GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods

•Landslide modeling use optimized KLR with different kernel functions.•Optimization of factors using FR analysis and multicollinearity analysis.•Comparison of landslide susceptibility maps to reveal difference affected by factors. Globally, but especially in China, landslides are considered to be on...

Full description

Saved in:
Bibliographic Details
Published inCatena (Giessen) Vol. 196; p. 104833
Main Authors Chen, Xi, Chen, Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Landslide modeling use optimized KLR with different kernel functions.•Optimization of factors using FR analysis and multicollinearity analysis.•Comparison of landslide susceptibility maps to reveal difference affected by factors. Globally, but especially in China, landslides are considered to be one of the most severe and significant natural hazards. In this study, bivariate statistical-based kernel logistic regression (KLR) models with different kernel functions (Polynomial, PUK, and Radial Basis Function), named the PLKLR, PUKLR, and RBFKLR models, were proposed for landslide susceptibility evaluation in Zichang City, China. Meanwhile, the present study aims to build landslide susceptibility maps based on bivariate statistical correlation analysis, optimization of different kernel functions, comparison of three landslide susceptibility maps and systematic analysis of spatial patterns. The steps of this article are organized as follows: Firstly, a landslide inventory containing 263 historical landslide locations was constructed. For the purpose of training and validation of models, 263 landslide locations were randomly divided into two parts with a ratio of 70/30. Secondly, 14 landslide conditioning factors were extracted from the spatial database. Subsequently, correlation analysis between the conditioning factors and the occurrence of landslides was conducted using frequency ratios. Then, the conditioning factors with normalized frequency ratios values were used as inputs to build the landslide susceptibility maps using the three models. A multicollinearity analysis was performed using collinearity statistics. Finally, the area under the receiver operating characteristic curve (AUC) was used for comparison and validation of models for recognizing the prediction capability. By further quantitative comparing mapped susceptibility values on a pixel-by-pixel basis, which can acquire underestimations and overestimations of factors (distance to river and slope) and susceptibility area. The results indicated that the PUKLR model had superior performance in landslide susceptibility assessment, with the highest AUC values of 0.884 and 0.766 for training and validation datasets, respectively. This model was followed by the RBFKLR model and the PLKLR model for the training datasets (AUC values of 0.879 and 0.797, respectively), and the PLKLR model and the RBFKLR model for the validation datasets (AUC values of 0.758 and 0.752, respectively). The landslide susceptibility map could help government agencies and decision-makers make wise decisions for future natural hazards prevention in Zichang region.
AbstractList Globally, but especially in China, landslides are considered to be one of the most severe and significant natural hazards. In this study, bivariate statistical-based kernel logistic regression (KLR) models with different kernel functions (Polynomial, PUK, and Radial Basis Function), named the PLKLR, PUKLR, and RBFKLR models, were proposed for landslide susceptibility evaluation in Zichang City, China. Meanwhile, the present study aims to build landslide susceptibility maps based on bivariate statistical correlation analysis, optimization of different kernel functions, comparison of three landslide susceptibility maps and systematic analysis of spatial patterns. The steps of this article are organized as follows: Firstly, a landslide inventory containing 263 historical landslide locations was constructed. For the purpose of training and validation of models, 263 landslide locations were randomly divided into two parts with a ratio of 70/30. Secondly, 14 landslide conditioning factors were extracted from the spatial database. Subsequently, correlation analysis between the conditioning factors and the occurrence of landslides was conducted using frequency ratios. Then, the conditioning factors with normalized frequency ratios values were used as inputs to build the landslide susceptibility maps using the three models. A multicollinearity analysis was performed using collinearity statistics. Finally, the area under the receiver operating characteristic curve (AUC) was used for comparison and validation of models for recognizing the prediction capability. By further quantitative comparing mapped susceptibility values on a pixel-by-pixel basis, which can acquire underestimations and overestimations of factors (distance to river and slope) and susceptibility area. The results indicated that the PUKLR model had superior performance in landslide susceptibility assessment, with the highest AUC values of 0.884 and 0.766 for training and validation datasets, respectively. This model was followed by the RBFKLR model and the PLKLR model for the training datasets (AUC values of 0.879 and 0.797, respectively), and the PLKLR model and the RBFKLR model for the validation datasets (AUC values of 0.758 and 0.752, respectively). The landslide susceptibility map could help government agencies and decision-makers make wise decisions for future natural hazards prevention in Zichang region.
•Landslide modeling use optimized KLR with different kernel functions.•Optimization of factors using FR analysis and multicollinearity analysis.•Comparison of landslide susceptibility maps to reveal difference affected by factors. Globally, but especially in China, landslides are considered to be one of the most severe and significant natural hazards. In this study, bivariate statistical-based kernel logistic regression (KLR) models with different kernel functions (Polynomial, PUK, and Radial Basis Function), named the PLKLR, PUKLR, and RBFKLR models, were proposed for landslide susceptibility evaluation in Zichang City, China. Meanwhile, the present study aims to build landslide susceptibility maps based on bivariate statistical correlation analysis, optimization of different kernel functions, comparison of three landslide susceptibility maps and systematic analysis of spatial patterns. The steps of this article are organized as follows: Firstly, a landslide inventory containing 263 historical landslide locations was constructed. For the purpose of training and validation of models, 263 landslide locations were randomly divided into two parts with a ratio of 70/30. Secondly, 14 landslide conditioning factors were extracted from the spatial database. Subsequently, correlation analysis between the conditioning factors and the occurrence of landslides was conducted using frequency ratios. Then, the conditioning factors with normalized frequency ratios values were used as inputs to build the landslide susceptibility maps using the three models. A multicollinearity analysis was performed using collinearity statistics. Finally, the area under the receiver operating characteristic curve (AUC) was used for comparison and validation of models for recognizing the prediction capability. By further quantitative comparing mapped susceptibility values on a pixel-by-pixel basis, which can acquire underestimations and overestimations of factors (distance to river and slope) and susceptibility area. The results indicated that the PUKLR model had superior performance in landslide susceptibility assessment, with the highest AUC values of 0.884 and 0.766 for training and validation datasets, respectively. This model was followed by the RBFKLR model and the PLKLR model for the training datasets (AUC values of 0.879 and 0.797, respectively), and the PLKLR model and the RBFKLR model for the validation datasets (AUC values of 0.758 and 0.752, respectively). The landslide susceptibility map could help government agencies and decision-makers make wise decisions for future natural hazards prevention in Zichang region.
ArticleNumber 104833
Author Chen, Wei
Chen, Xi
Author_xml – sequence: 1
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
  organization: College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-5825-1422
  surname: Chen
  fullname: Chen, Wei
  email: chenwei0930@xust.edu.cn, chenwei.0930@163.com
  organization: College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
BookMark eNqFkD1r5DAQhkXIQTZ7-QcpXKbxRpJlW04RCCFfEEhxd2UQsjTOzmLLG402sPfr48VXXZFUAzPv88I8p-w4jAEYOxd8JbioLjcrZxMEu5JcHlZKF8URWwhdy7zSuj5mC14okWtRyRN2SrThnKu6FAv2-vD0K28tgc96Gzz16CGjHTnYJmyxx7TPLBEQDRBStiMMb9k43Qb8OzHrfRvRZ4N1awyQ9WBjOCQGSOvR00_2o7M9wdm_uWR_7u9-3z7mzy8PT7c3z7ktKplyVXhZC17XDS-70lZd47TrtGwc151unVRaqqJTEjqpHVSybtoSfAnOaVAWiiW7mHu3cXzfASUz4PRCP70E446MLEvRCMGlmKJXc9TFkShCZxwmm3AMKVrsjeDm4NRszOzUHJya2ekEq__gbcTBxv132PWMweTgAyEacgjBgccILhk_4tcFn-dslm4
CitedBy_id crossref_primary_10_1080_19475705_2021_1944330
crossref_primary_10_1016_j_ijsrc_2024_08_003
crossref_primary_10_1080_19475705_2021_1950217
crossref_primary_10_1007_s10668_023_02995_7
crossref_primary_10_1007_s11629_021_7081_z
crossref_primary_10_1038_s41597_024_03901_0
crossref_primary_10_1080_27669645_2022_2101256
crossref_primary_10_1007_s11356_023_31352_4
crossref_primary_10_1007_s11069_023_05865_7
crossref_primary_10_1016_j_qsa_2024_100172
crossref_primary_10_3390_rs16173119
crossref_primary_10_1016_j_catena_2022_106428
crossref_primary_10_1016_j_advengsoft_2022_103251
crossref_primary_10_1016_j_rockmb_2024_100144
crossref_primary_10_3390_su15043667
crossref_primary_10_3390_rs15082149
crossref_primary_10_1080_19475705_2020_1833990
crossref_primary_10_1016_j_catena_2021_105524
crossref_primary_10_26833_ijeg_1355615
crossref_primary_10_1080_10106049_2021_1903571
crossref_primary_10_52547_jwmr_13_26_105
crossref_primary_10_1007_s12665_021_09921_y
crossref_primary_10_1002_esp_5777
crossref_primary_10_3390_rs15102659
crossref_primary_10_1007_s12205_022_1656_2
crossref_primary_10_1016_j_asr_2024_11_052
crossref_primary_10_1016_j_jhydrol_2024_132566
crossref_primary_10_1016_j_jclepro_2024_142289
crossref_primary_10_1080_10106049_2021_1912194
crossref_primary_10_3390_app12178483
crossref_primary_10_3390_f14071393
crossref_primary_10_1007_s11629_023_8202_7
crossref_primary_10_3390_rs13081572
crossref_primary_10_3390_su15043094
crossref_primary_10_1016_j_compgeo_2024_107019
crossref_primary_10_1007_s10064_023_03188_2
crossref_primary_10_1007_s12517_022_10929_2
crossref_primary_10_3390_geomatics1040023
crossref_primary_10_3390_su142416716
crossref_primary_10_3390_rs16132399
crossref_primary_10_3390_su15010861
crossref_primary_10_1016_j_catena_2022_106654
crossref_primary_10_1080_19475705_2025_2471019
crossref_primary_10_1080_23789689_2023_2181552
crossref_primary_10_3390_rs14020321
crossref_primary_10_1007_s00477_022_02212_3
crossref_primary_10_1016_j_scitotenv_2023_168914
crossref_primary_10_3390_sym12121954
crossref_primary_10_3389_feart_2022_986172
crossref_primary_10_3390_rs15061513
crossref_primary_10_1080_17486025_2021_2006803
crossref_primary_10_1016_j_catena_2023_107732
crossref_primary_10_1007_s43452_023_00660_4
crossref_primary_10_3390_rs13244966
crossref_primary_10_1007_s12517_022_11032_2
crossref_primary_10_1007_s13369_021_06013_8
crossref_primary_10_3389_feart_2022_1033085
crossref_primary_10_3390_rs12203423
crossref_primary_10_1007_s11069_021_04986_1
crossref_primary_10_1016_j_jhydrol_2023_129121
crossref_primary_10_1109_LGRS_2021_3054029
crossref_primary_10_1016_j_trgeo_2024_101473
crossref_primary_10_1080_10106049_2022_2076928
crossref_primary_10_1016_j_scitotenv_2023_162242
crossref_primary_10_3389_feart_2022_953627
crossref_primary_10_3934_geosci_2022024
crossref_primary_10_1016_j_nhres_2023_07_008
crossref_primary_10_1016_j_catena_2022_106239
crossref_primary_10_3390_rs16020347
crossref_primary_10_1515_geo_2022_0642
crossref_primary_10_1016_j_gsf_2021_101211
crossref_primary_10_1007_s11600_021_00577_7
crossref_primary_10_1007_s12665_025_12148_w
crossref_primary_10_13168_AGG_2024_0019
crossref_primary_10_3390_land10060624
crossref_primary_10_1007_s11356_023_28133_4
crossref_primary_10_3390_app13148409
crossref_primary_10_3390_su16114547
crossref_primary_10_1016_j_aiig_2022_06_002
crossref_primary_10_1080_10106049_2023_2172218
crossref_primary_10_47134_ijsl_v5i1_326
crossref_primary_10_1007_s12665_024_11698_9
crossref_primary_10_1007_s12665_022_10195_1
crossref_primary_10_1007_s12665_022_10694_1
crossref_primary_10_17491_jgsi_2025_174103
crossref_primary_10_3389_feart_2023_1187384
crossref_primary_10_1007_s10064_024_03687_w
crossref_primary_10_3390_rs12233854
crossref_primary_10_3390_land11030436
crossref_primary_10_3390_rs13112166
crossref_primary_10_1080_10106049_2022_2035830
crossref_primary_10_1016_j_enggeo_2021_106480
crossref_primary_10_1016_j_jrmge_2023_03_001
crossref_primary_10_1080_04353676_2022_2091915
crossref_primary_10_1016_j_gsf_2021_101317
crossref_primary_10_3390_ijerph20064977
crossref_primary_10_1007_s11069_022_05764_3
crossref_primary_10_3390_rs14092131
crossref_primary_10_1007_s11356_022_22778_3
crossref_primary_10_1007_s11069_024_06495_3
crossref_primary_10_1080_10106049_2022_2089241
crossref_primary_10_3390_su16167063
crossref_primary_10_1007_s12145_024_01561_7
crossref_primary_10_1186_s40677_024_00296_3
crossref_primary_10_1016_j_eswa_2023_121678
crossref_primary_10_3390_land11101808
crossref_primary_10_1007_s11356_022_23982_x
crossref_primary_10_1080_19475705_2021_1914753
crossref_primary_10_1016_j_compgeo_2024_106106
crossref_primary_10_3390_w13223312
crossref_primary_10_1007_s11069_024_06649_3
crossref_primary_10_1038_s41598_022_05571_7
crossref_primary_10_1016_j_nhres_2023_06_006
crossref_primary_10_3390_s22041573
crossref_primary_10_3390_app122010196
crossref_primary_10_1007_s11069_024_06955_w
crossref_primary_10_1007_s10064_024_04001_4
crossref_primary_10_3390_ijgi9120696
crossref_primary_10_3390_w15142661
crossref_primary_10_1007_s12665_021_10033_w
crossref_primary_10_1080_17486025_2025_2455109
crossref_primary_10_3390_rs15030798
crossref_primary_10_1016_j_jrmge_2024_03_008
crossref_primary_10_1155_2021_6647829
crossref_primary_10_3390_rs15204952
crossref_primary_10_3390_su15010006
crossref_primary_10_1007_s12145_024_01229_2
crossref_primary_10_1007_s11069_022_05603_5
crossref_primary_10_1007_s41324_022_00444_7
crossref_primary_10_1007_s40789_024_00678_w
crossref_primary_10_1007_s13762_022_04665_z
crossref_primary_10_3390_land11060833
crossref_primary_10_1007_s10064_023_03440_9
crossref_primary_10_1007_s10706_022_02333_0
crossref_primary_10_1080_19475705_2021_1947904
crossref_primary_10_1080_19475705_2021_1943544
crossref_primary_10_1007_s11069_022_05520_7
crossref_primary_10_1080_14498596_2024_2335262
crossref_primary_10_1007_s12594_023_2439_1
crossref_primary_10_1007_s11356_022_21931_2
crossref_primary_10_1080_19475705_2021_1960433
crossref_primary_10_1007_s12145_024_01617_8
crossref_primary_10_1007_s11069_023_06306_1
crossref_primary_10_1016_j_catena_2021_105250
crossref_primary_10_1016_j_catena_2022_106700
crossref_primary_10_3390_rs14122773
crossref_primary_10_1007_s44274_024_00059_9
crossref_primary_10_1007_s12665_023_10803_8
crossref_primary_10_1080_22797254_2023_2260092
crossref_primary_10_1007_s12145_025_01816_x
crossref_primary_10_1016_j_catena_2022_106379
crossref_primary_10_1007_s11004_024_10168_z
crossref_primary_10_1016_j_ghm_2024_07_001
crossref_primary_10_3389_feart_2023_1147427
crossref_primary_10_3390_atmos16040360
crossref_primary_10_1016_j_ecolind_2023_109968
crossref_primary_10_1007_s12517_021_08312_8
crossref_primary_10_1080_24749508_2024_2395205
crossref_primary_10_1016_j_scitotenv_2023_163745
crossref_primary_10_1007_s11069_023_06038_2
crossref_primary_10_1038_s41598_022_22814_9
crossref_primary_10_1080_10106049_2021_1986578
crossref_primary_10_1155_2021_1099256
crossref_primary_10_3390_rs12244134
crossref_primary_10_1080_10106049_2024_2322066
crossref_primary_10_1007_s11069_022_05360_5
crossref_primary_10_1007_s10064_022_02615_0
crossref_primary_10_1016_j_geomorph_2021_107889
crossref_primary_10_1016_j_ecoleng_2021_106368
crossref_primary_10_3389_feart_2021_731058
crossref_primary_10_3390_w14050717
crossref_primary_10_1016_j_aei_2020_101230
crossref_primary_10_1016_j_scitotenv_2023_161430
crossref_primary_10_1080_10106049_2022_2088863
crossref_primary_10_1016_j_foreco_2023_121288
crossref_primary_10_1007_s12665_024_11958_8
crossref_primary_10_1016_j_asr_2024_03_074
crossref_primary_10_1007_s11069_023_06026_6
crossref_primary_10_1080_19475705_2024_2396908
crossref_primary_10_1007_s12665_022_10375_z
crossref_primary_10_3390_atmos15070788
crossref_primary_10_1016_j_engappai_2022_105457
crossref_primary_10_1007_s12665_021_09889_9
crossref_primary_10_1007_s12517_023_11374_5
crossref_primary_10_1007_s11069_024_07011_3
crossref_primary_10_3389_fenvs_2023_1140834
crossref_primary_10_1080_19475705_2022_2112096
crossref_primary_10_1007_s12145_020_00530_0
crossref_primary_10_1016_j_asr_2024_12_020
crossref_primary_10_1016_j_jrmge_2024_02_001
crossref_primary_10_3390_app12189228
crossref_primary_10_1007_s12665_023_11319_x
crossref_primary_10_1080_10106049_2021_2009921
crossref_primary_10_1016_j_geoderma_2023_116367
crossref_primary_10_3390_rs16122206
crossref_primary_10_1007_s11356_023_30200_9
crossref_primary_10_1016_j_scitotenv_2024_176400
crossref_primary_10_1007_s10064_021_02194_6
crossref_primary_10_1007_s40031_023_00876_1
crossref_primary_10_1007_s11069_022_05329_4
crossref_primary_10_3390_rs15133331
crossref_primary_10_1080_10106049_2022_2087751
crossref_primary_10_1016_j_catena_2021_105344
crossref_primary_10_3390_rs13234782
crossref_primary_10_32003_igge_931516
Cites_doi 10.1016/j.geomorph.2016.02.012
10.1007/s10346-015-0557-6
10.1007/s10346-012-0362-4
10.1007/s100640050066
10.1007/s10064-018-1401-8
10.1016/j.catena.2016.06.004
10.3390/app10010029
10.3390/rs12030475
10.1016/j.geomorph.2004.06.010
10.3390/w12010113
10.1007/s10346-015-0587-0
10.1016/j.catena.2013.10.011
10.1016/j.jhydrol.2020.124602
10.1007/s12303-015-0026-1
10.1016/j.rse.2013.11.003
10.3390/rs12142180
10.1016/j.geomorph.2005.12.003
10.1007/s12040-015-0536-2
10.1109/TGRS.1990.572944
10.1016/j.catena.2018.09.012
10.1016/j.cageo.2017.11.019
10.1007/s12665-015-4950-1
10.1021/ac00073a006
10.1007/s10346-006-0047-y
10.1007/s10346-009-0166-3
10.1016/j.scitotenv.2019.01.329
10.1007/s10346-013-0437-x
10.1080/17538947.2011.586443
10.1016/j.geomorph.2006.12.036
10.3390/ijgi9070443
10.1080/19475705.2017.1289250
10.1016/j.catena.2015.05.019
10.1016/j.scitotenv.2018.04.055
10.1016/S0013-7952(97)81260-4
10.1007/s10346-015-0611-4
10.1107/S0021889897011047
10.1007/s12665-009-0245-8
10.1002/(SICI)1096-9837(199609)21:9<853::AID-ESP676>3.0.CO;2-C
10.1016/j.jcs.2013.01.014
10.1080/10106049.2018.1425738
10.3390/app10010016
10.1007/s10064-017-1202-5
10.1016/j.enggeo.2014.08.015
10.3390/sym12030325
10.1029/WR022i008p01350
10.3390/e21020218
10.1016/j.catena.2018.12.018
10.1016/j.jseaes.2012.10.005
10.3390/app8122540
10.1007/s10994-008-5055-9
10.1016/j.compenvurbsys.2009.12.004
10.1016/j.catena.2020.104777
10.5194/nhess-10-623-2010
10.1007/s10346-009-0188-x
10.1109/TGRS.2010.2050328
10.1023/B:NHAZ.0000007092.51910.3f
10.1007/s12665-016-5732-0
10.1186/1475-925X-5-51
10.1016/j.earscirev.2012.02.001
10.1080/19475705.2017.1401560
10.1177/030913330002400202
10.1016/j.geomorph.2006.10.039
10.1007/s11069-017-3043-8
10.1016/j.enggeo.2015.05.022
10.1016/j.iswcr.2016.09.004
10.1007/s12665-011-1196-4
10.1107/S0021889877012849
10.1016/j.geomorph.2018.06.006
10.1080/15567036.2019.1636161
10.1002/esp.1064
10.3390/app9183755
10.1016/j.enggeo.2015.12.013
10.1016/j.chemolab.2005.09.003
10.1016/j.jhydrol.2014.03.008
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.catena.2020.104833
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Sciences (General)
EISSN 1872-6887
ExternalDocumentID 10_1016_j_catena_2020_104833
S0341816220303830
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
UNMZH
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-a362t-43d271077905f5a6f9c8cf829c08f8bc248243f42ef28ce6279b5ed5ecc8e4ae3
IEDL.DBID .~1
ISSN 0341-8162
IngestDate Fri Jul 11 06:52:13 EDT 2025
Thu Apr 24 22:57:53 EDT 2025
Tue Jul 01 01:46:42 EDT 2025
Fri Feb 23 02:47:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Landslide
Kernel logistic regression
Kernel functions
Hybrid models
Geographic information system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a362t-43d271077905f5a6f9c8cf829c08f8bc248243f42ef28ce6279b5ed5ecc8e4ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5825-1422
PQID 2551911021
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551911021
crossref_citationtrail_10_1016_j_catena_2020_104833
crossref_primary_10_1016_j_catena_2020_104833
elsevier_sciencedirect_doi_10_1016_j_catena_2020_104833
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Catena (Giessen)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hong, Pourghasemi, Pourtaghi (b0190) 2016; 259
Li, Chen (b0215) 2019; 12
Cawley, Talbot (b0050) 2008; 71
Hall, Veeraraghavan, Rubin, Winchell (b0180) 1977; 10
Hong, Pradhan, Xu, Bui (b0195) 2015; 133
Kumar, Anbalagan (b0200) 2015; 124
Tehrany, Pradhan, Jebur (b0315) 2014; 512
Calò, Ardizzone, Castaldo, Lollino, Tizzani, Guzzetti, Lanari, Angeli, Pontoni, Manunta (b0045) 2014; 142
Chen, Shahabi, Shirzadi, Hong, Akgun, Tian, Liu, Zhu, Li (b0075) 2019; 78
Xiao, Segoni, Chen, Yin, Casagli (b0370) 2019
Liu, J., 2012. Protein Function Prediction Based on Kernel Logistic Regression with 2-order Graphic Neighbor Information. arXiv: Quantitative Methods.
Benediktsson, J.A., Swain, P.H., Ersoy, O.K., 1990. Neural network approaches versus statistical methods in classification of multisource remote sensing data.
Gokceoglu, Sezer (b0155) 2009; 6
Chen, Li, Hou, Wang, Wang, Panahi, Li, Peng, Guo, Niu, Xiao, Wang, Xie, Ahmad (b0065) 2018; 634
Lei, Chen, Pham (b0210) 2020; 9
Malamud, Turcotte, Guzzetti, Reichenbach (b0225) 2004; 29
Ayalew, Yamagishi (b0030) 2005; 65
Chung, Fabbri (b0105) 2008; 94
Aleotti, Chowdhury (b0015) 1999; 58
De Weijer, Lucasius, Buydens, Kateman, Heuvel, Mannee (b0120) 1994; 66
Gupta (b0170) 1998; 31
Pham, Prakash (b0265) 2019; 78
Mohammady, Pourghasemi, Pradhan (b0240) 2012; 61
Wang, Lei, Chen, Shahabi, Shirzadi (b0350) 2020; 12
Erener, Düzgün (b0135) 2010; 7
He, Shahabi, Shirzadi, Li, Chen, Wang, Chai, Bian, Ma, Chen, Wang, Chapi, Ahmad (b0185) 2019; 663
Aditian, Kubota, Shinohara (b0010) 2018; 318
Westen, C.v., Terlien, M., 1996. An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth surface processes and landforms, 21, 853-868.
ESRI, R., 2014. ArcGIS desktop: release 10. Environmental Systems Research Institute, CA.
Zhang, Yin, Huang (b0380) 2015; 12
Chen, Shirzadi, Shahabi, Ahmad, Zhang, Hong, Zhang (b0090) 2017; 8
Chen, Fan, Li, Pham (b0055) 2020; 10
Süzen, Kaya (b0310) 2012; 5
Althuwaynee, Pradhan, Park, Lee (b0020) 2014; 114
Azuaje, F., 2006. Witten ih, frank e: Data mining: Practical machine learning tools and techniques 2nd edition. BioMed Central.
Chen, Shahabi, Zhang, Khosravi, Shirzadi, Chapi, Pham, Zhang, Zhang, Chai (b0085) 2018; 8
Gorsevski, Brown, Panter, Onasch, Simic, Snyder (b0160) 2016; 13
Guo, C., Qin, Y., Ma, D., Xia, Y., Chen, Y., Si, Q., Lu, L., 2019. Ionic composition, geological signature and environmental impacts of coalbed methane produced water in China. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-15.
Ustun, Melssen, Buydens (b0340) 2006; 81
Duc (b0130) 2013; 10
Lee, Pradhan (b0205) 2007; 4
Sar, N., Khan, A., Chatterjee, S., Das, A., Mipun, B.S., 2016. WITHDRAWN: Coupling of analytical hierarchy process and frequency ratio based spatial prediction of soil erosion susceptibility in Keleghai river basin, India. International soil and water conservation research.
Wang, Guo, Sawada, Lin, Zhang (b0355) 2016; 20
Arabameri, Saha, Roy, Chen, Blaschke, Tien Bui (b0025) 2020; 12
Yilmaz, Topal, Süzen (b0375) 2012; 65
Guzzetti, Mondini, Cardinali, Fiorucci, Santangelo, Chang (b0175) 2012; 112
Chen, Zhao, Tsangaratos, Shahabi, Ilia, Xue, Wang, Ahmad (b0100) 2020; 583
Moore, Burch (b0245) 1986; 22
Thanh, De Smedt (b0320) 2014; 11
Toebe, Cargnelutti Filho (b0330) 2013; 57
Zhang, Yang, Chen, Wu, Li, Li, Wang, Liu (b0390) 2016; 75
Pourghasemi, Kerle (b0275) 2016; 75
Mercer (b0235) 1909; 209
Tsangaratos, Ilia (b0335) 2016; 145
Fernández, Irigaray, El Hamdouni, Chacón (b0145) 2003; 30
Zhang, Han, Han, Li, Zhang, Wang (b0385) 2019; 21
Zhou, Yin, Cao, Ahmed, Li, Catani, Pourghasemi (b0405) 2018; 112
Gökceoglu, Aksoy (b0150) 1996; 44
Zhao, Chen (b0400) 2020; 12
Pham, Prakash, Singh, Shirzadi, Shahabi, Tran, Bui (b0270) 2019; 175
Chen, Xie, Peng, Wang, Duan, Hong (b0095) 2017; 8
Ding, Chen, Hong (b0125) 2017; 32
Cross (b0115) 1998; 15
Pradhan, Lee (b0280) 2010; 60
Prosser, Rustomji (b0295) 2000; 24
Zhao, Chen (b0395) 2019; 10
Maltman (b0230) 2012
Mutar, Biswajeet (b0250) 2019; 172
Romer, Ferentinou (b0300) 2016; 201
Chen, Hong, Panahi, Shahabi, Wang, Shirzadi, Pirasteh, Alesheikh, Khosravi, Panahi (b0060) 2019; 9
Conoscenti, Di Maggio, Rotigliano (b0110) 2008; 94
Pradhan, Sezer, Gokceoglu, Buchroithner (b0290) 2010; 48
Pradhan, Lee, Buchroithner (b0285) 2010; 34
Peduzzi (b0255) 2010; 10
Tien Bui, Tuan, Klempe, Pradhan, Revhaug (b0325) 2016; 13
Van Den Eeckhaut, Vanwalleghem, Poesen, Govers, Verstraeten, Vandekerckhove (b0345) 2006; 76
Peng, Fan, Wu, Zhuang, Dai, Chen, Zhao (b0260) 2015; 186
Chen, Shahabi, Shirzadi, Li, Guo, Hong, Li, Pan, Hui, Ma (b0080) 2018; 33
Chen, Li (b0070) 2020; 195
Wu, Lan, Gao, Li, Yang (b0365) 2015; 195
Ada, San (b0005) 2018; 90
Thanh (10.1016/j.catena.2020.104833_b0320) 2014; 11
Chen (10.1016/j.catena.2020.104833_b0095) 2017; 8
Pradhan (10.1016/j.catena.2020.104833_b0280) 2010; 60
Zhang (10.1016/j.catena.2020.104833_b0380) 2015; 12
Chen (10.1016/j.catena.2020.104833_b0060) 2019; 9
Toebe (10.1016/j.catena.2020.104833_b0330) 2013; 57
Duc (10.1016/j.catena.2020.104833_b0130) 2013; 10
Pourghasemi (10.1016/j.catena.2020.104833_b0275) 2016; 75
Chen (10.1016/j.catena.2020.104833_b0085) 2018; 8
Cross (10.1016/j.catena.2020.104833_b0115) 1998; 15
Ustun (10.1016/j.catena.2020.104833_b0340) 2006; 81
Cawley (10.1016/j.catena.2020.104833_b0050) 2008; 71
Conoscenti (10.1016/j.catena.2020.104833_b0110) 2008; 94
Moore (10.1016/j.catena.2020.104833_b0245) 1986; 22
Xiao (10.1016/j.catena.2020.104833_b0370) 2019
Chen (10.1016/j.catena.2020.104833_b0055) 2020; 10
10.1016/j.catena.2020.104833_b0040
Prosser (10.1016/j.catena.2020.104833_b0295) 2000; 24
Tehrany (10.1016/j.catena.2020.104833_b0315) 2014; 512
10.1016/j.catena.2020.104833_b0360
Van Den Eeckhaut (10.1016/j.catena.2020.104833_b0345) 2006; 76
10.1016/j.catena.2020.104833_b0165
Malamud (10.1016/j.catena.2020.104833_b0225) 2004; 29
Pham (10.1016/j.catena.2020.104833_b0270) 2019; 175
Aleotti (10.1016/j.catena.2020.104833_b0015) 1999; 58
Aditian (10.1016/j.catena.2020.104833_b0010) 2018; 318
Zhao (10.1016/j.catena.2020.104833_b0395) 2019; 10
Gorsevski (10.1016/j.catena.2020.104833_b0160) 2016; 13
Wang (10.1016/j.catena.2020.104833_b0350) 2020; 12
Tsangaratos (10.1016/j.catena.2020.104833_b0335) 2016; 145
He (10.1016/j.catena.2020.104833_b0185) 2019; 663
Zhang (10.1016/j.catena.2020.104833_b0390) 2016; 75
Chen (10.1016/j.catena.2020.104833_b0070) 2020; 195
Tien Bui (10.1016/j.catena.2020.104833_b0325) 2016; 13
Yilmaz (10.1016/j.catena.2020.104833_b0375) 2012; 65
Lei (10.1016/j.catena.2020.104833_b0210) 2020; 9
Zhao (10.1016/j.catena.2020.104833_b0400) 2020; 12
Pradhan (10.1016/j.catena.2020.104833_b0285) 2010; 34
Chen (10.1016/j.catena.2020.104833_b0075) 2019; 78
Gupta (10.1016/j.catena.2020.104833_b0170) 1998; 31
Pradhan (10.1016/j.catena.2020.104833_b0290) 2010; 48
Gokceoglu (10.1016/j.catena.2020.104833_b0155) 2009; 6
Hong (10.1016/j.catena.2020.104833_b0190) 2016; 259
Mutar (10.1016/j.catena.2020.104833_b0250) 2019; 172
10.1016/j.catena.2020.104833_b0305
Gökceoglu (10.1016/j.catena.2020.104833_b0150) 1996; 44
Zhang (10.1016/j.catena.2020.104833_b0385) 2019; 21
Mohammady (10.1016/j.catena.2020.104833_b0240) 2012; 61
Romer (10.1016/j.catena.2020.104833_b0300) 2016; 201
Kumar (10.1016/j.catena.2020.104833_b0200) 2015; 124
Hong (10.1016/j.catena.2020.104833_b0195) 2015; 133
Lee (10.1016/j.catena.2020.104833_b0205) 2007; 4
Zhou (10.1016/j.catena.2020.104833_b0405) 2018; 112
Arabameri (10.1016/j.catena.2020.104833_b0025) 2020; 12
Wu (10.1016/j.catena.2020.104833_b0365) 2015; 195
Chen (10.1016/j.catena.2020.104833_b0090) 2017; 8
Peng (10.1016/j.catena.2020.104833_b0260) 2015; 186
Calò (10.1016/j.catena.2020.104833_b0045) 2014; 142
Ada (10.1016/j.catena.2020.104833_b0005) 2018; 90
10.1016/j.catena.2020.104833_b0140
Hall (10.1016/j.catena.2020.104833_b0180) 1977; 10
10.1016/j.catena.2020.104833_b0220
Erener (10.1016/j.catena.2020.104833_b0135) 2010; 7
Peduzzi (10.1016/j.catena.2020.104833_b0255) 2010; 10
Guzzetti (10.1016/j.catena.2020.104833_b0175) 2012; 112
Li (10.1016/j.catena.2020.104833_b0215) 2019; 12
Ayalew (10.1016/j.catena.2020.104833_b0030) 2005; 65
Chen (10.1016/j.catena.2020.104833_b0100) 2020; 583
De Weijer (10.1016/j.catena.2020.104833_b0120) 1994; 66
Mercer (10.1016/j.catena.2020.104833_b0235) 1909; 209
Chen (10.1016/j.catena.2020.104833_b0065) 2018; 634
Wang (10.1016/j.catena.2020.104833_b0355) 2016; 20
Süzen (10.1016/j.catena.2020.104833_b0310) 2012; 5
Maltman (10.1016/j.catena.2020.104833_b0230) 2012
Chung (10.1016/j.catena.2020.104833_b0105) 2008; 94
Ding (10.1016/j.catena.2020.104833_b0125) 2017; 32
Fernández (10.1016/j.catena.2020.104833_b0145) 2003; 30
Pham (10.1016/j.catena.2020.104833_b0265) 2019; 78
Chen (10.1016/j.catena.2020.104833_b0080) 2018; 33
Althuwaynee (10.1016/j.catena.2020.104833_b0020) 2014; 114
10.1016/j.catena.2020.104833_b0035
References_xml – volume: 13
  start-page: 467
  year: 2016
  end-page: 484
  ident: b0160
  article-title: Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio
  publication-title: Landslides
– volume: 94
  start-page: 325
  year: 2008
  end-page: 339
  ident: b0110
  article-title: GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy)
  publication-title: Geomorphology
– volume: 10
  start-page: 29
  year: 2020
  ident: b0055
  article-title: Spatial prediction of landslides using hybrid integration of artificial intelligence algorithms with frequency ratio and index of entropy in Nanzheng County, China
  publication-title: Appl. Sci.
– reference: Sar, N., Khan, A., Chatterjee, S., Das, A., Mipun, B.S., 2016. WITHDRAWN: Coupling of analytical hierarchy process and frequency ratio based spatial prediction of soil erosion susceptibility in Keleghai river basin, India. International soil and water conservation research.
– volume: 76
  start-page: 392
  year: 2006
  end-page: 410
  ident: b0345
  article-title: Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium)
  publication-title: Geomorphology
– volume: 61
  start-page: 221
  year: 2012
  end-page: 236
  ident: b0240
  article-title: Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models
  publication-title: J. Asian Earth Sci.
– volume: 44
  start-page: 147
  year: 1996
  end-page: 161
  ident: b0150
  article-title: Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques
  publication-title: Eng. Geol.
– volume: 6
  start-page: 345
  year: 2009
  ident: b0155
  article-title: A statistical assessment on international landslide literature (1945–2008)
  publication-title: Landslides
– volume: 31
  start-page: 474
  year: 1998
  end-page: 476
  ident: b0170
  article-title: Peak decomposition using Pearson type VII function
  publication-title: J. Appl. Crystallogr.
– volume: 133
  start-page: 266
  year: 2015
  end-page: 281
  ident: b0195
  article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines
  publication-title: Catena
– volume: 57
  start-page: 453
  year: 2013
  end-page: 462
  ident: b0330
  article-title: Multicollinearity in path analysis of maize (Zea mays L.)
  publication-title: J. Cereal Sci.
– volume: 78
  start-page: 1911
  year: 2019
  end-page: 1925
  ident: b0265
  article-title: A novel hybrid model of Bagging-based Naïve Bayes Trees for landslide susceptibility assessment
  publication-title: Bull. Eng. Geol. Environ.
– volume: 201
  start-page: 29
  year: 2016
  end-page: 44
  ident: b0300
  article-title: Shallow landslide susceptibility assessment in a semiarid environment—A Quaternary catchment of KwaZulu-Natal, South Africa
  publication-title: Eng. Geol.
– volume: 195
  start-page: 63
  year: 2015
  end-page: 69
  ident: b0365
  article-title: A simplified physically based coupled rainfall threshold model for triggering landslides
  publication-title: Eng. Geol.
– volume: 124
  start-page: 431
  year: 2015
  end-page: 448
  ident: b0200
  article-title: Landslide susceptibility zonation in part of Tehri reservoir region using frequency ratio, fuzzy logic and GIS
  publication-title: J. Earth Syst. Sci.
– volume: 12
  start-page: 2180
  year: 2020
  ident: b0400
  article-title: Optimization of computational intelligence models for landslide susceptibility evaluation
  publication-title: Remote Sens.
– volume: 71
  start-page: 243
  year: 2008
  end-page: 264
  ident: b0050
  article-title: Efficient approximate leave-one-out cross-validation for kernel logistic regression
  publication-title: Machine Learning
– volume: 34
  start-page: 216
  year: 2010
  end-page: 235
  ident: b0285
  article-title: A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses
  publication-title: Comput. Environ. Urban Syst.
– volume: 114
  start-page: 21
  year: 2014
  end-page: 36
  ident: b0020
  article-title: A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping
  publication-title: Catena
– volume: 4
  year: 2007
  ident: b0205
  article-title: Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models
  publication-title: Landslides
– volume: 175
  start-page: 203
  year: 2019
  end-page: 218
  ident: b0270
  article-title: Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: hybrid machine learning approaches
  publication-title: Catena
– reference: Guo, C., Qin, Y., Ma, D., Xia, Y., Chen, Y., Si, Q., Lu, L., 2019. Ionic composition, geological signature and environmental impacts of coalbed methane produced water in China. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-15.
– volume: 186
  start-page: 79
  year: 2015
  end-page: 90
  ident: b0260
  article-title: Heavy rainfall triggered loess–mudstone landslide and subsequent debris flow in Tianshui, China
  publication-title: Eng. Geol.
– volume: 30
  start-page: 297
  year: 2003
  end-page: 308
  ident: b0145
  article-title: Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa area (Granada, Spain)
  publication-title: Nat. Hazards
– volume: 5
  start-page: 338
  year: 2012
  end-page: 355
  ident: b0310
  article-title: Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping
  publication-title: Int. J. Digital Earth
– reference: Benediktsson, J.A., Swain, P.H., Ersoy, O.K., 1990. Neural network approaches versus statistical methods in classification of multisource remote sensing data.
– volume: 29
  start-page: 687
  year: 2004
  end-page: 711
  ident: b0225
  article-title: Landslide inventories and their statistical properties
  publication-title: Earth Surf. Proc. Land.
– reference: Westen, C.v., Terlien, M., 1996. An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth surface processes and landforms, 21, 853-868.
– volume: 66
  start-page: 23
  year: 1994
  end-page: 31
  ident: b0120
  article-title: Curve fitting using natural computation
  publication-title: Anal. Chem.
– volume: 112
  start-page: 23
  year: 2018
  end-page: 37
  ident: b0405
  article-title: Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges Reservoir area, China
  publication-title: Comput. Geosci.
– volume: 8
  start-page: 2540
  year: 2018
  ident: b0085
  article-title: Landslide susceptibility modeling based on GIS and novel bagging-based Kernel logistic regression
  publication-title: Appl. Sci.
– volume: 65
  start-page: 2161
  year: 2012
  end-page: 2178
  ident: b0375
  article-title: GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey)
  publication-title: Environ. Earth Sci.
– volume: 12
  start-page: 973
  year: 2015
  end-page: 983
  ident: b0380
  article-title: Mechanisms of rainfall-induced landslides in gently inclined red beds in the eastern Sichuan Basin, SW China
  publication-title: Landslides
– volume: 10
  start-page: 16
  year: 2019
  ident: b0395
  article-title: GIS-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques
  publication-title: Appl. Sci.
– volume: 318
  start-page: 101
  year: 2018
  end-page: 111
  ident: b0010
  article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia
  publication-title: Geomorphology
– volume: 33
  start-page: 1
  year: 2018
  end-page: 23
  ident: b0080
  article-title: A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment
  publication-title: Geocarto Int.
– volume: 48
  start-page: 4164
  year: 2010
  end-page: 4177
  ident: b0290
  article-title: Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia)
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 8
  start-page: 950
  year: 2017
  end-page: 973
  ident: b0095
  article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models
  publication-title: Geomatics, Natural Hazards Risk
– volume: 12
  start-page: 325
  year: 2020
  ident: b0350
  article-title: Hybrid computational intelligence methods for landslide susceptibility mapping
  publication-title: Symmetry
– volume: 20
  start-page: 117
  year: 2016
  end-page: 136
  ident: b0355
  article-title: A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network
  publication-title: Geosci. J.
– volume: 60
  start-page: 1037
  year: 2010
  end-page: 1054
  ident: b0280
  article-title: Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models
  publication-title: Environ. Earth Sci.
– volume: 634
  start-page: 853
  year: 2018
  end-page: 867
  ident: b0065
  article-title: GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models
  publication-title: Sci. Total Environ.
– volume: 90
  start-page: 237
  year: 2018
  end-page: 263
  ident: b0005
  article-title: Comparison of machine-learning techniques for landslide susceptibility mapping using two-level random sampling (2LRS) in Alakir catchment area, Antalya, Turkey
  publication-title: Nat. Hazards
– reference: Azuaje, F., 2006. Witten ih, frank e: Data mining: Practical machine learning tools and techniques 2nd edition. BioMed Central.
– volume: 9
  start-page: 3755
  year: 2019
  ident: b0060
  article-title: Spatial prediction of landslide susceptibility using GIS-based data mining techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO)
  publication-title: Appl. Sci.
– volume: 12
  start-page: 475
  year: 2020
  ident: b0025
  article-title: Landslide susceptibility evaluation and management using different machine learning methods in The Gallicash River Watershed, Iran
  publication-title: Remote Sensing
– volume: 21
  start-page: 218
  year: 2019
  ident: b0385
  article-title: Assessment of landslide susceptibility using integrated ensemble fractal dimension with kernel logistic regression model
  publication-title: Entropy
– volume: 24
  start-page: 179
  year: 2000
  end-page: 193
  ident: b0295
  article-title: Sediment transport capacity relations for overland flow
  publication-title: Prog. Phys. Geogr.
– volume: 78
  start-page: 4397
  year: 2019
  end-page: 4419
  ident: b0075
  article-title: Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling
  publication-title: Bull. Eng. Geol. Environ.
– volume: 81
  start-page: 29
  year: 2006
  end-page: 40
  ident: b0340
  article-title: Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel
  publication-title: Chemometrics Intell. Lab. Syst.
– volume: 142
  start-page: 69
  year: 2014
  end-page: 82
  ident: b0045
  article-title: Enhanced landslide investigations through advanced DInSAR techniques: the Ivancich case study, Assisi, Italy
  publication-title: Remote Sens. Environ.
– volume: 195
  year: 2020
  ident: b0070
  article-title: GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models
  publication-title: CATENA
– volume: 9
  start-page: 443
  year: 2020
  ident: b0210
  article-title: Performance evaluation of GIS-based artificial intelligence approaches for landslide susceptibility modeling and spatial patterns analysis
  publication-title: ISPRS Int. J. Geo-Inf.
– reference: ESRI, R., 2014. ArcGIS desktop: release 10. Environmental Systems Research Institute, CA.
– volume: 10
  start-page: 219
  year: 2013
  end-page: 230
  ident: b0130
  article-title: Rainfall-triggered large landslides on 15 December 2005 in Van Canh district, Binh Dinh province, Vietnam
  publication-title: Landslides
– volume: 10
  start-page: 623
  year: 2010
  end-page: 640
  ident: b0255
  article-title: Landslides and vegetation cover in the 2005 North Pakistan earthquake: a GIS and statistical quantitative approach
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 65
  start-page: 15
  year: 2005
  end-page: 31
  ident: b0030
  article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan
  publication-title: Geomorphology
– volume: 58
  start-page: 21
  year: 1999
  end-page: 44
  ident: b0015
  article-title: Landslide hazard assessment: summary review and new perspectives
  publication-title: Bull. Eng. Geol. Environ.
– volume: 22
  start-page: 1350
  year: 1986
  end-page: 1360
  ident: b0245
  article-title: Sediment transport capacity of sheet and rill flow: application of unit stream power theory
  publication-title: Water Resour. Res.
– volume: 75
  start-page: 948
  year: 2016
  ident: b0390
  article-title: GIS-based landslide susceptibility analysis using frequency ratio and evidential belief function models
  publication-title: Environ. Earth Sci.
– volume: 583
  year: 2020
  ident: b0100
  article-title: Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping
  publication-title: J. Hydrol.
– volume: 8
  start-page: 1955
  year: 2017
  end-page: 1977
  ident: b0090
  article-title: A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China
  publication-title: Geomatics, Natural Hazards Risk
– volume: 172
  start-page: 435
  year: 2019
  end-page: 450
  ident: b0250
  article-title: A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS
  publication-title: Catena
– volume: 13
  start-page: 361
  year: 2016
  end-page: 378
  ident: b0325
  article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree
  publication-title: Landslides
– volume: 94
  start-page: 438
  year: 2008
  end-page: 452
  ident: b0105
  article-title: Predicting landslides for risk analysis—spatial models tested by a cross-validation technique
  publication-title: Geomorphology
– volume: 11
  start-page: 897
  year: 2014
  end-page: 907
  ident: b0320
  article-title: Slope stability analysis using a physically based model: a case study from A Luoi district in Thua Thien-Hue Province
  publication-title: Vietnam. Landslides
– volume: 663
  start-page: 1
  year: 2019
  end-page: 15
  ident: b0185
  article-title: Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms
  publication-title: Sci. Total Environ.
– volume: 75
  start-page: 185
  year: 2016
  ident: b0275
  article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran
  publication-title: Environ. Earth Sci.
– volume: 145
  start-page: 164
  year: 2016
  end-page: 179
  ident: b0335
  article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size
  publication-title: Catena
– volume: 32
  start-page: 619
  year: 2017
  end-page: 639
  ident: b0125
  article-title: Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping
  publication-title: Geocarto Int.
– volume: 15
  start-page: 247
  year: 1998
  end-page: 261
  ident: b0115
  article-title: Landslide susceptibility mapping using the matrix assessment approach: a Derbyshire case study
  publication-title: Geol. Soc., London, Eng. Geol. Special Publ.
– volume: 7
  start-page: 55
  year: 2010
  end-page: 68
  ident: b0135
  article-title: Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway)
  publication-title: Landslides
– volume: 12
  start-page: 113
  year: 2019
  ident: b0215
  article-title: Landslide Susceptibility evaluation using hybrid integration of evidential belief function and machine learning techniques
  publication-title: Water
– volume: 512
  start-page: 332
  year: 2014
  end-page: 343
  ident: b0315
  article-title: Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS
  publication-title: J. Hydrol.
– volume: 259
  start-page: 105
  year: 2016
  end-page: 118
  ident: b0190
  article-title: Landslide susceptibility assessment in Lianhua County (China); a comparison between a random forest data mining technique and bivariate and multivariate statistical models
  publication-title: Geomorphology
– start-page: 1
  year: 2019
  end-page: 14
  ident: b0370
  article-title: A step beyond landslide susceptibility maps: a simple method to investigate and explain the different outcomes obtained by different approaches
  publication-title: Landslides
– volume: 10
  start-page: 66
  year: 1977
  end-page: 68
  ident: b0180
  article-title: The approximation of symmetric X-ray peaks by Pearson type VII distributions
  publication-title: J. Appl. Crystallogr.
– volume: 209
  start-page: 415
  year: 1909
  end-page: 446
  ident: b0235
  article-title: Xvi. functions of positive and negative type, and their connection the theory of integral equations
  publication-title: Philos. Trans. Royal Soc. London Ser. A, Containing Papers of a Mathematical or Physical Character
– reference: Liu, J., 2012. Protein Function Prediction Based on Kernel Logistic Regression with 2-order Graphic Neighbor Information. arXiv: Quantitative Methods.
– year: 2012
  ident: b0230
  article-title: The geological deformation of sediments
– volume: 112
  start-page: 42
  year: 2012
  end-page: 66
  ident: b0175
  article-title: Landslide inventory maps: New tools for an old problem
  publication-title: Earth Sci. Rev.
– volume: 259
  start-page: 105
  year: 2016
  ident: 10.1016/j.catena.2020.104833_b0190
  article-title: Landslide susceptibility assessment in Lianhua County (China); a comparison between a random forest data mining technique and bivariate and multivariate statistical models
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.02.012
– volume: 13
  start-page: 361
  year: 2016
  ident: 10.1016/j.catena.2020.104833_b0325
  article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree
  publication-title: Landslides
  doi: 10.1007/s10346-015-0557-6
– volume: 10
  start-page: 219
  year: 2013
  ident: 10.1016/j.catena.2020.104833_b0130
  article-title: Rainfall-triggered large landslides on 15 December 2005 in Van Canh district, Binh Dinh province, Vietnam
  publication-title: Landslides
  doi: 10.1007/s10346-012-0362-4
– volume: 58
  start-page: 21
  year: 1999
  ident: 10.1016/j.catena.2020.104833_b0015
  article-title: Landslide hazard assessment: summary review and new perspectives
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s100640050066
– volume: 78
  start-page: 4397
  year: 2019
  ident: 10.1016/j.catena.2020.104833_b0075
  article-title: Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-018-1401-8
– volume: 145
  start-page: 164
  year: 2016
  ident: 10.1016/j.catena.2020.104833_b0335
  article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size
  publication-title: Catena
  doi: 10.1016/j.catena.2016.06.004
– volume: 10
  start-page: 29
  year: 2020
  ident: 10.1016/j.catena.2020.104833_b0055
  article-title: Spatial prediction of landslides using hybrid integration of artificial intelligence algorithms with frequency ratio and index of entropy in Nanzheng County, China
  publication-title: Appl. Sci.
  doi: 10.3390/app10010029
– start-page: 1
  year: 2019
  ident: 10.1016/j.catena.2020.104833_b0370
  article-title: A step beyond landslide susceptibility maps: a simple method to investigate and explain the different outcomes obtained by different approaches
  publication-title: Landslides
– volume: 12
  start-page: 475
  year: 2020
  ident: 10.1016/j.catena.2020.104833_b0025
  article-title: Landslide susceptibility evaluation and management using different machine learning methods in The Gallicash River Watershed, Iran
  publication-title: Remote Sensing
  doi: 10.3390/rs12030475
– volume: 65
  start-page: 15
  year: 2005
  ident: 10.1016/j.catena.2020.104833_b0030
  article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.06.010
– volume: 12
  start-page: 113
  year: 2019
  ident: 10.1016/j.catena.2020.104833_b0215
  article-title: Landslide Susceptibility evaluation using hybrid integration of evidential belief function and machine learning techniques
  publication-title: Water
  doi: 10.3390/w12010113
– volume: 13
  start-page: 467
  year: 2016
  ident: 10.1016/j.catena.2020.104833_b0160
  article-title: Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio
  publication-title: Landslides
  doi: 10.1007/s10346-015-0587-0
– volume: 114
  start-page: 21
  year: 2014
  ident: 10.1016/j.catena.2020.104833_b0020
  article-title: A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping
  publication-title: Catena
  doi: 10.1016/j.catena.2013.10.011
– volume: 583
  year: 2020
  ident: 10.1016/j.catena.2020.104833_b0100
  article-title: Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124602
– volume: 20
  start-page: 117
  year: 2016
  ident: 10.1016/j.catena.2020.104833_b0355
  article-title: A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network
  publication-title: Geosci. J.
  doi: 10.1007/s12303-015-0026-1
– volume: 142
  start-page: 69
  year: 2014
  ident: 10.1016/j.catena.2020.104833_b0045
  article-title: Enhanced landslide investigations through advanced DInSAR techniques: the Ivancich case study, Assisi, Italy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.11.003
– volume: 12
  start-page: 2180
  year: 2020
  ident: 10.1016/j.catena.2020.104833_b0400
  article-title: Optimization of computational intelligence models for landslide susceptibility evaluation
  publication-title: Remote Sens.
  doi: 10.3390/rs12142180
– year: 2012
  ident: 10.1016/j.catena.2020.104833_b0230
– volume: 76
  start-page: 392
  year: 2006
  ident: 10.1016/j.catena.2020.104833_b0345
  article-title: Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2005.12.003
– volume: 124
  start-page: 431
  year: 2015
  ident: 10.1016/j.catena.2020.104833_b0200
  article-title: Landslide susceptibility zonation in part of Tehri reservoir region using frequency ratio, fuzzy logic and GIS
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-015-0536-2
– ident: 10.1016/j.catena.2020.104833_b0040
  doi: 10.1109/TGRS.1990.572944
– volume: 172
  start-page: 435
  year: 2019
  ident: 10.1016/j.catena.2020.104833_b0250
  article-title: A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS
  publication-title: Catena
  doi: 10.1016/j.catena.2018.09.012
– volume: 112
  start-page: 23
  year: 2018
  ident: 10.1016/j.catena.2020.104833_b0405
  article-title: Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges Reservoir area, China
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2017.11.019
– volume: 75
  start-page: 185
  year: 2016
  ident: 10.1016/j.catena.2020.104833_b0275
  article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4950-1
– volume: 15
  start-page: 247
  year: 1998
  ident: 10.1016/j.catena.2020.104833_b0115
  article-title: Landslide susceptibility mapping using the matrix assessment approach: a Derbyshire case study
  publication-title: Geol. Soc., London, Eng. Geol. Special Publ.
– volume: 66
  start-page: 23
  year: 1994
  ident: 10.1016/j.catena.2020.104833_b0120
  article-title: Curve fitting using natural computation
  publication-title: Anal. Chem.
  doi: 10.1021/ac00073a006
– volume: 4
  year: 2007
  ident: 10.1016/j.catena.2020.104833_b0205
  article-title: Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models
  publication-title: Landslides
  doi: 10.1007/s10346-006-0047-y
– volume: 6
  start-page: 345
  year: 2009
  ident: 10.1016/j.catena.2020.104833_b0155
  article-title: A statistical assessment on international landslide literature (1945–2008)
  publication-title: Landslides
  doi: 10.1007/s10346-009-0166-3
– volume: 663
  start-page: 1
  year: 2019
  ident: 10.1016/j.catena.2020.104833_b0185
  article-title: Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.329
– volume: 11
  start-page: 897
  year: 2014
  ident: 10.1016/j.catena.2020.104833_b0320
  article-title: Slope stability analysis using a physically based model: a case study from A Luoi district in Thua Thien-Hue Province
  publication-title: Vietnam. Landslides
  doi: 10.1007/s10346-013-0437-x
– volume: 5
  start-page: 338
  year: 2012
  ident: 10.1016/j.catena.2020.104833_b0310
  article-title: Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538947.2011.586443
– volume: 94
  start-page: 438
  year: 2008
  ident: 10.1016/j.catena.2020.104833_b0105
  article-title: Predicting landslides for risk analysis—spatial models tested by a cross-validation technique
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.12.036
– volume: 9
  start-page: 443
  year: 2020
  ident: 10.1016/j.catena.2020.104833_b0210
  article-title: Performance evaluation of GIS-based artificial intelligence approaches for landslide susceptibility modeling and spatial patterns analysis
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi9070443
– volume: 8
  start-page: 950
  year: 2017
  ident: 10.1016/j.catena.2020.104833_b0095
  article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models
  publication-title: Geomatics, Natural Hazards Risk
  doi: 10.1080/19475705.2017.1289250
– volume: 133
  start-page: 266
  year: 2015
  ident: 10.1016/j.catena.2020.104833_b0195
  article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines
  publication-title: Catena
  doi: 10.1016/j.catena.2015.05.019
– volume: 634
  start-page: 853
  year: 2018
  ident: 10.1016/j.catena.2020.104833_b0065
  article-title: GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.055
– volume: 44
  start-page: 147
  year: 1996
  ident: 10.1016/j.catena.2020.104833_b0150
  article-title: Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(97)81260-4
– volume: 12
  start-page: 973
  year: 2015
  ident: 10.1016/j.catena.2020.104833_b0380
  article-title: Mechanisms of rainfall-induced landslides in gently inclined red beds in the eastern Sichuan Basin, SW China
  publication-title: Landslides
  doi: 10.1007/s10346-015-0611-4
– volume: 31
  start-page: 474
  year: 1998
  ident: 10.1016/j.catena.2020.104833_b0170
  article-title: Peak decomposition using Pearson type VII function
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889897011047
– volume: 60
  start-page: 1037
  year: 2010
  ident: 10.1016/j.catena.2020.104833_b0280
  article-title: Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-009-0245-8
– ident: 10.1016/j.catena.2020.104833_b0360
  doi: 10.1002/(SICI)1096-9837(199609)21:9<853::AID-ESP676>3.0.CO;2-C
– ident: 10.1016/j.catena.2020.104833_b0220
– volume: 57
  start-page: 453
  year: 2013
  ident: 10.1016/j.catena.2020.104833_b0330
  article-title: Multicollinearity in path analysis of maize (Zea mays L.)
  publication-title: J. Cereal Sci.
  doi: 10.1016/j.jcs.2013.01.014
– volume: 33
  start-page: 1
  year: 2018
  ident: 10.1016/j.catena.2020.104833_b0080
  article-title: A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2018.1425738
– volume: 10
  start-page: 16
  year: 2019
  ident: 10.1016/j.catena.2020.104833_b0395
  article-title: GIS-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques
  publication-title: Appl. Sci.
  doi: 10.3390/app10010016
– ident: 10.1016/j.catena.2020.104833_b0140
– volume: 78
  start-page: 1911
  year: 2019
  ident: 10.1016/j.catena.2020.104833_b0265
  article-title: A novel hybrid model of Bagging-based Naïve Bayes Trees for landslide susceptibility assessment
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-017-1202-5
– volume: 186
  start-page: 79
  year: 2015
  ident: 10.1016/j.catena.2020.104833_b0260
  article-title: Heavy rainfall triggered loess–mudstone landslide and subsequent debris flow in Tianshui, China
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2014.08.015
– volume: 12
  start-page: 325
  year: 2020
  ident: 10.1016/j.catena.2020.104833_b0350
  article-title: Hybrid computational intelligence methods for landslide susceptibility mapping
  publication-title: Symmetry
  doi: 10.3390/sym12030325
– volume: 22
  start-page: 1350
  year: 1986
  ident: 10.1016/j.catena.2020.104833_b0245
  article-title: Sediment transport capacity of sheet and rill flow: application of unit stream power theory
  publication-title: Water Resour. Res.
  doi: 10.1029/WR022i008p01350
– volume: 21
  start-page: 218
  year: 2019
  ident: 10.1016/j.catena.2020.104833_b0385
  article-title: Assessment of landslide susceptibility using integrated ensemble fractal dimension with kernel logistic regression model
  publication-title: Entropy
  doi: 10.3390/e21020218
– volume: 175
  start-page: 203
  year: 2019
  ident: 10.1016/j.catena.2020.104833_b0270
  article-title: Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: hybrid machine learning approaches
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.018
– volume: 61
  start-page: 221
  year: 2012
  ident: 10.1016/j.catena.2020.104833_b0240
  article-title: Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2012.10.005
– volume: 8
  start-page: 2540
  year: 2018
  ident: 10.1016/j.catena.2020.104833_b0085
  article-title: Landslide susceptibility modeling based on GIS and novel bagging-based Kernel logistic regression
  publication-title: Appl. Sci.
  doi: 10.3390/app8122540
– volume: 71
  start-page: 243
  year: 2008
  ident: 10.1016/j.catena.2020.104833_b0050
  article-title: Efficient approximate leave-one-out cross-validation for kernel logistic regression
  publication-title: Machine Learning
  doi: 10.1007/s10994-008-5055-9
– volume: 34
  start-page: 216
  year: 2010
  ident: 10.1016/j.catena.2020.104833_b0285
  article-title: A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2009.12.004
– volume: 195
  year: 2020
  ident: 10.1016/j.catena.2020.104833_b0070
  article-title: GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104777
– volume: 10
  start-page: 623
  year: 2010
  ident: 10.1016/j.catena.2020.104833_b0255
  article-title: Landslides and vegetation cover in the 2005 North Pakistan earthquake: a GIS and statistical quantitative approach
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-10-623-2010
– volume: 209
  start-page: 415
  year: 1909
  ident: 10.1016/j.catena.2020.104833_b0235
  article-title: Xvi. functions of positive and negative type, and their connection the theory of integral equations
  publication-title: Philos. Trans. Royal Soc. London Ser. A, Containing Papers of a Mathematical or Physical Character
– volume: 7
  start-page: 55
  year: 2010
  ident: 10.1016/j.catena.2020.104833_b0135
  article-title: Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway)
  publication-title: Landslides
  doi: 10.1007/s10346-009-0188-x
– volume: 48
  start-page: 4164
  year: 2010
  ident: 10.1016/j.catena.2020.104833_b0290
  article-title: Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia)
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2050328
– volume: 30
  start-page: 297
  year: 2003
  ident: 10.1016/j.catena.2020.104833_b0145
  article-title: Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa area (Granada, Spain)
  publication-title: Nat. Hazards
  doi: 10.1023/B:NHAZ.0000007092.51910.3f
– volume: 75
  start-page: 948
  year: 2016
  ident: 10.1016/j.catena.2020.104833_b0390
  article-title: GIS-based landslide susceptibility analysis using frequency ratio and evidential belief function models
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-5732-0
– ident: 10.1016/j.catena.2020.104833_b0035
  doi: 10.1186/1475-925X-5-51
– volume: 112
  start-page: 42
  year: 2012
  ident: 10.1016/j.catena.2020.104833_b0175
  article-title: Landslide inventory maps: New tools for an old problem
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2012.02.001
– volume: 8
  start-page: 1955
  year: 2017
  ident: 10.1016/j.catena.2020.104833_b0090
  article-title: A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China
  publication-title: Geomatics, Natural Hazards Risk
  doi: 10.1080/19475705.2017.1401560
– volume: 24
  start-page: 179
  year: 2000
  ident: 10.1016/j.catena.2020.104833_b0295
  article-title: Sediment transport capacity relations for overland flow
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/030913330002400202
– volume: 94
  start-page: 325
  year: 2008
  ident: 10.1016/j.catena.2020.104833_b0110
  article-title: GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.10.039
– volume: 90
  start-page: 237
  year: 2018
  ident: 10.1016/j.catena.2020.104833_b0005
  article-title: Comparison of machine-learning techniques for landslide susceptibility mapping using two-level random sampling (2LRS) in Alakir catchment area, Antalya, Turkey
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-017-3043-8
– volume: 195
  start-page: 63
  year: 2015
  ident: 10.1016/j.catena.2020.104833_b0365
  article-title: A simplified physically based coupled rainfall threshold model for triggering landslides
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.05.022
– volume: 32
  start-page: 619
  year: 2017
  ident: 10.1016/j.catena.2020.104833_b0125
  article-title: Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping
  publication-title: Geocarto Int.
– ident: 10.1016/j.catena.2020.104833_b0305
  doi: 10.1016/j.iswcr.2016.09.004
– volume: 65
  start-page: 2161
  year: 2012
  ident: 10.1016/j.catena.2020.104833_b0375
  article-title: GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey)
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-1196-4
– volume: 10
  start-page: 66
  year: 1977
  ident: 10.1016/j.catena.2020.104833_b0180
  article-title: The approximation of symmetric X-ray peaks by Pearson type VII distributions
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889877012849
– volume: 318
  start-page: 101
  year: 2018
  ident: 10.1016/j.catena.2020.104833_b0010
  article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2018.06.006
– ident: 10.1016/j.catena.2020.104833_b0165
  doi: 10.1080/15567036.2019.1636161
– volume: 29
  start-page: 687
  year: 2004
  ident: 10.1016/j.catena.2020.104833_b0225
  article-title: Landslide inventories and their statistical properties
  publication-title: Earth Surf. Proc. Land.
  doi: 10.1002/esp.1064
– volume: 9
  start-page: 3755
  year: 2019
  ident: 10.1016/j.catena.2020.104833_b0060
  article-title: Spatial prediction of landslide susceptibility using GIS-based data mining techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO)
  publication-title: Appl. Sci.
  doi: 10.3390/app9183755
– volume: 201
  start-page: 29
  year: 2016
  ident: 10.1016/j.catena.2020.104833_b0300
  article-title: Shallow landslide susceptibility assessment in a semiarid environment—A Quaternary catchment of KwaZulu-Natal, South Africa
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.12.013
– volume: 81
  start-page: 29
  year: 2006
  ident: 10.1016/j.catena.2020.104833_b0340
  article-title: Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel
  publication-title: Chemometrics Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2005.09.003
– volume: 512
  start-page: 332
  year: 2014
  ident: 10.1016/j.catena.2020.104833_b0315
  article-title: Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.008
SSID ssj0004751
Score 2.651302
Snippet •Landslide modeling use optimized KLR with different kernel functions.•Optimization of factors using FR analysis and multicollinearity analysis.•Comparison of...
Globally, but especially in China, landslides are considered to be one of the most severe and significant natural hazards. In this study, bivariate...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104833
SubjectTerms catenas
China
data collection
decision making
Geographic information system
Hybrid models
inventories
Kernel functions
Kernel logistic regression
Landslide
landslides
prediction
regression analysis
rivers
Title GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods
URI https://dx.doi.org/10.1016/j.catena.2020.104833
https://www.proquest.com/docview/2551911021
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQCLUXxKOoQItciQM9mAXbiZ3jalVYiuBCkbhUluPY7CLIIrJ7WA789s44DlUrISRuUWJHkWcyD_ub-QjZ82DhfJDY6NYGJr2SzIbqiHlZWJVZoaoS9yHPL_Lhlfx5nV0vkEFXC4OwymT7W5serXW600ur2XsYj3uXh2CA9VHOOegp5FmYt0upUMsPnv_CPKSKFIw4mOHornwuYrwQdFRj9yEeDzu1EK-5p_8MdfQ-x6tkJYWNtN9-2RpZ8PU6-ZAYzEfzdbJ8Eil64Wot_a4N3U89pb9vkN8np5cMPVZFY3Hv3bjytJk1EdQS8bFzal-adFJEw9_QCTy7Hz_BnNEcC7vofUReepqoJm5oyz_dfCJXxz9-DYYsMSswCw5ryqSoOIQW2GswC5nNQ-G0C5oX7lAHXTouNZciSO4D187nXBVl5qsM5K29tF5sksV6UvvPhJa5k0Er5Yq8ktg9LhQQA0DWVWonciG2iOgW1LjUdhzZL-5Mhy-7Na0YDIrBtGLYIuxl1kPbduON8aqTlflHfQx4hjdmfutEa-DPwuMSW_vJrDGQbEEyi9Tn2-9--w75yBEEE_dsvpDF6ePMf4UoZlruRjXdJUv907PhxR-3rvFu
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuiBYQ5WkkkOBgdms7iXPggIB2lz4ubaVekHEcu13UZiuyK7Qc-FP8QWYcpwgkVAmptyiJrWTGnvHY38wH8NyjhfNBUaFbG7jyheI21Bvcq9IWmZVFXdE-5O5ePjpUH4-yoyX42efCEKwy2f7Opkdrne4MkjQH55PJYH-IBlhv5ELgOMU4a5iQldt-8Q3jtvbN-D0q-YUQmx8O3o14ohbgFi32jCtZC_StVGwvC5nNQ-m0C1qUbqiDrpxQWigZlPBBaOdzUZRV5usMf1h7Zb3Efq_BdYXmgmgTXv_4jStRReR8pK_j9Hl9vl4ElRHKqaFyRyKermop_-UP__IM0d1t3oZbaZ3K3naiWIUl36zBSqJMP1mswY2tyAmMV6vJPrTsZSpi_eoOfNoa73NykTWL2cSnk9qzdt5GFE0E5C6YvagKygh-f8ym-Oxs8h3bnCwok4ydRainZ4nb4ph1hNftXTi8Ennfg-Vm2vj7wKrcqaCLwpV5rahcXShx0YFhXqWdzKVcB9kL1LhU55zoNk5ND2j7Yjo1GFKD6dSwDvyi1XlX5-OS94teV-aP8WrQFV3S8lmvWoNTmc5nbOOn89ZgdIfRM3GtP_jv3p_Cyuhgd8fsjPe2H8JNQQicuGH0CJZnX-f-MS6hZtWTOGQZfL7qOfIL0lUtfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GIS-based+landslide+susceptibility+assessment+using+optimized+hybrid+machine+learning+methods&rft.jtitle=Catena+%28Giessen%29&rft.au=Chen%2C+Xi&rft.au=Chen%2C+Wei&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=0341-8162&rft.eissn=1872-6887&rft.volume=196&rft_id=info:doi/10.1016%2Fj.catena.2020.104833&rft.externalDocID=S0341816220303830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon