A model for characterizing dry soil aggregate size distribution
•A new model was proposed for dry soil aggregate size distribution.•The performance of the new model is better than the existed models.•Dry soil aggregate size distribution patterns affect the accuracy of these models.•The choice of screen openings affects dry soil aggregate size distributions.•A pa...
Saved in:
Published in | Catena (Giessen) Vol. 198; p. 105018 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A new model was proposed for dry soil aggregate size distribution.•The performance of the new model is better than the existed models.•Dry soil aggregate size distribution patterns affect the accuracy of these models.•The choice of screen openings affects dry soil aggregate size distributions.•A parameter in the new model (dr) was significantly related to wind erosion rate.
Dry soil aggregate size distribution (DASD) is an important parameter in evaluating soil management practices or modeling of wind erosion and dust emissions. Several models including Lognormal, Fractal and Weibull distributions have been developed to quantitatively describe the DASD. In this study, a new model combining power-law and exponential distributions was proposed to characterize DASD. The performances of the Fractal, Weibull and modified Lognormal distributions and the new model were investigated using 253 DASD data from published documents across five countries. The new model best described the observed DASD data across different soil texture, land use and sieving cuttings. The patterns of DASD generally governed the goodness of fit of these DASD models. The Fractal and Weibull distributions could not well depict the right-skewing unimodal and multimodal DASD data. The modified Lognormal distribution could not well describe the multimodal DASD data. The larger aggregate size distribution was better dictated by the power-law distribution, whereas the smaller aggregate size distribution was characterized by the power-law and exponential distributions for the new model. The choice of screen opening for sieving procedure could affect the patterns of the apparent DASD, and further influence the accuracy of the DASD models. The dr, a parameter in the new model, was significantly related to rock fragments, soil aggregate stability and wind erosion rate. More studies are required to investigate the relationship between the parameters of the new model and soil properties linked with wind erosion. |
---|---|
AbstractList | Dry soil aggregate size distribution (DASD) is an important parameter in evaluating soil management practices or modeling of wind erosion and dust emissions. Several models including Lognormal, Fractal and Weibull distributions have been developed to quantitatively describe the DASD. In this study, a new model combining power-law and exponential distributions was proposed to characterize DASD. The performances of the Fractal, Weibull and modified Lognormal distributions and the new model were investigated using 253 DASD data from published documents across five countries. The new model best described the observed DASD data across different soil texture, land use and sieving cuttings. The patterns of DASD generally governed the goodness of fit of these DASD models. The Fractal and Weibull distributions could not well depict the right-skewing unimodal and multimodal DASD data. The modified Lognormal distribution could not well describe the multimodal DASD data. The larger aggregate size distribution was better dictated by the power-law distribution, whereas the smaller aggregate size distribution was characterized by the power-law and exponential distributions for the new model. The choice of screen opening for sieving procedure could affect the patterns of the apparent DASD, and further influence the accuracy of the DASD models. The dᵣ, a parameter in the new model, was significantly related to rock fragments, soil aggregate stability and wind erosion rate. More studies are required to investigate the relationship between the parameters of the new model and soil properties linked with wind erosion. •A new model was proposed for dry soil aggregate size distribution.•The performance of the new model is better than the existed models.•Dry soil aggregate size distribution patterns affect the accuracy of these models.•The choice of screen openings affects dry soil aggregate size distributions.•A parameter in the new model (dr) was significantly related to wind erosion rate. Dry soil aggregate size distribution (DASD) is an important parameter in evaluating soil management practices or modeling of wind erosion and dust emissions. Several models including Lognormal, Fractal and Weibull distributions have been developed to quantitatively describe the DASD. In this study, a new model combining power-law and exponential distributions was proposed to characterize DASD. The performances of the Fractal, Weibull and modified Lognormal distributions and the new model were investigated using 253 DASD data from published documents across five countries. The new model best described the observed DASD data across different soil texture, land use and sieving cuttings. The patterns of DASD generally governed the goodness of fit of these DASD models. The Fractal and Weibull distributions could not well depict the right-skewing unimodal and multimodal DASD data. The modified Lognormal distribution could not well describe the multimodal DASD data. The larger aggregate size distribution was better dictated by the power-law distribution, whereas the smaller aggregate size distribution was characterized by the power-law and exponential distributions for the new model. The choice of screen opening for sieving procedure could affect the patterns of the apparent DASD, and further influence the accuracy of the DASD models. The dr, a parameter in the new model, was significantly related to rock fragments, soil aggregate stability and wind erosion rate. More studies are required to investigate the relationship between the parameters of the new model and soil properties linked with wind erosion. |
ArticleNumber | 105018 |
Author | Li, Jifeng Wang, Rende Zou, Xueyong Guo, Zhongling Chang, Chunping Li, Qing |
Author_xml | – sequence: 1 givenname: Zhongling surname: Guo fullname: Guo, Zhongling organization: College of Resource and Environment Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, Shijiazhuang, Hebei 050024, China – sequence: 2 givenname: Chunping surname: Chang fullname: Chang, Chunping email: ccp690708@hebtu.edu.cn organization: College of Resource and Environment Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, Shijiazhuang, Hebei 050024, China – sequence: 3 givenname: Xueyong surname: Zou fullname: Zou, Xueyong organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China – sequence: 4 givenname: Rende surname: Wang fullname: Wang, Rende organization: Institute of Geographical Sciences, Heibei Academy Sciences/Hebei Engineering Research Center for Geographic Information Application, Shijiazhuang, Hebei 050011, China – sequence: 5 givenname: Jifeng surname: Li fullname: Li, Jifeng organization: College of Resource and Environment Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, Shijiazhuang, Hebei 050024, China – sequence: 6 givenname: Qing surname: Li fullname: Li, Qing organization: Institute of Geographical Sciences, Heibei Academy Sciences/Hebei Engineering Research Center for Geographic Information Application, Shijiazhuang, Hebei 050011, China |
BookMark | eNqFkD1PwzAQhi1UJErhHzBkZEmxHdtxGEBVxZdUiQVmy7EvxVUaF9tFan89icLEANNJp_d5T_eco0nnO0DoiuA5wUTcbOZGJ-j0nGI6rDgm8gRNiSxpLqQsJ2iKC0ZySQQ9Q-cxbjDGrORkiu4X2dZbaLPGh8x86KBNguCOrltnNhyy6F2b6fU6wLo_kUV3hMy6mIKr98n57gKdNrqNcPkzZ-j98eFt-ZyvXp9elotVrgtBU04riWVVlQRXjeBCADdCVLppNGM1K4mmVmJsrTVgCiEbbLWsmbbA6oqzoilm6Hrs3QX_uYeY1NZFA22rO_D7qCjnpCoYp6yPsjFqgo8xQKN2wW11OCiC1eBLbdToSw2-1Oirx25_YcYlPfyYgnbtf_DdCEPv4MtBUNE46AxYF8AkZb37u-AbCLmKeg |
CitedBy_id | crossref_primary_10_3390_land11112068 crossref_primary_10_17221_119_2024_SWR crossref_primary_10_1016_j_aeolia_2024_100925 crossref_primary_10_1016_j_envres_2021_111840 crossref_primary_10_3390_agronomy15010250 crossref_primary_10_1111_avsc_12638 crossref_primary_10_3390_agronomy13040993 crossref_primary_10_1016_j_catena_2024_107995 |
Cites_doi | 10.1016/j.geoderma.2016.11.011 10.13031/2013.28438 10.13031/2013.28627 10.2136/sssaj1962.03615995002600010002x 10.2136/sssaj2003.4250 10.2136/sssaj1956.03615995002000020003x 10.1016/j.geoderma.2010.07.016 10.1016/j.geoderma.2007.03.001 10.2136/sssaj1951.036159950015000C0003x 10.1016/j.cageo.2016.04.010 10.2136/sssaj1952.03615995001600020001x 10.1071/AR9500266 10.1016/0167-1987(93)90022-H 10.2136/sssaj2014.06.0235 10.1097/00010694-194603000-00007 10.1016/j.still.2019.104306 10.13031/2013.30420 10.1088/0034-4885/75/10/106901 10.1016/j.aeolia.2012.08.004 10.2136/sssaj1965.03615995002900060018x 10.2136/sssaj1992.03615995005600050012x 10.1002/2017RG000585 10.1016/j.still.2016.12.008 10.1016/j.still.2006.06.006 10.1097/00010694-194308000-00002 10.1016/j.envsci.2018.12.020 10.1016/j.catena.2012.05.014 10.1016/j.ecolind.2019.105881 10.1002/esp.1033 10.1007/s11430-014-5002-5 10.1080/15324980590887074 10.1029/JB094iB11p15703 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.catena.2020.105018 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Sciences (General) |
EISSN | 1872-6887 |
ExternalDocumentID | 10_1016_j_catena_2020_105018 S0341816220305683 |
GroupedDBID | --K --M -DZ .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K UNMZH VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-a362t-29808997109f6566e5c669affa44b471a2d800dddcec368f0da8b4ade4b9543f3 |
IEDL.DBID | .~1 |
ISSN | 0341-8162 |
IngestDate | Fri Jul 11 02:01:06 EDT 2025 Thu Apr 24 23:09:01 EDT 2025 Tue Jul 01 01:46:43 EDT 2025 Fri Feb 23 02:47:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | aR2 WEQ STD D Max d0 Modeling WD Flat sieve MLN dr P Rotary sieve DASD R Wind erosion RWEQ Dry soil aggregate size distribution k RMSE n dmax α Ave β γ Min δ P(d) WEPS λ μ FD |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a362t-29808997109f6566e5c669affa44b471a2d800dddcec368f0da8b4ade4b9543f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2551934524 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551934524 crossref_primary_10_1016_j_catena_2020_105018 crossref_citationtrail_10_1016_j_catena_2020_105018 elsevier_sciencedirect_doi_10_1016_j_catena_2020_105018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationTitle | Catena (Giessen) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chepil (b0020) 1942; 23 Chepil (b0030) 1945; 61 Toogood (b0170) 1978 Colazo, Buschiazzo (b0050) 2010; 159 Li, Chengmin, Baoliang, Xiafei, Jingjing (b0125) 2017; 288 López, Gracia, Arrúe (b0115) 2001; 56 Zhang, 2018. Soil Wind Erodibility of Farmland, Abandonded Farmland and Glassland in the Bashang Area of Hebei, China (in Chinese with English abstract). Thesis. Shijiazhuang: Hebei Normal University. Chepil (b0035) 1952; 16 Zingg (b0210) 1951; 15 Wagner, Ding (b0185) 1993; 36 Hevia, Mendez, Buschiazzo (b0090) 2007; 140 Kemper, Rosenau (b0100) 1986; 5 Allmaras, Burwell, Voorhees, Larson (b0005) 1965; 29 Chepil (b0040) 1962; 26 Gardner (bib224) 1956 Sun, Lu, Rea, Sun, Wu (b0165) 2000; 18 Wohletz, Sheridan, Brown (b0195) 1989; 94 Kuhn, Armstrong (b0110) 2012; 98 Zobeck, Popham, Skidmore, Lamb, Merrill, Lindstrom, Yoder (b0220) 2003; 67 Tatarko (bib225) 2013 Perfect (bib222) 1993 Gabriel, Daniel, Ismael, Gregorio (b0070) 2016; 92 Perfect, Rasiah, Kay (b0145) 1992; 56 Webb, Kachergis, Miller, McCord, Bestelmeyer, Brown, Leys (b0190) 2020; 110 Zobeck (bib226) 1991 Ciric, Manojlovic, Nesic, Belic (b0045) 2012; 12 Mandelbrot (b0130) 1982 Zobeck, Sterk, Funk, Rajot, Stout, Van Pelt (b0215) 2003; 28 Chandler, Saxton, Busacca (b0010) 2004; 19 Chappell, Webb, Leys, Waters, Orgill, Eyres (b0015) 2019; 93 Kok, Parteli, Michaels, Karam (b0105) 2012; 75 Rienzi, Marchi, Rodriguez (b0150) 2018; 6 Diaz-Zorita, Grove, Perfect (b0060) 2007; 94 Chepil, Bisal (b0025) 1943; 56 USDA-Soil Survey Staff, 1993. Soil survey manual. Washington D.C. Cui, 2019. A continuous-weighing sand trap: design and field evaluations (in Chinese with English abstract). Thesis. Shijiazhuang: Hebei Normal University. Marshall, Quirk (b0135) 1950; 1 Hagen, Skidmore, Fryrear (b0080) 1987; 30 Dong, Hu, Qian, Lu, Zhang, Luo, Lyu (b0065) 2017; 55 Guo, Chang, Wang, Li (b0075) 2017; 168 Seber, Wild (b0155) 1989 Skidmore, Hagen, Armbrust, Durar, Fryrear, Potter, Zobeck (b0160) 1994 Wagner, Ambe, Barnes (b0085) 1992; 35 Zou (bib223) 2015 Guo (bib221) 2019 Li, Feng, Sharratt, Zheng, Pi, Gao (b0120) 2014; 78 Webb (10.1016/j.catena.2020.105018_b0190) 2020; 110 Chepil (10.1016/j.catena.2020.105018_b0040) 1962; 26 10.1016/j.catena.2020.105018_b0205 Kok (10.1016/j.catena.2020.105018_b0105) 2012; 75 Seber (10.1016/j.catena.2020.105018_b0155) 1989 Gabriel (10.1016/j.catena.2020.105018_b0070) 2016; 92 Allmaras (10.1016/j.catena.2020.105018_b0005) 1965; 29 Skidmore (10.1016/j.catena.2020.105018_b0160) 1994 Chappell (10.1016/j.catena.2020.105018_b0015) 2019; 93 Toogood (10.1016/j.catena.2020.105018_b0170) 1978 Li (10.1016/j.catena.2020.105018_b0125) 2017; 288 Wohletz (10.1016/j.catena.2020.105018_b0195) 1989; 94 López (10.1016/j.catena.2020.105018_b0115) 2001; 56 Sun (10.1016/j.catena.2020.105018_b0165) 2000; 18 Chandler (10.1016/j.catena.2020.105018_b0010) 2004; 19 Marshall (10.1016/j.catena.2020.105018_b0135) 1950; 1 Kemper (10.1016/j.catena.2020.105018_b0100) 1986; 5 Zobeck (10.1016/j.catena.2020.105018_b0215) 2003; 28 Hagen (10.1016/j.catena.2020.105018_b0080) 1987; 30 Wagner (10.1016/j.catena.2020.105018_b0085) 1992; 35 Gardner (10.1016/j.catena.2020.105018_bib224) 1956 Guo (10.1016/j.catena.2020.105018_b0075) 2017; 168 Kuhn (10.1016/j.catena.2020.105018_b0110) 2012; 98 Zobeck (10.1016/j.catena.2020.105018_bib226) 1991 Hevia (10.1016/j.catena.2020.105018_b0090) 2007; 140 Perfect (10.1016/j.catena.2020.105018_b0145) 1992; 56 Li (10.1016/j.catena.2020.105018_b0120) 2014; 78 Wagner (10.1016/j.catena.2020.105018_b0185) 1993; 36 Dong (10.1016/j.catena.2020.105018_b0065) 2017; 55 Chepil (10.1016/j.catena.2020.105018_b0025) 1943; 56 Tatarko (10.1016/j.catena.2020.105018_bib225) 2013 Zou (10.1016/j.catena.2020.105018_bib223) 2015 Zingg (10.1016/j.catena.2020.105018_b0210) 1951; 15 Chepil (10.1016/j.catena.2020.105018_b0030) 1945; 61 Chepil (10.1016/j.catena.2020.105018_b0035) 1952; 16 Colazo (10.1016/j.catena.2020.105018_b0050) 2010; 159 Ciric (10.1016/j.catena.2020.105018_b0045) 2012; 12 Mandelbrot (10.1016/j.catena.2020.105018_b0130) 1982 Zobeck (10.1016/j.catena.2020.105018_b0220) 2003; 67 10.1016/j.catena.2020.105018_b0055 Guo (10.1016/j.catena.2020.105018_bib221) 2019 Diaz-Zorita (10.1016/j.catena.2020.105018_b0060) 2007; 94 Perfect (10.1016/j.catena.2020.105018_bib222) 1993 10.1016/j.catena.2020.105018_b0175 Chepil (10.1016/j.catena.2020.105018_b0020) 1942; 23 Rienzi (10.1016/j.catena.2020.105018_b0150) 2018; 6 |
References_xml | – volume: 159 start-page: 228 year: 2010 end-page: 236 ident: b0050 article-title: Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina publication-title: Geoderma – volume: 94 start-page: 15 year: 2007 end-page: 20 ident: b0060 article-title: Sieving duration and sieve loading impacts on dry soil fragment size distributions publication-title: Soil Tillage Res. – volume: 56 start-page: 212 year: 2001 end-page: 219 ident: b0115 article-title: An evaluation of wind erosion hazard in fallow lands of semiarid Aragon (NE Spain) publication-title: J. Soil Water Conservation – volume: 35 start-page: 499 year: 1992 end-page: 504 ident: b0085 article-title: Tillage-induced soil aggregate status as influenced by water content publication-title: Trans. ASAE – volume: 94 start-page: 15703 year: 1989 end-page: 15721 ident: b0195 article-title: Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash publication-title: J. Geophys. Res. – volume: 19 start-page: 13 year: 2004 end-page: 27 ident: b0010 article-title: Predicting wind erodibility of loessial soils in the Pacific Northwest by particle sizing publication-title: Arid Land Res. Manage. – year: 2015 ident: bib223 article-title: Cogitation on developing a dynamic model of soil wind erosion publication-title: Sci. China Earth Sci. – volume: 15 start-page: 11 year: 1951 end-page: 17 ident: b0210 article-title: Evaluation of the Erodibility of Field Surfaces with a Portable Wind Tunnel 1 publication-title: Soil Sci. Soc. Am. J. – volume: 92 start-page: 104 year: 2016 end-page: 116 ident: b0070 article-title: SANDY: a Matlab tool to estimate the sediment size distribution from a sieve analysis publication-title: Comput. Geosci. – year: 2013 ident: bib225 article-title: A history of publication-title: Aeolian Res. – volume: 61 start-page: 257 year: 1945 end-page: 262 ident: b0030 article-title: Dynamics of wind erosion: V. Cumulative intensity of soil drifting across eroding fields publication-title: Soil Sci. – start-page: 328 year: 1989 end-page: 330 ident: b0155 article-title: Nonlinear Regression – year: 1991 ident: bib226 article-title: Soil properties affecting publication-title: Journal of Soil and Water Conservation – volume: 5 start-page: 425 year: 1986 end-page: 442 ident: b0100 article-title: Aggregate stability and size distribution. Methods of Soil publication-title: Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods – volume: 93 start-page: 43 year: 2019 end-page: 52 ident: b0015 article-title: Minimising soil organic carbon erosion by wind is critical for land degradation neutrality publication-title: Environ. Sci. Policy – reference: Cui, 2019. A continuous-weighing sand trap: design and field evaluations (in Chinese with English abstract). Thesis. Shijiazhuang: Hebei Normal University. – start-page: 211 year: 1978 end-page: 215 ident: b0170 article-title: Relation of aggregate stability to properties of Alberta soils publication-title: Modification of Soil Structure – volume: 110 start-page: 105881 year: 2020 ident: b0190 article-title: Indicators and benchmarks for wind erosion monitoring, assessment and management publication-title: Ecol. Ind. – volume: 288 start-page: 105 year: 2017 end-page: 119 ident: b0125 article-title: A unified expression for grain size distribution of soils publication-title: Geoderma – year: 1982 ident: b0130 article-title: The Fractal Geometry of Nature – volume: 140 start-page: 90 year: 2007 end-page: 96 ident: b0090 article-title: Tillage affects soil aggregation parameters linked with wind erosion publication-title: Geoderma – volume: 16 start-page: 113 year: 1952 end-page: 117 ident: b0035 article-title: Improved rotary sieve for measuring state and stability of dry soil structure 1 publication-title: Soil Sci. Soc. Am. J. – volume: 168 start-page: 42 year: 2017 end-page: 49 ident: b0075 article-title: Comparison of different methods to determine wind-erodible fraction of soil with rock fragments under different tillage/management publication-title: Soil Tillage Res. – volume: 98 start-page: 87 year: 2012 end-page: 95 ident: b0110 article-title: Erosion of organic matter from sandy soils: solving the mass balance publication-title: Catena – volume: 28 start-page: 1163 year: 2003 end-page: 1188 ident: b0215 article-title: Measurement and data analysis methods for field-scale wind erosion studies and model validation publication-title: Earth Surf. Processes Landforms – volume: 29 start-page: 645 year: 1965 end-page: 650 ident: b0005 article-title: Aggregate size distribution in the row zone of tillage experiments publication-title: Soil Sci. Soc. Am. Proc. – volume: 67 start-page: 425 year: 2003 end-page: 436 ident: b0220 article-title: Aggregate-mean diameter and wind-erodible soil predictions using dry aggregate-size distributions publication-title: Soil Sci. Soc. Am. J. – volume: 12 start-page: 689 year: 2012 end-page: 703 ident: b0045 article-title: Soil dry aggregate size distribution: effects of soil type and land use. J. of Soil Sci. and Plant publication-title: Nutrition – volume: 30 start-page: 162 year: 1987 end-page: 0165 ident: b0080 article-title: Using two sieves to characterize dry soil aggregate size distribution publication-title: Trans. ASAE – volume: 26 start-page: 4 year: 1962 end-page: 6 ident: b0040 article-title: A compact rotary sieve and the importance of dry sieving in physical soil analysis publication-title: Soil Sci. Soc. Am. J. – volume: 55 start-page: 864 year: 2017 end-page: 901 ident: b0065 article-title: High-altitude aeolian research on the Tibetan Plateau publication-title: Rev. Geophys. – volume: 56 start-page: 1407 year: 1992 end-page: 1409 ident: b0145 article-title: Fractal dimensions of soil aggregate-size distributions calculated by number and mass publication-title: Soil Sci. Soc. Am. J. – year: 1956 ident: bib224 article-title: Representation of soil aggregate size distribution by a logarithmic-normal distribution publication-title: Soil Sci. SOC. Am. J. – volume: 78 start-page: 2009 year: 2014 end-page: 2016 ident: b0120 article-title: Soil wind erodibility based on dry aggregate-size distribution in the Tarim Basin publication-title: Soil Sci. Soc. Am. J. – volume: 6 start-page: 95 year: 2018 end-page: 111 ident: b0150 article-title: Aggregate size, particulate and total organic carbon in different land uses on a sandy loam soil exposed to wind erosion publication-title: Adv. Agric. Sci. – reference: USDA-Soil Survey Staff, 1993. Soil survey manual. Washington D.C. – year: 1993 ident: bib222 article-title: Comparison of functions for characterizing the dry aggregate size distribution of tilled soil publication-title: Soil Tillage Res. – volume: 23 start-page: 154 year: 1942 end-page: 160 ident: b0020 article-title: Measurement of wind erosiveness of soils by dry sieving procedure publication-title: Sci. Agric. – start-page: 295 year: 1994 end-page: 330 ident: b0160 article-title: Methods for investigating basic processes and conditions affecting wind erosion publication-title: Soil Erosion Res. Methods – volume: 75 start-page: 106901 year: 2012 ident: b0105 article-title: The physics of wind-blown sand and dust publication-title: Rep. Pro. Phys. Phys. Soc. – volume: 1 start-page: 266 year: 1950 end-page: 275 ident: b0135 article-title: Stability of structural aggregates of dry soil publication-title: Australian J. Agric. Res. – volume: 18 start-page: 327 year: 2000 end-page: 335 ident: b0165 article-title: Bimode grain size distribution of Chinese loess and its paleoclimate implication publication-title: Acta Sedimentol. Sin. – volume: 56 start-page: 95 year: 1943 end-page: 100 ident: b0025 article-title: A rotary sieve method for determining the size distribution of soil clods publication-title: Soil Sci. – volume: 36 start-page: 1087 year: 1993 end-page: 1092 ident: b0185 article-title: Stochastic modeling of tillage-induced aggregate breakage publication-title: Trans. ASAE – reference: Zhang, 2018. Soil Wind Erodibility of Farmland, Abandonded Farmland and Glassland in the Bashang Area of Hebei, China (in Chinese with English abstract). Thesis. Shijiazhuang: Hebei Normal University. – year: 2019 ident: bib221 article-title: Logistic growth models for describing the fetch effect of aeolian sand transport publication-title: Soil Tillage Res. – volume: 288 start-page: 105 year: 2017 ident: 10.1016/j.catena.2020.105018_b0125 article-title: A unified expression for grain size distribution of soils publication-title: Geoderma doi: 10.1016/j.geoderma.2016.11.011 – volume: 36 start-page: 1087 issue: 4 year: 1993 ident: 10.1016/j.catena.2020.105018_b0185 article-title: Stochastic modeling of tillage-induced aggregate breakage publication-title: Trans. ASAE doi: 10.13031/2013.28438 – volume: 35 start-page: 499 issue: 2 year: 1992 ident: 10.1016/j.catena.2020.105018_b0085 article-title: Tillage-induced soil aggregate status as influenced by water content publication-title: Trans. ASAE doi: 10.13031/2013.28627 – volume: 26 start-page: 4 year: 1962 ident: 10.1016/j.catena.2020.105018_b0040 article-title: A compact rotary sieve and the importance of dry sieving in physical soil analysis publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1962.03615995002600010002x – volume: 18 start-page: 327 issue: 3 year: 2000 ident: 10.1016/j.catena.2020.105018_b0165 article-title: Bimode grain size distribution of Chinese loess and its paleoclimate implication publication-title: Acta Sedimentol. Sin. – volume: 67 start-page: 425 issue: 2 year: 2003 ident: 10.1016/j.catena.2020.105018_b0220 article-title: Aggregate-mean diameter and wind-erodible soil predictions using dry aggregate-size distributions publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2003.4250 – year: 1956 ident: 10.1016/j.catena.2020.105018_bib224 article-title: Representation of soil aggregate size distribution by a logarithmic-normal distribution publication-title: Soil Sci. SOC. Am. J. doi: 10.2136/sssaj1956.03615995002000020003x – volume: 159 start-page: 228 year: 2010 ident: 10.1016/j.catena.2020.105018_b0050 article-title: Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina publication-title: Geoderma doi: 10.1016/j.geoderma.2010.07.016 – volume: 140 start-page: 90 year: 2007 ident: 10.1016/j.catena.2020.105018_b0090 article-title: Tillage affects soil aggregation parameters linked with wind erosion publication-title: Geoderma doi: 10.1016/j.geoderma.2007.03.001 – volume: 5 start-page: 425 year: 1986 ident: 10.1016/j.catena.2020.105018_b0100 article-title: Aggregate stability and size distribution. Methods of Soil publication-title: Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods – volume: 15 start-page: 11 issue: C year: 1951 ident: 10.1016/j.catena.2020.105018_b0210 article-title: Evaluation of the Erodibility of Field Surfaces with a Portable Wind Tunnel 1 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1951.036159950015000C0003x – volume: 92 start-page: 104 year: 2016 ident: 10.1016/j.catena.2020.105018_b0070 article-title: SANDY: a Matlab tool to estimate the sediment size distribution from a sieve analysis publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2016.04.010 – start-page: 211 year: 1978 ident: 10.1016/j.catena.2020.105018_b0170 article-title: Relation of aggregate stability to properties of Alberta soils – ident: 10.1016/j.catena.2020.105018_b0175 – volume: 16 start-page: 113 issue: 2 year: 1952 ident: 10.1016/j.catena.2020.105018_b0035 article-title: Improved rotary sieve for measuring state and stability of dry soil structure 1 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1952.03615995001600020001x – volume: 1 start-page: 266 issue: 3 year: 1950 ident: 10.1016/j.catena.2020.105018_b0135 article-title: Stability of structural aggregates of dry soil publication-title: Australian J. Agric. Res. doi: 10.1071/AR9500266 – year: 1993 ident: 10.1016/j.catena.2020.105018_bib222 article-title: Comparison of functions for characterizing the dry aggregate size distribution of tilled soil publication-title: Soil Tillage Res. doi: 10.1016/0167-1987(93)90022-H – start-page: 328 year: 1989 ident: 10.1016/j.catena.2020.105018_b0155 – year: 1991 ident: 10.1016/j.catena.2020.105018_bib226 article-title: Soil properties affecting wind erosion publication-title: Journal of Soil and Water Conservation – volume: 78 start-page: 2009 year: 2014 ident: 10.1016/j.catena.2020.105018_b0120 article-title: Soil wind erodibility based on dry aggregate-size distribution in the Tarim Basin publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2014.06.0235 – volume: 61 start-page: 257 issue: 3 year: 1945 ident: 10.1016/j.catena.2020.105018_b0030 article-title: Dynamics of wind erosion: V. Cumulative intensity of soil drifting across eroding fields publication-title: Soil Sci. doi: 10.1097/00010694-194603000-00007 – year: 2019 ident: 10.1016/j.catena.2020.105018_bib221 article-title: Logistic growth models for describing the fetch effect of aeolian sand transport publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.104306 – volume: 30 start-page: 162 issue: 1 year: 1987 ident: 10.1016/j.catena.2020.105018_b0080 article-title: Using two sieves to characterize dry soil aggregate size distribution publication-title: Trans. ASAE doi: 10.13031/2013.30420 – volume: 75 start-page: 106901 issue: 10 year: 2012 ident: 10.1016/j.catena.2020.105018_b0105 article-title: The physics of wind-blown sand and dust publication-title: Rep. Pro. Phys. Phys. Soc. doi: 10.1088/0034-4885/75/10/106901 – year: 1982 ident: 10.1016/j.catena.2020.105018_b0130 – ident: 10.1016/j.catena.2020.105018_b0055 – volume: 56 start-page: 212 year: 2001 ident: 10.1016/j.catena.2020.105018_b0115 article-title: An evaluation of wind erosion hazard in fallow lands of semiarid Aragon (NE Spain) publication-title: J. Soil Water Conservation – year: 2013 ident: 10.1016/j.catena.2020.105018_bib225 article-title: A history of wind erosion prediction models in the United States Department of Agriculture prior to the Wind Erosion Prediction System publication-title: Aeolian Res. doi: 10.1016/j.aeolia.2012.08.004 – volume: 29 start-page: 645 year: 1965 ident: 10.1016/j.catena.2020.105018_b0005 article-title: Aggregate size distribution in the row zone of tillage experiments publication-title: Soil Sci. Soc. Am. Proc. doi: 10.2136/sssaj1965.03615995002900060018x – volume: 12 start-page: 689 issue: 4 year: 2012 ident: 10.1016/j.catena.2020.105018_b0045 article-title: Soil dry aggregate size distribution: effects of soil type and land use. J. of Soil Sci. and Plant publication-title: Nutrition – volume: 56 start-page: 1407 issue: 5 year: 1992 ident: 10.1016/j.catena.2020.105018_b0145 article-title: Fractal dimensions of soil aggregate-size distributions calculated by number and mass publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1992.03615995005600050012x – volume: 55 start-page: 864 issue: 4 year: 2017 ident: 10.1016/j.catena.2020.105018_b0065 article-title: High-altitude aeolian research on the Tibetan Plateau publication-title: Rev. Geophys. doi: 10.1002/2017RG000585 – volume: 6 start-page: 95 issue: 3 year: 2018 ident: 10.1016/j.catena.2020.105018_b0150 article-title: Aggregate size, particulate and total organic carbon in different land uses on a sandy loam soil exposed to wind erosion publication-title: Adv. Agric. Sci. – volume: 168 start-page: 42 year: 2017 ident: 10.1016/j.catena.2020.105018_b0075 article-title: Comparison of different methods to determine wind-erodible fraction of soil with rock fragments under different tillage/management publication-title: Soil Tillage Res. doi: 10.1016/j.still.2016.12.008 – volume: 94 start-page: 15 year: 2007 ident: 10.1016/j.catena.2020.105018_b0060 article-title: Sieving duration and sieve loading impacts on dry soil fragment size distributions publication-title: Soil Tillage Res. doi: 10.1016/j.still.2006.06.006 – volume: 56 start-page: 95 issue: 2 year: 1943 ident: 10.1016/j.catena.2020.105018_b0025 article-title: A rotary sieve method for determining the size distribution of soil clods publication-title: Soil Sci. doi: 10.1097/00010694-194308000-00002 – volume: 93 start-page: 43 year: 2019 ident: 10.1016/j.catena.2020.105018_b0015 article-title: Minimising soil organic carbon erosion by wind is critical for land degradation neutrality publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2018.12.020 – volume: 98 start-page: 87 year: 2012 ident: 10.1016/j.catena.2020.105018_b0110 article-title: Erosion of organic matter from sandy soils: solving the mass balance publication-title: Catena doi: 10.1016/j.catena.2012.05.014 – start-page: 295 year: 1994 ident: 10.1016/j.catena.2020.105018_b0160 article-title: Methods for investigating basic processes and conditions affecting wind erosion publication-title: Soil Erosion Res. Methods – volume: 110 start-page: 105881 year: 2020 ident: 10.1016/j.catena.2020.105018_b0190 article-title: Indicators and benchmarks for wind erosion monitoring, assessment and management publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2019.105881 – volume: 23 start-page: 154 issue: 3 year: 1942 ident: 10.1016/j.catena.2020.105018_b0020 article-title: Measurement of wind erosiveness of soils by dry sieving procedure publication-title: Sci. Agric. – volume: 28 start-page: 1163 year: 2003 ident: 10.1016/j.catena.2020.105018_b0215 article-title: Measurement and data analysis methods for field-scale wind erosion studies and model validation publication-title: Earth Surf. Processes Landforms doi: 10.1002/esp.1033 – year: 2015 ident: 10.1016/j.catena.2020.105018_bib223 article-title: Cogitation on developing a dynamic model of soil wind erosion publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-014-5002-5 – volume: 19 start-page: 13 issue: 1 year: 2004 ident: 10.1016/j.catena.2020.105018_b0010 article-title: Predicting wind erodibility of loessial soils in the Pacific Northwest by particle sizing publication-title: Arid Land Res. Manage. doi: 10.1080/15324980590887074 – volume: 94 start-page: 15703 issue: B11 year: 1989 ident: 10.1016/j.catena.2020.105018_b0195 article-title: Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash publication-title: J. Geophys. Res. doi: 10.1029/JB094iB11p15703 – ident: 10.1016/j.catena.2020.105018_b0205 |
SSID | ssj0004751 |
Score | 2.367203 |
Snippet | •A new model was proposed for dry soil aggregate size distribution.•The performance of the new model is better than the existed models.•Dry soil aggregate size... Dry soil aggregate size distribution (DASD) is an important parameter in evaluating soil management practices or modeling of wind erosion and dust emissions.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105018 |
SubjectTerms | aggregate stability catenas Dry soil aggregate size distribution dust Flat sieve land use lognormal distribution Modeling Rotary sieve soil aggregates soil management soil texture Weibull statistics Wind erosion |
Title | A model for characterizing dry soil aggregate size distribution |
URI | https://dx.doi.org/10.1016/j.catena.2020.105018 https://www.proquest.com/docview/2551934524 |
Volume | 198 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FEb2IrYr1USJ40MPaNpt9naQUtSp60UJvIU9dKdti60EP_nYz2WxFEQRvu0uyLJPZmUny5fsQOjJUhRK2_kXU1QFVXRqITiICKUJppKAZ57A0cHsXD4b0ehSNaqhfnYUBWKWP_WVMd9HaP2l7a7aned6-79gAnHZjQlwZnALjJ6UJePnpxxfMgyZOghEaB9C6Oj7nMF4AOiqAfYg4wdsOSH_8np5-BGqXfS420LovG3Gv_LI6qumigVa9gvnTWwOtXDqJXntV97_rDB97TumTTXTWw07zBtsaFcsFSfO7TVxYvbzh2SQfY_5oJ9-wrIZn-bvGCjh1vRzWFhpenD_0B4HXTgi4TUnzgGQpbOgB0tJAyaYjGccZN4ZTKmxC4kTZUlEpJbUM49R0FE8F5UpTkUU0NOE2Wiomhd5BWBOZRlISIUxkO2fczsHg1ijOTdRNmiisTMakJxYHfYsxqxBkz6w0NANDs9LQTRQsek1LYo0_2ifVaLBvDsJs7P-j52E1eMz-O7Ahwgs9eZ0xO52y9SuNCN3999v30BoBX3ewtH20NH951Qe2TpmLlnPEFlruXd0M7j4BQqDnKg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RfQiPvFtBA96KLubJt32JIuo62svKngLeeqKdMVdD_rrzaSpogiCt7ZkSpmkM1-SyfcB7DlmUo1b_4q3bcJMmyWq1VGJVql2WrFCSlwauOpnvVt2fsfvJuCoPguDZZUx9lcxPUTr-KQZvdl8Hgya1y0fgPN2RmmAwXk6CVPITsUbMNU9u-j1v45HdoIKI7ZP0KA-QRfKvLDuqEQCIho0b1uo_vF7hvoRq0MCOpmHuYgcSbf6uAWYsOUizEQR84e3RZg-DSq9_moh_rEjsh9ppQ-W4LBLguwN8TCV6E-e5nefu4h5eSOj4eCJyHs__8aVNTIavFtikFY3KmItw-3J8c1RL4nyCYn0WWmc0CLHPT0stnSI2izXWVZI5yRjyuckSY1Hi8YYbXWa5a5lZK6YNJapgrPUpSvQKIelXQViqc651lQpx71xIf00DG-dkdLxdmcN0tplQkducZS4eBJ1EdmjqBwt0NGicvQaJJ9WzxW3xh_tO3VviG9jRPjw_4flbt15wv8-uCciSzt8HQk_o_IQlnHK1v_99h2Y6d1cXYrLs_7FBsxSHPqhSm0TGuOXV7vlYctYbcdh-QE3sOnb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+for+characterizing+dry+soil+aggregate+size+distribution&rft.jtitle=Catena+%28Giessen%29&rft.au=Guo%2C+Zhongling&rft.au=Chang%2C+Chunping&rft.au=Zou%2C+Xueyong&rft.au=Wang%2C+Rende&rft.date=2021-03-01&rft.issn=0341-8162&rft.volume=198+p.105018-&rft_id=info:doi/10.1016%2Fj.catena.2020.105018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon |