Fast or slow melting of the Marinoan snowball Earth? The cap dolostone record

The end of the Neoproterozoic era is punctuated by two global glacial events marked by the presence of glacial deposits overlaid by cap carbonates. Duration of glacial intervals is now consistently constrained to 3–12 million years but the duration of the post-glacial transition is more controversia...

Full description

Saved in:
Bibliographic Details
Published inPalaeogeography, palaeoclimatology, palaeoecology Vol. 295; no. 1; pp. 215 - 225
Main Authors Font, E., Nédélec, A., Trindade, R.I.F., Moreau, C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The end of the Neoproterozoic era is punctuated by two global glacial events marked by the presence of glacial deposits overlaid by cap carbonates. Duration of glacial intervals is now consistently constrained to 3–12 million years but the duration of the post-glacial transition is more controversial due to the uncertainty in cap dolostone sedimentation rates. Indeed, the presence of several stratabound magnetic reversals in Brazilian cap dolostones recently questioned the short sedimentation duration (a few thousand years at most) that was initially suggested for these rocks. Here, we present new detailed magnetostratigraphic data of the Mirassol d'Oeste cap dolostones (Mato Grosso, Brazil) and “bomb-spike” calibrated AMS 14C data of microbial mats from the Lagoa Vermelha (Rio de Janeiro, Brazil). We also compile sedimentary, isotopic and microbiological data from post-Marinoan outcrops and/or recent depositional analogues in order to discuss the deposition rate of Marinoan cap dolostones and to infer an estimation of the deglaciation duration in the snowball Earth aftermath. Taken together, the various data point to a sedimentation duration in the range of a few 10 5 years.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-0182
1872-616X
DOI:10.1016/j.palaeo.2010.05.039