Metaheuristics for Intelligent Electrical Networks

The optimization tools are ubiquitous in modeling and the use of electrical networks. Managing the complexity of these electrical networks leads to analyze and define new methodologies, able to combine performance and near-operational processing. Metaheuristics offer a range of solutions as efficien...

Full description

Saved in:
Bibliographic Details
Main Authors Héliodore, édéric, Nakib, Amir, Ismail, Boussaad, Ouchraa, Salma, Schmitt, Laurent
Format eBook
LanguageEnglish
Published Newark John Wiley & Sons, Incorporated 2017
Wiley-Blackwell
Edition1
Subjects
Online AccessGet full text
ISBN9781848218093
1848218095

Cover

Abstract The optimization tools are ubiquitous in modeling and the use of electrical networks. Managing the complexity of these electrical networks leads to analyze and define new methodologies, able to combine performance and near-operational processing. Metaheuristics offer a range of solutions as efficient as they are innovative.
AbstractList The optimization tools are ubiquitous in modeling and the use of electrical networks. Managing the complexity of these electrical networks leads to analyze and define new methodologies, able to combine performance and near-operational processing. Metaheuristics offer a range of solutions as efficient as they are innovative.
Author Nakib, Amir
Ouchraa, Salma
Héliodore, édéric
Ismail, Boussaad
Schmitt, Laurent
Author_xml – sequence: 1
  fullname: Héliodore, édéric
– sequence: 2
  fullname: Nakib, Amir
– sequence: 3
  fullname: Ismail, Boussaad
– sequence: 4
  fullname: Ouchraa, Salma
– sequence: 5
  fullname: Schmitt, Laurent
BookMark eNpVj01LxDAYhCN-oLv2P_QmHgr5apMctdR1YdWLeC1p-satDY0mWffvW6wXD8Mww8PArNDZ5Cc4QZkSkhCiCKsEZ6dLllxSIrFiF2hFMCZUCsXoJcpi_MAYUyowo-IK0SdIeg-HMMQ0mJhbH_LtlMC54R2mlDcOTAqD0S5_hnT0YYzX6NxqFyH78zV6e2he68di97LZ1ne7QrOKElz0WuFOGFoZDJJ1oDmuhNUdnWWksoT0YCyUfO6J4bose06tNCXvARsm2BrdLsM6jnCMe-9SbL8ddN6Psf33emZvFvYz-K8DxNT-Ymb-ELRrm_uaK8kqxdkPV-1X9Q
ContentType eBook
DEWEY 621.31920151964
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781119136743
1119136741
Edition 1
ExternalDocumentID 9781119136743
EBC4983694
GroupedDBID 20A
38.
3XM
AABBV
ABARN
ABBFG
ABQPQ
ABQPW
ACHMX
ACLGV
ACNUM
ADVEM
AERYV
AFOJC
AFPKT
AHWGJ
AJFER
AKQZE
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
BIBOL
CZZ
DFSMB
DMGWJ
DPMII
ERSLE
GEOUK
IPJKO
JFSCD
JJU
KJBCJ
LQKAK
LWYJN
LYPXV
MUFYN
OHILO
OODEK
PQQKQ
W1A
WIIVT
YPLAZ
ZEEST
ACGYG
ID FETCH-LOGICAL-a36210-da90b7c26c0e83bea4067fab2fabc89f11decfe544061c4a55d42f8c54de0c373
ISBN 9781848218093
1848218095
IngestDate Fri Nov 08 05:42:28 EST 2024
Wed Sep 17 00:41:02 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident TK3105.M483 2017
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a36210-da90b7c26c0e83bea4067fab2fabc89f11decfe544061c4a55d42f8c54de0c373
OCLC 1001287932
PQID EBC4983694
PageCount 291
ParticipantIDs askewsholts_vlebooks_9781119136743
proquest_ebookcentral_EBC4983694
PublicationCentury 2000
PublicationDate 2017
2017-08-15
PublicationDateYYYYMMDD 2017-01-01
2017-08-15
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Newark
PublicationPlace_xml – name: Newark
PublicationYear 2017
Publisher John Wiley & Sons, Incorporated
Wiley-Blackwell
Publisher_xml – name: John Wiley & Sons, Incorporated
– name: Wiley-Blackwell
SSID ssj0002270327
Score 2.0285783
Snippet The optimization tools are ubiquitous in modeling and the use of electrical networks. Managing the complexity of these electrical networks leads to analyze and...
SourceID askewsholts
proquest
SourceType Aggregation Database
Publisher
SubjectTerms Combinatorial optimization
Electric networks
Smart power grids
TableOfContents Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- 1. Single Solution Based Metaheuristics -- 1.1. Introduction -- 1.2. The descent method -- 1.3. Simulated annealing -- 1.4. Microcanonical annealing -- 1.5. Tabu search -- 1.6. Pattern search algorithms -- 1.6.1. The GRASP method -- 1.6.2. Variable neighborhood search -- 1.6.3. Guided local search -- 1.6.4. Iterated local search -- 1.7. Other methods -- 1.7.1. The Nelder-Mead simplex method -- 1.7.2. The noising method -- 1.7.3. Smoothing methods -- 1.8. Conclusion -- 2. Population-based Methods -- 2.1. Introduction -- 2.2. Evolutionary algorithms -- 2.2.1. Genetic algorithms -- 2.2.2. Evolution strategies -- 2.2.3. Coevolutionary algorithms -- 2.2.4. Cultural algorithms -- 2.2.5. Differential evolution -- 2.2.6. Biogeography-based optimization -- 2.2.7. Hybrid metaheuristic based on Bayesian estimation -- 2.3. Swarm intelligence -- 2.3.1. Particle Swarm Optimization -- 2.3.2. Ant colony optimization -- 2.3.3. Cuckoo search -- 2.3.4. The firefly algorithm -- 2.3.5. The fireworks algorithm -- 2.4. Conclusion -- 3. Performance Evaluation of Metaheuristics -- 3.1. Introduction -- 3.2. Performance measures -- 3.2.1. Quality of solutions -- 3.2.2. Computational effort -- 3.2.3. Robustness -- 3.3. Statistical analysis -- 3.3.1. Data description -- 3.3.2. Statistical tests -- 3.4. Literature benchmarks -- 3.4.1. Characteristics of a test function -- 3.4.2. Test functions -- 3.5. Conclusion -- 4. Metaheuristics for FACTS Placement and Sizing -- 4.1. Introduction -- 4.2. FACTS devices -- 4.2.1. The SVC -- 4.2.2. The STATCOM -- 4.2.3. The TCSC -- 4.2.4. The UPFC -- 4.3. The PF model and its solution -- 4.3.1. The PF model -- 4.3.2. Solution of the network equations -- 4.3.3. FACTS implementation and network modification
4.3.4. Formulation of FACTS placement problem as an optimization issue -- 4.4. PSO for FACTS placement -- 4.4.1. Solutions coding -- 4.4.2. Binary particle swarm optimization -- 4.4.3. Proposed Lévy-based hybrid PSO algorithm -- 4.4.4. "Hybridization" of continuous and discrete PSO algorithms for application to the positioning and sizing of FACTS -- 4.5. Application to the placement and sizing of two FACTS -- 4.5.1. Application to the 30-node IEEE network -- 4.5.2. Application to the IEEE 57-node network -- 4.5.3. Significance of the modified velocity likelihoods method -- 4.5.4. Influence of the upper and lower bounds on the velocity -&gt -- Vci of particles ci -- 4.5.5. Optimization of the placement of several FACTS of different types (general case) -- 4.6. Conclusion -- 5. Genetic Algorithm-based Wind Farm Topology Optimization -- 5.1. Introduction -- 5.2. Problem statement -- 5.2.1. Context -- 5.2.2. Calculation of power flow in wind turbine connection cables -- 5.3. Genetic algorithms and adaptation to our problem -- 5.3.1. Solution encoding -- 5.3.2. Selection operator -- 5.3.3. Crossover -- 5.3.4. Mutation -- 5.4. Application -- 5.4.1. Application to farms of 15-20 wind turbines -- 5.4.2. Application to a farm of 30 wind turbines -- 5.4.3. Solution of a farm of 30 turbines proposed by human expertise -- 5.4.4. Validation -- 5.5. Conclusion -- 6. Topological Study of Electrical Networks -- 6.1. Introduction -- 6.2. Topological study of networks -- 6.2.1. Random graphs -- 6.2.2. Generalized random graphs -- 6.2.3. Small-world networks -- 6.2.4. Scale-free networks -- 6.2.5. Some results inspired by the theory of percolation -- 6.2.6. Network dynamic robustness -- 6.3. Topological analysis of the Colombian electrical network -- 6.3.1. Phenomenological characteristics -- 6.3.2. Fractal dimension -- 6.3.3. Network robustness -- 6.4. Conclusion
7. Parameter Estimation of α-Stable Distributions -- 7.1. Introduction -- 7.2. Lévy probability distribution -- 7.2.1. Definitions -- 7.2.2. McCulloch α-stable distribution generator -- 7.3. Elaboration of our non-parametric α-stable distribution estimator -- 7.3.1. Statistical tests -- 7.3.2. Identification of the optimization problem and design of the non-parametric estimator -- 7.4. Results and comparison with benchmarks -- 7.4.1. Validation with benchmarks -- 7.4.2. Parallelization of the process on a GP/GPU card -- 7.5. Conclusion -- 8. SmartGrid and MicroGrid Perspectives -- 8.1. New SmartGrid concepts -- 8.2. Key elements for SmartGrid deployment -- 8.2.1. Improvement of network resilience in the face of catastrophic climate events -- 8.2.2. Increasing electrical network efficiency -- 8.2.3. Integration of the variability of renewable energy sources -- 8.3. SmartGrids and components technology architecture -- 8.3.1. Global SmartGrid architecture -- 8.3.2. Basic technological elements for SmartGrids -- 8.3.3. Integration of new MicroGrid layers: definition -- Appendix. 1 -- A1.1. Test functions -- Appendix. 2 -- A2.1. Application to the multi-objective case -- A2.1.1. Results obtained by the -Constraint approach -- A2.1.2. Results obtained by the Pareto approach -- Bibliography -- Index -- Other titles from iSTE in Computer Engineering -- EULA
Title Metaheuristics for Intelligent Electrical Networks
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4983694
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781119136743&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBZNsjRTnzR9YUq34OLoYVtjExJCIZ3Ski1IskxC8wDb6dBf35PtyEnboe1gYckg8J24l-6-Q-iec-xJn_ouN1kONGKeK4hmMFUyEhrONTW1w6Nnf_hCnyZsUnXFzKtLMvmgPn6sK_kPV2EN-GqqZP_AWbspLMA78BdG4DCMX4xfOy17L-lMzPRmi7Ic50nlW2zNrF30tsnJvyrSvK3lPGwv5uuoTK4dJG2TXK5sRBjMyfx-5nE5T6pDsxRFoLi73qSpEJENzG7ULBGiCCwvSgFfRhBAKxlEV7Yvp1wbL9xzMMH_C7GB-CKVvrBZfOa7wYcjppChhmpBAN5vA9Rpf2TDXBiDSMFBUbxfbMVKpC27dRM1RfoGMh3kfZZ-U4q5ph8foYY25R_H6ECvTlBzB67xFOF9sjtAdmeH7E5FdmdL9jP0OuiPe0O37DkBR9QH99eNBPdkoLCvPB0SqQVYPEEsJIZHhTzudCKtYs2osYQUFYxFFMehYjTSniIBOUf11XqlL5BDNSexwfALSUA59WSHxNrgqbFQd2ImW-hu57-n74v8fjyd7tG1hZwtOab59zJpd9rv9igPic_p5W_2uUKHFe-vUT1LNvoG7KlM3pY8-wS7ECH5
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Metaheuristics+for+intelligent+electrical+networks&rft.au=H+liodore%2C+Fr+d+ric&rft.au=Nakib%2C+Amir&rft.au=Ismail%2C+Boussaad&rft.au=Ouchraa%2C+Salma&rft.date=2017-08-15&rft.pub=Wiley-Blackwell&rft.isbn=9781848218093&rft.externalDocID=9781119136743
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811191%2F9781119136743.jpg