrence of landslides was conducted using frequency ratios. Then, the conditioning factors with normalized frequency ratios values were used as inputs to build the landslide susceptibility maps using the three models. A multicollinearity analysis was performed using collinearity statistics. Finally, the area under the receiver operating characteristic curve (AUC) was used for comparison and validation of models for recognizing the prediction capability. By further quantitative comparing mapped susceptibility values on a pixel-by-pixel basis, which can acquire underestimations and overestimations of factors (distance to river and slope) and susceptibility area. The results indicated that the PUKLR model had superior performance in landslide susceptibility assessment, with the highest AUC values of 0.884 and 0.766 for training and validation datasets, respectively. This model was followed by the RBFKLR model and the PLKLR model for the training datasets (AUC values of 0.879 and 0.797, respectively), and the PLKLR model and the RBFKLR model for the validation datasets (AUC values of 0.758 and 0.752, respectively). The landslide susceptibility map could help government agencies and decision-makers make wise decisions for future natural hazards prevention in Zichang region. •Landslide modeling use optimized KLR with different kernel functions.•Optimization of factors using FR analysis and multicollinearity analysis.•Comparison of landslide susceptibility maps to reveal difference affected by factors. Globally, but especially in China, landslides are considered to be one of the most severe and significant natural hazards. In this study, bivariate statistical-based kernel logistic regression (KLR) models with different kernel functions (Polynomial, PUK, and Radial Basis Function), named the PLKLR, PUKLR, and RBFKLR models, were proposed for landslide susceptibility evaluation in Zichang City, China. Meanwhile, the present study aims to build landslide susceptibility maps based on bivariate statistical correlation analysis, optimization of different kernel functions, comparison of three landslide susceptibility maps and systematic analysis of spatial patterns. The steps of this article are organized as follows: Firstly, a landslide inventory containing 263 historical landslide locations was constructed. For the purpose of training and validation of models, 263 landslide locations were randomly divided into two parts with a ratio of 70/30. Secondly, 14 landslide conditioning factors were extracted from the spatial database. Subsequently, correlation analysis between the conditioning factors and the occurrence of landslides was conducted using frequency ratios. Then, the conditioning factors with normalized frequency ratios values were used as inputs to build the landslide susceptibility maps using the three models. A multicollinearity analysis was performed using collinearity statistics. Finally, the area under the receiver operating characteristic curve (AUC) was used for comparison and validation of models for recognizing the prediction capability. By further quantitative comparing mapped susceptibility values on a pixel-by-pixel basis, which can acquire underestimations and overestimations of factors (distance to river and slope) and susceptibility area. The results indicated that the PUKLR model had superior performance in landslide susceptibility assessment, with the highest AUC values of 0.884 and 0.766 for training and validation datasets, respectively. This model was followed by the RBFKLR model and the PLKLR model for the training datasets (AUC values of 0.879 and 0.797, respectively), and the PLKLR model and the RBFKLR model for the validation datasets (AUC values of 0.758 and 0.752, respectively). The landslide susceptibility map could help government agencies and decision-makers make wise decisions for future natural hazards prevention in Zichang region. |
ArticleNumber | 104833 |
Author | Chen, Wei Chen, Xi |
Author_xml | – sequence: 1 givenname: Xi surname: Chen fullname: Chen, Xi organization: College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China – sequence: 2 givenname: Wei orcidid: 0000-0002-5825-1422 surname: Chen fullname: Chen, Wei email: chenwei0930@xust.edu.cn, chenwei.0930@163.com organization: College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China |
BookMark | eNqFkD1r5DAQhkXIQTZ7-QcpXKbxRpJlW04RCCFfEEhxd2UQsjTOzmLLG402sPfr48VXXZFUAzPv88I8p-w4jAEYOxd8JbioLjcrZxMEu5JcHlZKF8URWwhdy7zSuj5mC14okWtRyRN2SrThnKu6FAv2-vD0K28tgc96Gzz16CGjHTnYJmyxx7TPLBEQDRBStiMMb9k43Qb8OzHrfRvRZ4N1awyQ9WBjOCQGSOvR00_2o7M9wdm_uWR_7u9-3z7mzy8PT7c3z7ktKplyVXhZC17XDS-70lZd47TrtGwc151unVRaqqJTEjqpHVSybtoSfAnOaVAWiiW7mHu3cXzfASUz4PRCP70E446MLEvRCMGlmKJXc9TFkShCZxwmm3AMKVrsjeDm4NRszOzUHJya2ekEq__gbcTBxv132PWMweTgAyEacgjBgccILhk_4tcFn-dslm4 |
CitedBy_id | crossref_primary_10_1080_19475705_2021_1944330 crossref_primary_10_1016_j_ijsrc_2024_08_003 crossref_primary_10_1080_19475705_2021_1950217 crossref_primary_10_1007_s10668_023_02995_7 crossref_primary_10_1007_s11629_021_7081_z crossref_primary_10_1038_s41597_024_03901_0 crossref_primary_10_1080_27669645_2022_2101256 crossref_primary_10_1007_s11356_023_31352_4 crossref_primary_10_1007_s11069_023_05865_7 crossref_primary_10_1016_j_qsa_2024_100172 crossref_primary_10_3390_rs16173119 crossref_primary_10_1016_j_catena_2022_106428 crossref_primary_10_1016_j_advengsoft_2022_103251 crossref_primary_10_1016_j_rockmb_2024_100144 crossref_primary_10_3390_su15043667 crossref_primary_10_3390_rs15082149 crossref_primary_10_1080_19475705_2020_1833990 crossref_primary_10_1016_j_catena_2021_105524 crossref_primary_10_26833_ijeg_1355615 crossref_primary_10_1080_10106049_2021_1903571 crossref_primary_10_52547_jwmr_13_26_105 crossref_primary_10_1007_s12665_021_09921_y crossref_primary_10_1002_esp_5777 crossref_primary_10_3390_rs15102659 crossref_primary_10_1007_s12205_022_1656_2 crossref_primary_10_1016_j_asr_2024_11_052 crossref_primary_10_1016_j_jhydrol_2024_132566 crossref_primary_10_1016_j_jclepro_2024_142289 crossref_primary_10_1080_10106049_2021_1912194 crossref_primary_10_3390_app12178483 crossref_primary_10_3390_f14071393 crossref_primary_10_1007_s11629_023_8202_7 crossref_primary_10_3390_rs13081572 crossref_primary_10_3390_su15043094 crossref_primary_10_1016_j_compgeo_2024_107019 crossref_primary_10_1007_s10064_023_03188_2 crossref_primary_10_1007_s12517_022_10929_2 crossref_primary_10_3390_geomatics1040023 crossref_primary_10_3390_su142416716 crossref_primary_10_3390_rs16132399 crossref_primary_10_3390_su15010861 crossref_primary_10_1016_j_catena_2022_106654 crossref_primary_10_1080_19475705_2025_2471019 crossref_primary_10_1080_23789689_2023_2181552 crossref_primary_10_3390_rs14020321 crossref_primary_10_1007_s00477_022_02212_3 crossref_primary_10_1016_j_scitotenv_2023_168914 crossref_primary_10_3390_sym12121954 crossref_primary_10_3389_feart_2022_986172 crossref_primary_10_3390_rs15061513 crossref_primary_10_1080_17486025_2021_2006803 crossref_primary_10_1016_j_catena_2023_107732 crossref_primary_10_1007_s43452_023_00660_4 crossref_primary_10_3390_rs13244966 crossref_primary_10_1007_s12517_022_11032_2 crossref_primary_10_1007_s13369_021_06013_8 crossref_primary_10_3389_feart_2022_1033085 crossref_primary_10_3390_rs12203423 crossref_primary_10_1007_s11069_021_04986_1 crossref_primary_10_1016_j_jhydrol_2023_129121 crossref_primary_10_1109_LGRS_2021_3054029 crossref_primary_10_1016_j_trgeo_2024_101473 crossref_primary_10_1080_10106049_2022_2076928 crossref_primary_10_1016_j_scitotenv_2023_162242 crossref_primary_10_3389_feart_2022_953627 crossref_primary_10_3934_geosci_2022024 crossref_primary_10_1016_j_nhres_2023_07_008 crossref_primary_10_1016_j_catena_2022_106239 crossref_primary_10_3390_rs16020347 crossref_primary_10_1515_geo_2022_0642 crossref_primary_10_1016_j_gsf_2021_101211 crossref_primary_10_1007_s11600_021_00577_7 crossref_primary_10_1007_s12665_025_12148_w crossref_primary_10_13168_AGG_2024_0019 crossref_primary_10_3390_land10060624 crossref_primary_10_1007_s11356_023_28133_4 crossref_primary_10_3390_app13148409 crossref_primary_10_3390_su16114547 crossref_primary_10_1016_j_aiig_2022_06_002 crossref_primary_10_1080_10106049_2023_2172218 crossref_primary_10_47134_ijsl_v5i1_326 crossref_primary_10_1007_s12665_024_11698_9 crossref_primary_10_1007_s12665_022_10195_1 crossref_primary_10_1007_s12665_022_10694_1 crossref_primary_10_17491_jgsi_2025_174103 crossref_primary_10_3389_feart_2023_1187384 crossref_primary_10_1007_s10064_024_03687_w crossref_primary_10_3390_rs12233854 crossref_primary_10_3390_land11030436 crossref_primary_10_3390_rs13112166 crossref_primary_10_1080_10106049_2022_2035830 crossref_primary_10_1016_j_enggeo_2021_106480 crossref_primary_10_1016_j_jrmge_2023_03_001 crossref_primary_10_1080_04353676_2022_2091915 crossref_primary_10_1016_j_gsf_2021_101317 crossref_primary_10_3390_ijerph20064977 crossref_primary_10_1007_s11069_022_05764_3 crossref_primary_10_3390_rs14092131 crossref_primary_10_1007_s11356_022_22778_3 crossref_primary_10_1007_s11069_024_06495_3 crossref_primary_10_1080_10106049_2022_2089241 crossref_primary_10_3390_su16167063 crossref_primary_10_1007_s12145_024_01561_7 crossref_primary_10_1186_s40677_024_00296_3 crossref_primary_10_1016_j_eswa_2023_121678 crossref_primary_10_3390_land11101808 crossref_primary_10_1007_s11356_022_23982_x crossref_primary_10_1080_19475705_2021_1914753 crossref_primary_10_1016_j_compgeo_2024_106106 crossref_primary_10_3390_w13223312 crossref_primary_10_1007_s11069_024_06649_3 crossref_primary_10_1038_s41598_022_05571_7 crossref_primary_10_1016_j_nhres_2023_06_006 crossref_primary_10_3390_s22041573 crossref_primary_10_3390_app122010196 crossref_primary_10_1007_s11069_024_06955_w crossref_primary_10_1007_s10064_024_04001_4 crossref_primary_10_3390_ijgi9120696 crossref_primary_10_3390_w15142661 crossref_primary_10_1007_s12665_021_10033_w crossref_primary_10_1080_17486025_2025_2455109 crossref_primary_10_3390_rs15030798 crossref_primary_10_1016_j_jrmge_2024_03_008 crossref_primary_10_1155_2021_6647829 crossref_primary_10_3390_rs15204952 crossref_primary_10_3390_su15010006 crossref_primary_10_1007_s12145_024_01229_2 crossref_primary_10_1007_s11069_022_05603_5 crossref_primary_10_1007_s41324_022_00444_7 crossref_primary_10_1007_s40789_024_00678_w crossref_primary_10_1007_s13762_022_04665_z crossref_primary_10_3390_land11060833 crossref_primary_10_1007_s10064_023_03440_9 crossref_primary_10_1007_s10706_022_02333_0 crossref_primary_10_1080_19475705_2021_1947904 crossref_primary_10_1080_19475705_2021_1943544 crossref_primary_10_1007_s11069_022_05520_7 crossref_primary_10_1080_14498596_2024_2335262 crossref_primary_10_1007_s12594_023_2439_1 crossref_primary_10_1007_s11356_022_21931_2 crossref_primary_10_1080_19475705_2021_1960433 crossref_primary_10_1007_s12145_024_01617_8 crossref_primary_10_1007_s11069_023_06306_1 crossref_primary_10_1016_j_catena_2021_105250 crossref_primary_10_1016_j_catena_2022_106700 crossref_primary_10_3390_rs14122773 crossref_primary_10_1007_s44274_024_00059_9 crossref_primary_10_1007_s12665_023_10803_8 crossref_primary_10_1080_22797254_2023_2260092 crossref_primary_10_1007_s12145_025_01816_x crossref_primary_10_1016_j_catena_2022_106379 crossref_primary_10_1007_s11004_024_10168_z crossref_primary_10_1016_j_ghm_2024_07_001 crossref_primary_10_3389_feart_2023_1147427 crossref_primary_10_3390_atmos16040360 crossref_primary_10_1016_j_ecolind_2023_109968 crossref_primary_10_1007_s12517_021_08312_8 crossref_primary_10_1080_24749508_2024_2395205 crossref_primary_10_1016_j_scitotenv_2023_163745 crossref_primary_10_1007_s11069_023_06038_2 crossref_primary_10_1038_s41598_022_22814_9 crossref_primary_10_1080_10106049_2021_1986578 crossref_primary_10_1155_2021_1099256 crossref_primary_10_3390_rs12244134 crossref_primary_10_1080_10106049_2024_2322066 crossref_primary_10_1007_s11069_022_05360_5 crossref_primary_10_1007_s10064_022_02615_0 crossref_primary_10_1016_j_geomorph_2021_107889 crossref_primary_10_1016_j_ecoleng_2021_106368 crossref_primary_10_3389_feart_2021_731058 crossref_primary_10_3390_w14050717 crossref_primary_10_1016_j_aei_2020_101230 crossref_primary_10_1016_j_scitotenv_2023_161430 crossref_primary_10_1080_10106049_2022_2088863 crossref_primary_10_1016_j_foreco_2023_121288 crossref_primary_10_1007_s12665_024_11958_8 crossref_primary_10_1016_j_asr_2024_03_074 crossref_primary_10_1007_s11069_023_06026_6 crossref_primary_10_1080_19475705_2024_2396908 crossref_primary_10_1007_s12665_022_10375_z crossref_primary_10_3390_atmos15070788 crossref_primary_10_1016_j_engappai_2022_105457 crossref_primary_10_1007_s12665_021_09889_9 crossref_primary_10_1007_s12517_023_11374_5 crossref_primary_10_1007_s11069_024_07011_3 crossref_primary_10_3389_fenvs_2023_1140834 crossref_primary_10_1080_19475705_2022_2112096 crossref_primary_10_1007_s12145_020_00530_0 crossref_primary_10_1016_j_asr_2024_12_020 crossref_primary_10_1016_j_jrmge_2024_02_001 crossref_primary_10_3390_app12189228 crossref_primary_10_1007_s12665_023_11319_x crossref_primary_10_1080_10106049_2021_2009921 crossref_primary_10_1016_j_geoderma_2023_116367 crossref_primary_10_3390_rs16122206 crossref_primary_10_1007_s11356_023_30200_9 crossref_primary_10_1016_j_scitotenv_2024_176400 crossref_primary_10_1007_s10064_021_02194_6 crossref_primary_10_1007_s40031_023_00876_1 crossref_primary_10_1007_s11069_022_05329_4 crossref_primary_10_3390_rs15133331 crossref_primary_10_1080_10106049_2022_2087751 crossref_primary_10_1016_j_catena_2021_105344 crossref_primary_10_3390_rs13234782 crossref_primary_10_32003_igge_931516 |
Cites_doi | 10.1016/j.geomorph.2016.02.012 10.1007/s10346-015-0557-6 10.1007/s10346-012-0362-4 10.1007/s100640050066 10.1007/s10064-018-1401-8 10.1016/j.catena.2016.06.004 10.3390/app10010029 10.3390/rs12030475 10.1016/j.geomorph.2004.06.010 10.3390/w12010113 10.1007/s10346-015-0587-0 10.1016/j.catena.2013.10.011 10.1016/j.jhydrol.2020.124602 10.1007/s12303-015-0026-1 10.1016/j.rse.2013.11.003 10.3390/rs12142180 10.1016/j.geomorph.2005.12.003 10.1007/s12040-015-0536-2 10.1109/TGRS.1990.572944 10.1016/j.catena.2018.09.012 10.1016/j.cageo.2017.11.019 10.1007/s12665-015-4950-1 10.1021/ac00073a006 10.1007/s10346-006-0047-y 10.1007/s10346-009-0166-3 10.1016/j.scitotenv.2019.01.329 10.1007/s10346-013-0437-x 10.1080/17538947.2011.586443 10.1016/j.geomorph.2006.12.036 10.3390/ijgi9070443 10.1080/19475705.2017.1289250 10.1016/j.catena.2015.05.019 10.1016/j.scitotenv.2018.04.055 10.1016/S0013-7952(97)81260-4 10.1007/s10346-015-0611-4 10.1107/S0021889897011047 10.1007/s12665-009-0245-8 10.1002/(SICI)1096-9837(199609)21:9<853::AID-ESP676>3.0.CO;2-C 10.1016/j.jcs.2013.01.014 10.1080/10106049.2018.1425738 10.3390/app10010016 10.1007/s10064-017-1202-5 10.1016/j.enggeo.2014.08.015 10.3390/sym12030325 10.1029/WR022i008p01350 10.3390/e21020218 10.1016/j.catena.2018.12.018 10.1016/j.jseaes.2012.10.005 10.3390/app8122540 10.1007/s10994-008-5055-9 10.1016/j.compenvurbsys.2009.12.004 10.1016/j.catena.2020.104777 10.5194/nhess-10-623-2010 10.1007/s10346-009-0188-x 10.1109/TGRS.2010.2050328 10.1023/B:NHAZ.0000007092.51910.3f 10.1007/s12665-016-5732-0 10.1186/1475-925X-5-51 10.1016/j.earscirev.2012.02.001 10.1080/19475705.2017.1401560 10.1177/030913330002400202 10.1016/j.geomorph.2006.10.039 10.1007/s11069-017-3043-8 10.1016/j.enggeo.2015.05.022 10.1016/j.iswcr.2016.09.004 10.1007/s12665-011-1196-4 10.1107/S0021889877012849 10.1016/j.geomorph.2018.06.006 10.1080/15567036.2019.1636161 10.1002/esp.1064 10.3390/app9183755 10.1016/j.enggeo.2015.12.013 10.1016/j.chemolab.2005.09.003 10.1016/j.jhydrol.2014.03.008 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.catena.2020.104833 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Sciences (General) |
EISSN | 1872-6887 |
ExternalDocumentID | 10_1016_j_catena_2020_104833 S0341816220303830 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K UNMZH VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a362t-43d271077905f5a6f9c8cf829c08f8bc248243f42ef28ce6279b5ed5ecc8e4ae3 |
IEDL.DBID | .~1 |
ISSN | 0341-8162 |
IngestDate | Fri Jul 11 06:52:13 EDT 2025 Thu Apr 24 22:57:53 EDT 2025 Tue Jul 01 01:46:42 EDT 2025 Fri Feb 23 02:47:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Landslide Kernel logistic regression Kernel functions Hybrid models Geographic information system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a362t-43d271077905f5a6f9c8cf829c08f8bc248243f42ef28ce6279b5ed5ecc8e4ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5825-1422 |
PQID | 2551911021 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551911021 crossref_citationtrail_10_1016_j_catena_2020_104833 crossref_primary_10_1016_j_catena_2020_104833 elsevier_sciencedirect_doi_10_1016_j_catena_2020_104833 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Catena (Giessen) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hong, Pourghasemi, Pourtaghi (b0190) 2016; 259 Li, Chen (b0215) 2019; 12 Cawley, Talbot (b0050) 2008; 71 Hall, Veeraraghavan, Rubin, Winchell (b0180) 1977; 10 Hong, Pradhan, Xu, Bui (b0195) 2015; 133 Kumar, Anbalagan (b0200) 2015; 124 Tehrany, Pradhan, Jebur (b0315) 2014; 512 Calò, Ardizzone, Castaldo, Lollino, Tizzani, Guzzetti, Lanari, Angeli, Pontoni, Manunta (b0045) 2014; 142 Chen, Shahabi, Shirzadi, Hong, Akgun, Tian, Liu, Zhu, Li (b0075) 2019; 78 Xiao, Segoni, Chen, Yin, Casagli (b0370) 2019 Liu, J., 2012. Protein Function Prediction Based on Kernel Logistic Regression with 2-order Graphic Neighbor Information. arXiv: Quantitative Methods. Benediktsson, J.A., Swain, P.H., Ersoy, O.K., 1990. Neural network approaches versus statistical methods in classification of multisource remote sensing data. Gokceoglu, Sezer (b0155) 2009; 6 Chen, Li, Hou, Wang, Wang, Panahi, Li, Peng, Guo, Niu, Xiao, Wang, Xie, Ahmad (b0065) 2018; 634 Lei, Chen, Pham (b0210) 2020; 9 Malamud, Turcotte, Guzzetti, Reichenbach (b0225) 2004; 29 Ayalew, Yamagishi (b0030) 2005; 65 Chung, Fabbri (b0105) 2008; 94 Aleotti, Chowdhury (b0015) 1999; 58 De Weijer, Lucasius, Buydens, Kateman, Heuvel, Mannee (b0120) 1994; 66 Gupta (b0170) 1998; 31 Pham, Prakash (b0265) 2019; 78 Mohammady, Pourghasemi, Pradhan (b0240) 2012; 61 Wang, Lei, Chen, Shahabi, Shirzadi (b0350) 2020; 12 Erener, Düzgün (b0135) 2010; 7 He, Shahabi, Shirzadi, Li, Chen, Wang, Chai, Bian, Ma, Chen, Wang, Chapi, Ahmad (b0185) 2019; 663 Aditian, Kubota, Shinohara (b0010) 2018; 318 Westen, C.v., Terlien, M., 1996. An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth surface processes and landforms, 21, 853-868. ESRI, R., 2014. ArcGIS desktop: release 10. Environmental Systems Research Institute, CA. Zhang, Yin, Huang (b0380) 2015; 12 Chen, Shirzadi, Shahabi, Ahmad, Zhang, Hong, Zhang (b0090) 2017; 8 Chen, Fan, Li, Pham (b0055) 2020; 10 Süzen, Kaya (b0310) 2012; 5 Althuwaynee, Pradhan, Park, Lee (b0020) 2014; 114 Azuaje, F., 2006. Witten ih, frank e: Data mining: Practical machine learning tools and techniques 2nd edition. BioMed Central. Chen, Shahabi, Zhang, Khosravi, Shirzadi, Chapi, Pham, Zhang, Zhang, Chai (b0085) 2018; 8 Gorsevski, Brown, Panter, Onasch, Simic, Snyder (b0160) 2016; 13 Guo, C., Qin, Y., Ma, D., Xia, Y., Chen, Y., Si, Q., Lu, L., 2019. Ionic composition, geological signature and environmental impacts of coalbed methane produced water in China. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-15. Ustun, Melssen, Buydens (b0340) 2006; 81 Duc (b0130) 2013; 10 Lee, Pradhan (b0205) 2007; 4 Sar, N., Khan, A., Chatterjee, S., Das, A., Mipun, B.S., 2016. WITHDRAWN: Coupling of analytical hierarchy process and frequency ratio based spatial prediction of soil erosion susceptibility in Keleghai river basin, India. International soil and water conservation research. Wang, Guo, Sawada, Lin, Zhang (b0355) 2016; 20 Arabameri, Saha, Roy, Chen, Blaschke, Tien Bui (b0025) 2020; 12 Yilmaz, Topal, Süzen (b0375) 2012; 65 Guzzetti, Mondini, Cardinali, Fiorucci, Santangelo, Chang (b0175) 2012; 112 Chen, Zhao, Tsangaratos, Shahabi, Ilia, Xue, Wang, Ahmad (b0100) 2020; 583 Moore, Burch (b0245) 1986; 22 Thanh, De Smedt (b0320) 2014; 11 Toebe, Cargnelutti Filho (b0330) 2013; 57 Zhang, Yang, Chen, Wu, Li, Li, Wang, Liu (b0390) 2016; 75 Pourghasemi, Kerle (b0275) 2016; 75 Mercer (b0235) 1909; 209 Tsangaratos, Ilia (b0335) 2016; 145 Fernández, Irigaray, El Hamdouni, Chacón (b0145) 2003; 30 Zhang, Han, Han, Li, Zhang, Wang (b0385) 2019; 21 Zhou, Yin, Cao, Ahmed, Li, Catani, Pourghasemi (b0405) 2018; 112 Gökceoglu, Aksoy (b0150) 1996; 44 Zhao, Chen (b0400) 2020; 12 Pham, Prakash, Singh, Shirzadi, Shahabi, Tran, Bui (b0270) 2019; 175 Chen, Xie, Peng, Wang, Duan, Hong (b0095) 2017; 8 Ding, Chen, Hong (b0125) 2017; 32 Cross (b0115) 1998; 15 Pradhan, Lee (b0280) 2010; 60 Prosser, Rustomji (b0295) 2000; 24 Zhao, Chen (b0395) 2019; 10 Maltman (b0230) 2012 Mutar, Biswajeet (b0250) 2019; 172 Romer, Ferentinou (b0300) 2016; 201 Chen, Hong, Panahi, Shahabi, Wang, Shirzadi, Pirasteh, Alesheikh, Khosravi, Panahi (b0060) 2019; 9 Conoscenti, Di Maggio, Rotigliano (b0110) 2008; 94 Pradhan, Sezer, Gokceoglu, Buchroithner (b0290) 2010; 48 Pradhan, Lee, Buchroithner (b0285) 2010; 34 Peduzzi (b0255) 2010; 10 Tien Bui, Tuan, Klempe, Pradhan, Revhaug (b0325) 2016; 13 Van Den Eeckhaut, Vanwalleghem, Poesen, Govers, Verstraeten, Vandekerckhove (b0345) 2006; 76 Peng, Fan, Wu, Zhuang, Dai, Chen, Zhao (b0260) 2015; 186 Chen, Shahabi, Shirzadi, Li, Guo, Hong, Li, Pan, Hui, Ma (b0080) 2018; 33 Chen, Li (b0070) 2020; 195 Wu, Lan, Gao, Li, Yang (b0365) 2015; 195 Ada, San (b0005) 2018; 90 Thanh (10.1016/j.catena.2020.104833_b0320) 2014; 11 Chen (10.1016/j.catena.2020.104833_b0095) 2017; 8 Pradhan (10.1016/j.catena.2020.104833_b0280) 2010; 60 Zhang (10.1016/j.catena.2020.104833_b0380) 2015; 12 Chen (10.1016/j.catena.2020.104833_b0060) 2019; 9 Toebe (10.1016/j.catena.2020.104833_b0330) 2013; 57 Duc (10.1016/j.catena.2020.104833_b0130) 2013; 10 Pourghasemi (10.1016/j.catena.2020.104833_b0275) 2016; 75 Chen (10.1016/j.catena.2020.104833_b0085) 2018; 8 Cross (10.1016/j.catena.2020.104833_b0115) 1998; 15 Ustun (10.1016/j.catena.2020.104833_b0340) 2006; 81 Cawley (10.1016/j.catena.2020.104833_b0050) 2008; 71 Conoscenti (10.1016/j.catena.2020.104833_b0110) 2008; 94 Moore (10.1016/j.catena.2020.104833_b0245) 1986; 22 Xiao (10.1016/j.catena.2020.104833_b0370) 2019 Chen (10.1016/j.catena.2020.104833_b0055) 2020; 10 10.1016/j.catena.2020.104833_b0040 Prosser (10.1016/j.catena.2020.104833_b0295) 2000; 24 Tehrany (10.1016/j.catena.2020.104833_b0315) 2014; 512 10.1016/j.catena.2020.104833_b0360 Van Den Eeckhaut (10.1016/j.catena.2020.104833_b0345) 2006; 76 10.1016/j.catena.2020.104833_b0165 Malamud (10.1016/j.catena.2020.104833_b0225) 2004; 29 Pham (10.1016/j.catena.2020.104833_b0270) 2019; 175 Aleotti (10.1016/j.catena.2020.104833_b0015) 1999; 58 Aditian (10.1016/j.catena.2020.104833_b0010) 2018; 318 Zhao (10.1016/j.catena.2020.104833_b0395) 2019; 10 Gorsevski (10.1016/j.catena.2020.104833_b0160) 2016; 13 Wang (10.1016/j.catena.2020.104833_b0350) 2020; 12 Tsangaratos (10.1016/j.catena.2020.104833_b0335) 2016; 145 He (10.1016/j.catena.2020.104833_b0185) 2019; 663 Zhang (10.1016/j.catena.2020.104833_b0390) 2016; 75 Chen (10.1016/j.catena.2020.104833_b0070) 2020; 195 Tien Bui (10.1016/j.catena.2020.104833_b0325) 2016; 13 Yilmaz (10.1016/j.catena.2020.104833_b0375) 2012; 65 Lei (10.1016/j.catena.2020.104833_b0210) 2020; 9 Zhao (10.1016/j.catena.2020.104833_b0400) 2020; 12 Pradhan (10.1016/j.catena.2020.104833_b0285) 2010; 34 Chen (10.1016/j.catena.2020.104833_b0075) 2019; 78 Gupta (10.1016/j.catena.2020.104833_b0170) 1998; 31 Pradhan (10.1016/j.catena.2020.104833_b0290) 2010; 48 Gokceoglu (10.1016/j.catena.2020.104833_b0155) 2009; 6 Hong (10.1016/j.catena.2020.104833_b0190) 2016; 259 Mutar (10.1016/j.catena.2020.104833_b0250) 2019; 172 10.1016/j.catena.2020.104833_b0305 Gökceoglu (10.1016/j.catena.2020.104833_b0150) 1996; 44 Zhang (10.1016/j.catena.2020.104833_b0385) 2019; 21 Mohammady (10.1016/j.catena.2020.104833_b0240) 2012; 61 Romer (10.1016/j.catena.2020.104833_b0300) 2016; 201 Kumar (10.1016/j.catena.2020.104833_b0200) 2015; 124 Hong (10.1016/j.catena.2020.104833_b0195) 2015; 133 Lee (10.1016/j.catena.2020.104833_b0205) 2007; 4 Zhou (10.1016/j.catena.2020.104833_b0405) 2018; 112 Arabameri (10.1016/j.catena.2020.104833_b0025) 2020; 12 Wu (10.1016/j.catena.2020.104833_b0365) 2015; 195 Chen (10.1016/j.catena.2020.104833_b0090) 2017; 8 Peng (10.1016/j.catena.2020.104833_b0260) 2015; 186 Calò (10.1016/j.catena.2020.104833_b0045) 2014; 142 Ada (10.1016/j.catena.2020.104833_b0005) 2018; 90 10.1016/j.catena.2020.104833_b0140 Hall (10.1016/j.catena.2020.104833_b0180) 1977; 10 10.1016/j.catena.2020.104833_b0220 Erener (10.1016/j.catena.2020.104833_b0135) 2010; 7 Peduzzi (10.1016/j.catena.2020.104833_b0255) 2010; 10 Guzzetti (10.1016/j.catena.2020.104833_b0175) 2012; 112 Li (10.1016/j.catena.2020.104833_b0215) 2019; 12 Ayalew (10.1016/j.catena.2020.104833_b0030) 2005; 65 Chen (10.1016/j.catena.2020.104833_b0100) 2020; 583 De Weijer (10.1016/j.catena.2020.104833_b0120) 1994; 66 Mercer (10.1016/j.catena.2020.104833_b0235) 1909; 209 Chen (10.1016/j.catena.2020.104833_b0065) 2018; 634 Wang (10.1016/j.catena.2020.104833_b0355) 2016; 20 Süzen (10.1016/j.catena.2020.104833_b0310) 2012; 5 Maltman (10.1016/j.catena.2020.104833_b0230) 2012 Chung (10.1016/j.catena.2020.104833_b0105) 2008; 94 Ding (10.1016/j.catena.2020.104833_b0125) 2017; 32 Fernández (10.1016/j.catena.2020.104833_b0145) 2003; 30 Pham (10.1016/j.catena.2020.104833_b0265) 2019; 78 Chen (10.1016/j.catena.2020.104833_b0080) 2018; 33 Althuwaynee (10.1016/j.catena.2020.104833_b0020) 2014; 114 10.1016/j.catena.2020.104833_b0035 |
References_xml | – volume: 13 start-page: 467 year: 2016 end-page: 484 ident: b0160 article-title: Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio publication-title: Landslides – volume: 94 start-page: 325 year: 2008 end-page: 339 ident: b0110 article-title: GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy) publication-title: Geomorphology – volume: 10 start-page: 29 year: 2020 ident: b0055 article-title: Spatial prediction of landslides using hybrid integration of artificial intelligence algorithms with frequency ratio and index of entropy in Nanzheng County, China publication-title: Appl. Sci. – reference: Sar, N., Khan, A., Chatterjee, S., Das, A., Mipun, B.S., 2016. WITHDRAWN: Coupling of analytical hierarchy process and frequency ratio based spatial prediction of soil erosion susceptibility in Keleghai river basin, India. International soil and water conservation research. – volume: 76 start-page: 392 year: 2006 end-page: 410 ident: b0345 article-title: Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium) publication-title: Geomorphology – volume: 61 start-page: 221 year: 2012 end-page: 236 ident: b0240 article-title: Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models publication-title: J. Asian Earth Sci. – volume: 44 start-page: 147 year: 1996 end-page: 161 ident: b0150 article-title: Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques publication-title: Eng. Geol. – volume: 6 start-page: 345 year: 2009 ident: b0155 article-title: A statistical assessment on international landslide literature (1945–2008) publication-title: Landslides – volume: 31 start-page: 474 year: 1998 end-page: 476 ident: b0170 article-title: Peak decomposition using Pearson type VII function publication-title: J. Appl. Crystallogr. – volume: 133 start-page: 266 year: 2015 end-page: 281 ident: b0195 article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines publication-title: Catena – volume: 57 start-page: 453 year: 2013 end-page: 462 ident: b0330 article-title: Multicollinearity in path analysis of maize (Zea mays L.) publication-title: J. Cereal Sci. – volume: 78 start-page: 1911 year: 2019 end-page: 1925 ident: b0265 article-title: A novel hybrid model of Bagging-based Naïve Bayes Trees for landslide susceptibility assessment publication-title: Bull. Eng. Geol. Environ. – volume: 201 start-page: 29 year: 2016 end-page: 44 ident: b0300 article-title: Shallow landslide susceptibility assessment in a semiarid environment—A Quaternary catchment of KwaZulu-Natal, South Africa publication-title: Eng. Geol. – volume: 195 start-page: 63 year: 2015 end-page: 69 ident: b0365 article-title: A simplified physically based coupled rainfall threshold model for triggering landslides publication-title: Eng. Geol. – volume: 124 start-page: 431 year: 2015 end-page: 448 ident: b0200 article-title: Landslide susceptibility zonation in part of Tehri reservoir region using frequency ratio, fuzzy logic and GIS publication-title: J. Earth Syst. Sci. – volume: 12 start-page: 2180 year: 2020 ident: b0400 article-title: Optimization of computational intelligence models for landslide susceptibility evaluation publication-title: Remote Sens. – volume: 71 start-page: 243 year: 2008 end-page: 264 ident: b0050 article-title: Efficient approximate leave-one-out cross-validation for kernel logistic regression publication-title: Machine Learning – volume: 34 start-page: 216 year: 2010 end-page: 235 ident: b0285 article-title: A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses publication-title: Comput. Environ. Urban Syst. – volume: 114 start-page: 21 year: 2014 end-page: 36 ident: b0020 article-title: A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping publication-title: Catena – volume: 4 year: 2007 ident: b0205 article-title: Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models publication-title: Landslides – volume: 175 start-page: 203 year: 2019 end-page: 218 ident: b0270 article-title: Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: hybrid machine learning approaches publication-title: Catena – reference: Guo, C., Qin, Y., Ma, D., Xia, Y., Chen, Y., Si, Q., Lu, L., 2019. Ionic composition, geological signature and environmental impacts of coalbed methane produced water in China. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-15. – volume: 186 start-page: 79 year: 2015 end-page: 90 ident: b0260 article-title: Heavy rainfall triggered loess–mudstone landslide and subsequent debris flow in Tianshui, China publication-title: Eng. Geol. – volume: 30 start-page: 297 year: 2003 end-page: 308 ident: b0145 article-title: Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa area (Granada, Spain) publication-title: Nat. Hazards – volume: 5 start-page: 338 year: 2012 end-page: 355 ident: b0310 article-title: Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping publication-title: Int. J. Digital Earth – reference: Benediktsson, J.A., Swain, P.H., Ersoy, O.K., 1990. Neural network approaches versus statistical methods in classification of multisource remote sensing data. – volume: 29 start-page: 687 year: 2004 end-page: 711 ident: b0225 article-title: Landslide inventories and their statistical properties publication-title: Earth Surf. Proc. Land. – reference: Westen, C.v., Terlien, M., 1996. An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth surface processes and landforms, 21, 853-868. – volume: 66 start-page: 23 year: 1994 end-page: 31 ident: b0120 article-title: Curve fitting using natural computation publication-title: Anal. Chem. – volume: 112 start-page: 23 year: 2018 end-page: 37 ident: b0405 article-title: Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges Reservoir area, China publication-title: Comput. Geosci. – volume: 8 start-page: 2540 year: 2018 ident: b0085 article-title: Landslide susceptibility modeling based on GIS and novel bagging-based Kernel logistic regression publication-title: Appl. Sci. – volume: 65 start-page: 2161 year: 2012 end-page: 2178 ident: b0375 article-title: GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey) publication-title: Environ. Earth Sci. – volume: 12 start-page: 973 year: 2015 end-page: 983 ident: b0380 article-title: Mechanisms of rainfall-induced landslides in gently inclined red beds in the eastern Sichuan Basin, SW China publication-title: Landslides – volume: 10 start-page: 16 year: 2019 ident: b0395 article-title: GIS-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques publication-title: Appl. Sci. – volume: 318 start-page: 101 year: 2018 end-page: 111 ident: b0010 article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia publication-title: Geomorphology – volume: 33 start-page: 1 year: 2018 end-page: 23 ident: b0080 article-title: A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment publication-title: Geocarto Int. – volume: 48 start-page: 4164 year: 2010 end-page: 4177 ident: b0290 article-title: Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia) publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 8 start-page: 950 year: 2017 end-page: 973 ident: b0095 article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models publication-title: Geomatics, Natural Hazards Risk – volume: 12 start-page: 325 year: 2020 ident: b0350 article-title: Hybrid computational intelligence methods for landslide susceptibility mapping publication-title: Symmetry – volume: 20 start-page: 117 year: 2016 end-page: 136 ident: b0355 article-title: A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network publication-title: Geosci. J. – volume: 60 start-page: 1037 year: 2010 end-page: 1054 ident: b0280 article-title: Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models publication-title: Environ. Earth Sci. – volume: 634 start-page: 853 year: 2018 end-page: 867 ident: b0065 article-title: GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models publication-title: Sci. Total Environ. – volume: 90 start-page: 237 year: 2018 end-page: 263 ident: b0005 article-title: Comparison of machine-learning techniques for landslide susceptibility mapping using two-level random sampling (2LRS) in Alakir catchment area, Antalya, Turkey publication-title: Nat. Hazards – reference: Azuaje, F., 2006. Witten ih, frank e: Data mining: Practical machine learning tools and techniques 2nd edition. BioMed Central. – volume: 9 start-page: 3755 year: 2019 ident: b0060 article-title: Spatial prediction of landslide susceptibility using GIS-based data mining techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO) publication-title: Appl. Sci. – volume: 12 start-page: 475 year: 2020 ident: b0025 article-title: Landslide susceptibility evaluation and management using different machine learning methods in The Gallicash River Watershed, Iran publication-title: Remote Sensing – volume: 21 start-page: 218 year: 2019 ident: b0385 article-title: Assessment of landslide susceptibility using integrated ensemble fractal dimension with kernel logistic regression model publication-title: Entropy – volume: 24 start-page: 179 year: 2000 end-page: 193 ident: b0295 article-title: Sediment transport capacity relations for overland flow publication-title: Prog. Phys. Geogr. – volume: 78 start-page: 4397 year: 2019 end-page: 4419 ident: b0075 article-title: Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling publication-title: Bull. Eng. Geol. Environ. – volume: 81 start-page: 29 year: 2006 end-page: 40 ident: b0340 article-title: Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel publication-title: Chemometrics Intell. Lab. Syst. – volume: 142 start-page: 69 year: 2014 end-page: 82 ident: b0045 article-title: Enhanced landslide investigations through advanced DInSAR techniques: the Ivancich case study, Assisi, Italy publication-title: Remote Sens. Environ. – volume: 195 year: 2020 ident: b0070 article-title: GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models publication-title: CATENA – volume: 9 start-page: 443 year: 2020 ident: b0210 article-title: Performance evaluation of GIS-based artificial intelligence approaches for landslide susceptibility modeling and spatial patterns analysis publication-title: ISPRS Int. J. Geo-Inf. – reference: ESRI, R., 2014. ArcGIS desktop: release 10. Environmental Systems Research Institute, CA. – volume: 10 start-page: 219 year: 2013 end-page: 230 ident: b0130 article-title: Rainfall-triggered large landslides on 15 December 2005 in Van Canh district, Binh Dinh province, Vietnam publication-title: Landslides – volume: 10 start-page: 623 year: 2010 end-page: 640 ident: b0255 article-title: Landslides and vegetation cover in the 2005 North Pakistan earthquake: a GIS and statistical quantitative approach publication-title: Nat. Hazards Earth Syst. Sci. – volume: 65 start-page: 15 year: 2005 end-page: 31 ident: b0030 article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan publication-title: Geomorphology – volume: 58 start-page: 21 year: 1999 end-page: 44 ident: b0015 article-title: Landslide hazard assessment: summary review and new perspectives publication-title: Bull. Eng. Geol. Environ. – volume: 22 start-page: 1350 year: 1986 end-page: 1360 ident: b0245 article-title: Sediment transport capacity of sheet and rill flow: application of unit stream power theory publication-title: Water Resour. Res. – volume: 75 start-page: 948 year: 2016 ident: b0390 article-title: GIS-based landslide susceptibility analysis using frequency ratio and evidential belief function models publication-title: Environ. Earth Sci. – volume: 583 year: 2020 ident: b0100 article-title: Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping publication-title: J. Hydrol. – volume: 8 start-page: 1955 year: 2017 end-page: 1977 ident: b0090 article-title: A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China publication-title: Geomatics, Natural Hazards Risk – volume: 172 start-page: 435 year: 2019 end-page: 450 ident: b0250 article-title: A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS publication-title: Catena – volume: 13 start-page: 361 year: 2016 end-page: 378 ident: b0325 article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree publication-title: Landslides – volume: 94 start-page: 438 year: 2008 end-page: 452 ident: b0105 article-title: Predicting landslides for risk analysis—spatial models tested by a cross-validation technique publication-title: Geomorphology – volume: 11 start-page: 897 year: 2014 end-page: 907 ident: b0320 article-title: Slope stability analysis using a physically based model: a case study from A Luoi district in Thua Thien-Hue Province publication-title: Vietnam. Landslides – volume: 663 start-page: 1 year: 2019 end-page: 15 ident: b0185 article-title: Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms publication-title: Sci. Total Environ. – volume: 75 start-page: 185 year: 2016 ident: b0275 article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran publication-title: Environ. Earth Sci. – volume: 145 start-page: 164 year: 2016 end-page: 179 ident: b0335 article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size publication-title: Catena – volume: 32 start-page: 619 year: 2017 end-page: 639 ident: b0125 article-title: Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping publication-title: Geocarto Int. – volume: 15 start-page: 247 year: 1998 end-page: 261 ident: b0115 article-title: Landslide susceptibility mapping using the matrix assessment approach: a Derbyshire case study publication-title: Geol. Soc., London, Eng. Geol. Special Publ. – volume: 7 start-page: 55 year: 2010 end-page: 68 ident: b0135 article-title: Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway) publication-title: Landslides – volume: 12 start-page: 113 year: 2019 ident: b0215 article-title: Landslide Susceptibility evaluation using hybrid integration of evidential belief function and machine learning techniques publication-title: Water – volume: 512 start-page: 332 year: 2014 end-page: 343 ident: b0315 article-title: Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS publication-title: J. Hydrol. – volume: 259 start-page: 105 year: 2016 end-page: 118 ident: b0190 article-title: Landslide susceptibility assessment in Lianhua County (China); a comparison between a random forest data mining technique and bivariate and multivariate statistical models publication-title: Geomorphology – start-page: 1 year: 2019 end-page: 14 ident: b0370 article-title: A step beyond landslide susceptibility maps: a simple method to investigate and explain the different outcomes obtained by different approaches publication-title: Landslides – volume: 10 start-page: 66 year: 1977 end-page: 68 ident: b0180 article-title: The approximation of symmetric X-ray peaks by Pearson type VII distributions publication-title: J. Appl. Crystallogr. – volume: 209 start-page: 415 year: 1909 end-page: 446 ident: b0235 article-title: Xvi. functions of positive and negative type, and their connection the theory of integral equations publication-title: Philos. Trans. Royal Soc. London Ser. A, Containing Papers of a Mathematical or Physical Character – reference: Liu, J., 2012. Protein Function Prediction Based on Kernel Logistic Regression with 2-order Graphic Neighbor Information. arXiv: Quantitative Methods. – year: 2012 ident: b0230 article-title: The geological deformation of sediments – volume: 112 start-page: 42 year: 2012 end-page: 66 ident: b0175 article-title: Landslide inventory maps: New tools for an old problem publication-title: Earth Sci. Rev. – volume: 259 start-page: 105 year: 2016 ident: 10.1016/j.catena.2020.104833_b0190 article-title: Landslide susceptibility assessment in Lianhua County (China); a comparison between a random forest data mining technique and bivariate and multivariate statistical models publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.02.012 – volume: 13 start-page: 361 year: 2016 ident: 10.1016/j.catena.2020.104833_b0325 article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree publication-title: Landslides doi: 10.1007/s10346-015-0557-6 – volume: 10 start-page: 219 year: 2013 ident: 10.1016/j.catena.2020.104833_b0130 article-title: Rainfall-triggered large landslides on 15 December 2005 in Van Canh district, Binh Dinh province, Vietnam publication-title: Landslides doi: 10.1007/s10346-012-0362-4 – volume: 58 start-page: 21 year: 1999 ident: 10.1016/j.catena.2020.104833_b0015 article-title: Landslide hazard assessment: summary review and new perspectives publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s100640050066 – volume: 78 start-page: 4397 year: 2019 ident: 10.1016/j.catena.2020.104833_b0075 article-title: Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-018-1401-8 – volume: 145 start-page: 164 year: 2016 ident: 10.1016/j.catena.2020.104833_b0335 article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size publication-title: Catena doi: 10.1016/j.catena.2016.06.004 – volume: 10 start-page: 29 year: 2020 ident: 10.1016/j.catena.2020.104833_b0055 article-title: Spatial prediction of landslides using hybrid integration of artificial intelligence algorithms with frequency ratio and index of entropy in Nanzheng County, China publication-title: Appl. Sci. doi: 10.3390/app10010029 – start-page: 1 year: 2019 ident: 10.1016/j.catena.2020.104833_b0370 article-title: A step beyond landslide susceptibility maps: a simple method to investigate and explain the different outcomes obtained by different approaches publication-title: Landslides – volume: 12 start-page: 475 year: 2020 ident: 10.1016/j.catena.2020.104833_b0025 article-title: Landslide susceptibility evaluation and management using different machine learning methods in The Gallicash River Watershed, Iran publication-title: Remote Sensing doi: 10.3390/rs12030475 – volume: 65 start-page: 15 year: 2005 ident: 10.1016/j.catena.2020.104833_b0030 article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.06.010 – volume: 12 start-page: 113 year: 2019 ident: 10.1016/j.catena.2020.104833_b0215 article-title: Landslide Susceptibility evaluation using hybrid integration of evidential belief function and machine learning techniques publication-title: Water doi: 10.3390/w12010113 – volume: 13 start-page: 467 year: 2016 ident: 10.1016/j.catena.2020.104833_b0160 article-title: Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio publication-title: Landslides doi: 10.1007/s10346-015-0587-0 – volume: 114 start-page: 21 year: 2014 ident: 10.1016/j.catena.2020.104833_b0020 article-title: A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2013.10.011 – volume: 583 year: 2020 ident: 10.1016/j.catena.2020.104833_b0100 article-title: Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124602 – volume: 20 start-page: 117 year: 2016 ident: 10.1016/j.catena.2020.104833_b0355 article-title: A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network publication-title: Geosci. J. doi: 10.1007/s12303-015-0026-1 – volume: 142 start-page: 69 year: 2014 ident: 10.1016/j.catena.2020.104833_b0045 article-title: Enhanced landslide investigations through advanced DInSAR techniques: the Ivancich case study, Assisi, Italy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.11.003 – volume: 12 start-page: 2180 year: 2020 ident: 10.1016/j.catena.2020.104833_b0400 article-title: Optimization of computational intelligence models for landslide susceptibility evaluation publication-title: Remote Sens. doi: 10.3390/rs12142180 – year: 2012 ident: 10.1016/j.catena.2020.104833_b0230 – volume: 76 start-page: 392 year: 2006 ident: 10.1016/j.catena.2020.104833_b0345 article-title: Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium) publication-title: Geomorphology doi: 10.1016/j.geomorph.2005.12.003 – volume: 124 start-page: 431 year: 2015 ident: 10.1016/j.catena.2020.104833_b0200 article-title: Landslide susceptibility zonation in part of Tehri reservoir region using frequency ratio, fuzzy logic and GIS publication-title: J. Earth Syst. Sci. doi: 10.1007/s12040-015-0536-2 – ident: 10.1016/j.catena.2020.104833_b0040 doi: 10.1109/TGRS.1990.572944 – volume: 172 start-page: 435 year: 2019 ident: 10.1016/j.catena.2020.104833_b0250 article-title: A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS publication-title: Catena doi: 10.1016/j.catena.2018.09.012 – volume: 112 start-page: 23 year: 2018 ident: 10.1016/j.catena.2020.104833_b0405 article-title: Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges Reservoir area, China publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2017.11.019 – volume: 75 start-page: 185 year: 2016 ident: 10.1016/j.catena.2020.104833_b0275 article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4950-1 – volume: 15 start-page: 247 year: 1998 ident: 10.1016/j.catena.2020.104833_b0115 article-title: Landslide susceptibility mapping using the matrix assessment approach: a Derbyshire case study publication-title: Geol. Soc., London, Eng. Geol. Special Publ. – volume: 66 start-page: 23 year: 1994 ident: 10.1016/j.catena.2020.104833_b0120 article-title: Curve fitting using natural computation publication-title: Anal. Chem. doi: 10.1021/ac00073a006 – volume: 4 year: 2007 ident: 10.1016/j.catena.2020.104833_b0205 article-title: Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models publication-title: Landslides doi: 10.1007/s10346-006-0047-y – volume: 6 start-page: 345 year: 2009 ident: 10.1016/j.catena.2020.104833_b0155 article-title: A statistical assessment on international landslide literature (1945–2008) publication-title: Landslides doi: 10.1007/s10346-009-0166-3 – volume: 663 start-page: 1 year: 2019 ident: 10.1016/j.catena.2020.104833_b0185 article-title: Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.329 – volume: 11 start-page: 897 year: 2014 ident: 10.1016/j.catena.2020.104833_b0320 article-title: Slope stability analysis using a physically based model: a case study from A Luoi district in Thua Thien-Hue Province publication-title: Vietnam. Landslides doi: 10.1007/s10346-013-0437-x – volume: 5 start-page: 338 year: 2012 ident: 10.1016/j.catena.2020.104833_b0310 article-title: Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping publication-title: Int. J. Digital Earth doi: 10.1080/17538947.2011.586443 – volume: 94 start-page: 438 year: 2008 ident: 10.1016/j.catena.2020.104833_b0105 article-title: Predicting landslides for risk analysis—spatial models tested by a cross-validation technique publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.12.036 – volume: 9 start-page: 443 year: 2020 ident: 10.1016/j.catena.2020.104833_b0210 article-title: Performance evaluation of GIS-based artificial intelligence approaches for landslide susceptibility modeling and spatial patterns analysis publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi9070443 – volume: 8 start-page: 950 year: 2017 ident: 10.1016/j.catena.2020.104833_b0095 article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models publication-title: Geomatics, Natural Hazards Risk doi: 10.1080/19475705.2017.1289250 – volume: 133 start-page: 266 year: 2015 ident: 10.1016/j.catena.2020.104833_b0195 article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines publication-title: Catena doi: 10.1016/j.catena.2015.05.019 – volume: 634 start-page: 853 year: 2018 ident: 10.1016/j.catena.2020.104833_b0065 article-title: GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.055 – volume: 44 start-page: 147 year: 1996 ident: 10.1016/j.catena.2020.104833_b0150 article-title: Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques publication-title: Eng. Geol. doi: 10.1016/S0013-7952(97)81260-4 – volume: 12 start-page: 973 year: 2015 ident: 10.1016/j.catena.2020.104833_b0380 article-title: Mechanisms of rainfall-induced landslides in gently inclined red beds in the eastern Sichuan Basin, SW China publication-title: Landslides doi: 10.1007/s10346-015-0611-4 – volume: 31 start-page: 474 year: 1998 ident: 10.1016/j.catena.2020.104833_b0170 article-title: Peak decomposition using Pearson type VII function publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889897011047 – volume: 60 start-page: 1037 year: 2010 ident: 10.1016/j.catena.2020.104833_b0280 article-title: Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models publication-title: Environ. Earth Sci. doi: 10.1007/s12665-009-0245-8 – ident: 10.1016/j.catena.2020.104833_b0360 doi: 10.1002/(SICI)1096-9837(199609)21:9<853::AID-ESP676>3.0.CO;2-C – ident: 10.1016/j.catena.2020.104833_b0220 – volume: 57 start-page: 453 year: 2013 ident: 10.1016/j.catena.2020.104833_b0330 article-title: Multicollinearity in path analysis of maize (Zea mays L.) publication-title: J. Cereal Sci. doi: 10.1016/j.jcs.2013.01.014 – volume: 33 start-page: 1 year: 2018 ident: 10.1016/j.catena.2020.104833_b0080 article-title: A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment publication-title: Geocarto Int. doi: 10.1080/10106049.2018.1425738 – volume: 10 start-page: 16 year: 2019 ident: 10.1016/j.catena.2020.104833_b0395 article-title: GIS-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques publication-title: Appl. Sci. doi: 10.3390/app10010016 – ident: 10.1016/j.catena.2020.104833_b0140 – volume: 78 start-page: 1911 year: 2019 ident: 10.1016/j.catena.2020.104833_b0265 article-title: A novel hybrid model of Bagging-based Naïve Bayes Trees for landslide susceptibility assessment publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-017-1202-5 – volume: 186 start-page: 79 year: 2015 ident: 10.1016/j.catena.2020.104833_b0260 article-title: Heavy rainfall triggered loess–mudstone landslide and subsequent debris flow in Tianshui, China publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2014.08.015 – volume: 12 start-page: 325 year: 2020 ident: 10.1016/j.catena.2020.104833_b0350 article-title: Hybrid computational intelligence methods for landslide susceptibility mapping publication-title: Symmetry doi: 10.3390/sym12030325 – volume: 22 start-page: 1350 year: 1986 ident: 10.1016/j.catena.2020.104833_b0245 article-title: Sediment transport capacity of sheet and rill flow: application of unit stream power theory publication-title: Water Resour. Res. doi: 10.1029/WR022i008p01350 – volume: 21 start-page: 218 year: 2019 ident: 10.1016/j.catena.2020.104833_b0385 article-title: Assessment of landslide susceptibility using integrated ensemble fractal dimension with kernel logistic regression model publication-title: Entropy doi: 10.3390/e21020218 – volume: 175 start-page: 203 year: 2019 ident: 10.1016/j.catena.2020.104833_b0270 article-title: Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: hybrid machine learning approaches publication-title: Catena doi: 10.1016/j.catena.2018.12.018 – volume: 61 start-page: 221 year: 2012 ident: 10.1016/j.catena.2020.104833_b0240 article-title: Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2012.10.005 – volume: 8 start-page: 2540 year: 2018 ident: 10.1016/j.catena.2020.104833_b0085 article-title: Landslide susceptibility modeling based on GIS and novel bagging-based Kernel logistic regression publication-title: Appl. Sci. doi: 10.3390/app8122540 – volume: 71 start-page: 243 year: 2008 ident: 10.1016/j.catena.2020.104833_b0050 article-title: Efficient approximate leave-one-out cross-validation for kernel logistic regression publication-title: Machine Learning doi: 10.1007/s10994-008-5055-9 – volume: 34 start-page: 216 year: 2010 ident: 10.1016/j.catena.2020.104833_b0285 article-title: A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2009.12.004 – volume: 195 year: 2020 ident: 10.1016/j.catena.2020.104833_b0070 article-title: GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models publication-title: CATENA doi: 10.1016/j.catena.2020.104777 – volume: 10 start-page: 623 year: 2010 ident: 10.1016/j.catena.2020.104833_b0255 article-title: Landslides and vegetation cover in the 2005 North Pakistan earthquake: a GIS and statistical quantitative approach publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-10-623-2010 – volume: 209 start-page: 415 year: 1909 ident: 10.1016/j.catena.2020.104833_b0235 article-title: Xvi. functions of positive and negative type, and their connection the theory of integral equations publication-title: Philos. Trans. Royal Soc. London Ser. A, Containing Papers of a Mathematical or Physical Character – volume: 7 start-page: 55 year: 2010 ident: 10.1016/j.catena.2020.104833_b0135 article-title: Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway) publication-title: Landslides doi: 10.1007/s10346-009-0188-x – volume: 48 start-page: 4164 year: 2010 ident: 10.1016/j.catena.2020.104833_b0290 article-title: Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia) publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2050328 – volume: 30 start-page: 297 year: 2003 ident: 10.1016/j.catena.2020.104833_b0145 article-title: Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa area (Granada, Spain) publication-title: Nat. Hazards doi: 10.1023/B:NHAZ.0000007092.51910.3f – volume: 75 start-page: 948 year: 2016 ident: 10.1016/j.catena.2020.104833_b0390 article-title: GIS-based landslide susceptibility analysis using frequency ratio and evidential belief function models publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5732-0 – ident: 10.1016/j.catena.2020.104833_b0035 doi: 10.1186/1475-925X-5-51 – volume: 112 start-page: 42 year: 2012 ident: 10.1016/j.catena.2020.104833_b0175 article-title: Landslide inventory maps: New tools for an old problem publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2012.02.001 – volume: 8 start-page: 1955 year: 2017 ident: 10.1016/j.catena.2020.104833_b0090 article-title: A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China publication-title: Geomatics, Natural Hazards Risk doi: 10.1080/19475705.2017.1401560 – volume: 24 start-page: 179 year: 2000 ident: 10.1016/j.catena.2020.104833_b0295 article-title: Sediment transport capacity relations for overland flow publication-title: Prog. Phys. Geogr. doi: 10.1177/030913330002400202 – volume: 94 start-page: 325 year: 2008 ident: 10.1016/j.catena.2020.104833_b0110 article-title: GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy) publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.10.039 – volume: 90 start-page: 237 year: 2018 ident: 10.1016/j.catena.2020.104833_b0005 article-title: Comparison of machine-learning techniques for landslide susceptibility mapping using two-level random sampling (2LRS) in Alakir catchment area, Antalya, Turkey publication-title: Nat. Hazards doi: 10.1007/s11069-017-3043-8 – volume: 195 start-page: 63 year: 2015 ident: 10.1016/j.catena.2020.104833_b0365 article-title: A simplified physically based coupled rainfall threshold model for triggering landslides publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.05.022 – volume: 32 start-page: 619 year: 2017 ident: 10.1016/j.catena.2020.104833_b0125 article-title: Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping publication-title: Geocarto Int. – ident: 10.1016/j.catena.2020.104833_b0305 doi: 10.1016/j.iswcr.2016.09.004 – volume: 65 start-page: 2161 year: 2012 ident: 10.1016/j.catena.2020.104833_b0375 article-title: GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey) publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-1196-4 – volume: 10 start-page: 66 year: 1977 ident: 10.1016/j.catena.2020.104833_b0180 article-title: The approximation of symmetric X-ray peaks by Pearson type VII distributions publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889877012849 – volume: 318 start-page: 101 year: 2018 ident: 10.1016/j.catena.2020.104833_b0010 article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia publication-title: Geomorphology doi: 10.1016/j.geomorph.2018.06.006 – ident: 10.1016/j.catena.2020.104833_b0165 doi: 10.1080/15567036.2019.1636161 – volume: 29 start-page: 687 year: 2004 ident: 10.1016/j.catena.2020.104833_b0225 article-title: Landslide inventories and their statistical properties publication-title: Earth Surf. Proc. Land. doi: 10.1002/esp.1064 – volume: 9 start-page: 3755 year: 2019 ident: 10.1016/j.catena.2020.104833_b0060 article-title: Spatial prediction of landslide susceptibility using GIS-based data mining techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO) publication-title: Appl. Sci. doi: 10.3390/app9183755 – volume: 201 start-page: 29 year: 2016 ident: 10.1016/j.catena.2020.104833_b0300 article-title: Shallow landslide susceptibility assessment in a semiarid environment—A Quaternary catchment of KwaZulu-Natal, South Africa publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.12.013 – volume: 81 start-page: 29 year: 2006 ident: 10.1016/j.catena.2020.104833_b0340 article-title: Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel publication-title: Chemometrics Intell. Lab. Syst. doi: 10.1016/j.chemolab.2005.09.003 – volume: 512 start-page: 332 year: 2014 ident: 10.1016/j.catena.2020.104833_b0315 article-title: Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.008 |
SSID | ssj0004751 |
Score | 2.651302 |
Snippet | •Landslide modeling use optimized KLR with different kernel functions.•Optimization of factors using FR analysis and multicollinearity analysis.•Comparison of... Globally, but especially in China, landslides are considered to be one of the most severe and significant natural hazards. In this study, bivariate... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104833 |
SubjectTerms | catenas China data collection decision making Geographic information system Hybrid models inventories Kernel functions Kernel logistic regression Landslide landslides prediction regression analysis rivers |
Title | GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods |
URI | https://dx.doi.org/10.1016/j.catena.2020.104833 https://www.proquest.com/docview/2551911021 |
Volume | 196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQCLUXxKOoQItciQM9mAXbiZ3jalVYiuBCkbhUluPY7CLIIrJ7WA789s44DlUrISRuUWJHkWcyD_ub-QjZ82DhfJDY6NYGJr2SzIbqiHlZWJVZoaoS9yHPL_Lhlfx5nV0vkEFXC4OwymT7W5serXW600ur2XsYj3uXh2CA9VHOOegp5FmYt0upUMsPnv_CPKSKFIw4mOHornwuYrwQdFRj9yEeDzu1EK-5p_8MdfQ-x6tkJYWNtN9-2RpZ8PU6-ZAYzEfzdbJ8Eil64Wot_a4N3U89pb9vkN8np5cMPVZFY3Hv3bjytJk1EdQS8bFzal-adFJEw9_QCTy7Hz_BnNEcC7vofUReepqoJm5oyz_dfCJXxz9-DYYsMSswCw5ryqSoOIQW2GswC5nNQ-G0C5oX7lAHXTouNZciSO4D187nXBVl5qsM5K29tF5sksV6UvvPhJa5k0Er5Yq8ktg9LhQQA0DWVWonciG2iOgW1LjUdhzZL-5Mhy-7Na0YDIrBtGLYIuxl1kPbduON8aqTlflHfQx4hjdmfutEa-DPwuMSW_vJrDGQbEEyi9Tn2-9--w75yBEEE_dsvpDF6ePMf4UoZlruRjXdJUv907PhxR-3rvFu |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuiBYQ5WkkkOBgdms7iXPggIB2lz4ubaVekHEcu13UZiuyK7Qc-FP8QWYcpwgkVAmptyiJrWTGnvHY38wH8NyjhfNBUaFbG7jyheI21Bvcq9IWmZVFXdE-5O5ePjpUH4-yoyX42efCEKwy2f7Opkdrne4MkjQH55PJYH-IBlhv5ELgOMU4a5iQldt-8Q3jtvbN-D0q-YUQmx8O3o14ohbgFi32jCtZC_StVGwvC5nNQ-m0C1qUbqiDrpxQWigZlPBBaOdzUZRV5usMf1h7Zb3Efq_BdYXmgmgTXv_4jStRReR8pK_j9Hl9vl4ElRHKqaFyRyKermop_-UP__IM0d1t3oZbaZ3K3naiWIUl36zBSqJMP1mswY2tyAmMV6vJPrTsZSpi_eoOfNoa73NykTWL2cSnk9qzdt5GFE0E5C6YvagKygh-f8ym-Oxs8h3bnCwok4ydRainZ4nb4ph1hNftXTi8Ennfg-Vm2vj7wKrcqaCLwpV5rahcXShx0YFhXqWdzKVcB9kL1LhU55zoNk5ND2j7Yjo1GFKD6dSwDvyi1XlX5-OS94teV-aP8WrQFV3S8lmvWoNTmc5nbOOn89ZgdIfRM3GtP_jv3p_Cyuhgd8fsjPe2H8JNQQicuGH0CJZnX-f-MS6hZtWTOGQZfL7qOfIL0lUtfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GIS-based+landslide+susceptibility+assessment+using+optimized+hybrid+machine+learning+methods&rft.jtitle=Catena+%28Giessen%29&rft.au=Chen%2C+Xi&rft.au=Chen%2C+Wei&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=0341-8162&rft.eissn=1872-6887&rft.volume=196&rft_id=info:doi/10.1016%2Fj.catena.2020.104833&rft.externalDocID=S0341816220303830 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon |