Poly-Lipoic Ester-Based Coacervates for the Efficient Removal of Organic Pollutants from Water and Increased Point-of-Use Versatility
The increasing frequency with which organic pollutants can be found in global surface water poses a formidable threat to both our environment and its creatures. While the problem has attracted adequate attention, current water treatment tools such as commercially available active carbon still cannot...
Saved in:
Published in | Chemistry of materials Vol. 31; no. 12; pp. 4405 - 4417 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
25.06.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | The increasing frequency with which organic pollutants can be found in global surface water poses a formidable threat to both our environment and its creatures. While the problem has attracted adequate attention, current water treatment tools such as commercially available active carbon still cannot satisfy the remediating necessity due to its unfavorable rate of uptake and high regenerating cost. Moreover, water-insoluble pollutant adsorbents typically suffer from poor processability, effectively decreasing their potential for increased point-of-use versatility. Herein, we report a solution processable poly-lipoic ester-based material that readily undergoes simple coacervation upon ultrasonic solution processing. This material exhibits excellent removal efficiencies (>90%) and material recyclability for the uptake of highly concentrated typical pollutants including a plastic component bisphenol A (BPA), a pharmaceutical residue valsartan, and an industrial dye fluorescein from water. The polymer is conveniently accessible by a solvent-free, thermally initiated disulfide exchange ring-opening polymerization of a lipoic ester derivative and is postfunctionalized with an amphiphilic, π-electron-deficient bipyridinium-based side chain. Solution processing of this material facilitated the development of a pollutant sponge, which operates via a dip-remove-squeeze action, with an adsorption rate constant for BPA ∼85 times greater than its progenitor and achieving 80% removal efficiency in 30 s. This approach is particularly promising for quick point-of-use treatment of wastewater with high chemical oxygen demand. These results highlight the importance for material processability in the development of water-insoluble molecular adsorbents and establish poly-lipoic ester-based materials as contending precursors for application-driven soft matter development. |
---|---|
AbstractList | The increasing frequency with which organic pollutants can be found in global surface water poses a formidable threat to both our environment and its creatures. While the problem has attracted adequate attention, current water treatment tools such as commercially available active carbon still cannot satisfy the remediating necessity due to its unfavorable rate of uptake and high regenerating cost. Moreover, water-insoluble pollutant adsorbents typically suffer from poor processability, effectively decreasing their potential for increased point-of-use versatility. Herein, we report a solution processable poly-lipoic ester-based material that readily undergoes simple coacervation upon ultrasonic solution processing. This material exhibits excellent removal efficiencies (>90%) and material recyclability for the uptake of highly concentrated typical pollutants including a plastic component bisphenol A (BPA), a pharmaceutical residue valsartan, and an industrial dye fluorescein from water. The polymer is conveniently accessible by a solvent-free, thermally initiated disulfide exchange ring-opening polymerization of a lipoic ester derivative and is postfunctionalized with an amphiphilic, π-electron-deficient bipyridinium-based side chain. Solution processing of this material facilitated the development of a pollutant sponge, which operates via a dip-remove-squeeze action, with an adsorption rate constant for BPA ∼85 times greater than its progenitor and achieving 80% removal efficiency in 30 s. This approach is particularly promising for quick point-of-use treatment of wastewater with high chemical oxygen demand. These results highlight the importance for material processability in the development of water-insoluble molecular adsorbents and establish poly-lipoic ester-based materials as contending precursors for application-driven soft matter development. |
Author | Liu, Qian Phillips, Bailey K Wang, Zhenzhen Zhang, Zhao Al-Hashimi, Mohammed Fang, Lei Olson, Mark A Sun, Zhimin |
AuthorAffiliation | Department of Chemistry International TCM Immunopharmacology Research Center Henan University of Chinese Medicine Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology |
AuthorAffiliation_xml | – name: International TCM Immunopharmacology Research Center – name: Department of Chemistry – name: Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology – name: Henan University of Chinese Medicine |
Author_xml | – sequence: 1 givenname: Zhao surname: Zhang fullname: Zhang, Zhao organization: Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology – sequence: 2 givenname: Qian surname: Liu fullname: Liu, Qian organization: Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology – sequence: 3 givenname: Zhimin surname: Sun fullname: Sun, Zhimin organization: Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology – sequence: 4 givenname: Bailey K surname: Phillips fullname: Phillips, Bailey K organization: Department of Chemistry – sequence: 5 givenname: Zhenzhen surname: Wang fullname: Wang, Zhenzhen organization: Henan University of Chinese Medicine – sequence: 6 givenname: Mohammed orcidid: 0000-0001-6015-2178 surname: Al-Hashimi fullname: Al-Hashimi, Mohammed organization: Department of Chemistry – sequence: 7 givenname: Lei orcidid: 0000-0003-4757-5664 surname: Fang fullname: Fang, Lei organization: Department of Chemistry – sequence: 8 givenname: Mark A orcidid: 0000-0003-0398-5063 surname: Olson fullname: Olson, Mark A email: molson@tju.edu.cn organization: Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology |
BookMark | eNqFkMtKAzEUhoNUsFUfQcgLpCYzTWYGV1qqFgqKeFkOZ3LRlJmkJFHoA_jeplZcuHF1Fud8H__5J2jkvNMInTE6ZbRg5yDjVL7pYYCkw7TpKK0KfoDGjBeUcEqLERrTuqnIrOLiCE1iXFPKMlqP0ee977dkZTfeSryIWUCuIGqF5x6kDh9ZGbHxAac3jRfGWGm1S_hBD_4DeuwNvguv4DKcRf17ApfyffADftmlweAUXjoZ9Lf03luXiDfkKWr8rEOEZHubtifo0EAf9enPPEZP14vH-S1Z3d0s55crAqVgiagOWKm0KbqyqWhNSyWoFrIxlek4cE4bxoSYgelUWVd1YwQIUJ0UqqpNo6A8Rhd7rww-xqBNK23KGbxLAWzfMtruGm1zo-1vo-1Po5nmf-hNsAOE7b8c23O79dq_B5d__If5AnmAlj0 |
CitedBy_id | crossref_primary_10_1007_s11157_021_09577_x crossref_primary_10_1021_acs_orglett_2c02214 crossref_primary_10_1021_acs_langmuir_3c02949 crossref_primary_10_1007_s12038_021_00204_z crossref_primary_10_1007_s11356_019_06308_2 crossref_primary_10_1002_marc_202000149 crossref_primary_10_1021_acs_macromol_3c01209 crossref_primary_10_1021_acs_langmuir_4c02738 crossref_primary_10_1021_acssusresmgt_4c00087 crossref_primary_10_1016_j_progpolymsci_2024_101827 crossref_primary_10_1016_j_reactfunctpolym_2020_104795 crossref_primary_10_1016_j_cej_2020_128195 crossref_primary_10_1016_j_cej_2023_143072 crossref_primary_10_1021_jacsau_1c00128 crossref_primary_10_3390_biotech12020026 crossref_primary_10_1021_acs_langmuir_1c00557 crossref_primary_10_1002_cjoc_202100534 |
Cites_doi | 10.1002/pola.24325 10.1016/j.clay.2004.09.004 10.1002/adfm.201806567 10.1038/nmat2891 10.1039/C4PY00718B 10.1021/la980208m 10.3390/polym6061756 10.1021/ja5032437 10.1021/ja01404a016 10.1177/1559325815598308 10.1002/anie.201605420 10.1039/B302144K 10.1295/polymj.PJ2008219 10.1039/C5CS00278H 10.1039/C6OB00109B 10.1039/C8TA04722G 10.1021/jacs.8b06958 10.1039/C8SM00136G 10.1016/j.jcis.2005.09.063 10.1016/j.cej.2018.03.004 10.1038/natrevmats.2016.24 10.1016/0005-2728(68)90060-1 10.1039/C6TA06439F 10.1021/cr500633b 10.1021/jacs.7b00039 10.1021/ja02242a004 10.1021/jacs.7b13656 10.1021/ma500245j 10.1038/nature16185 10.1007/978-981-287-470-2 10.1002/anie.198906441 10.1126/science.aaa2397 10.1038/285468a0 10.1103/physreve.72.011507 10.1016/S0168-1656(97)00135-1 10.1016/0032-3861(96)00439-9 10.1021/jacs.7b02381 10.1002/adma.201800683 10.1295/polymj.37.512 10.1002/anie.201409399 10.1016/S0043-1354(00)00549-2 10.1039/cs9811000049 10.1021/jacs.7b08275 10.1021/jacs.7b06857 10.2166/wst.1997.0287 10.1039/C4SM01386G 10.1016/j.watres.2009.02.039 10.1021/acs.biomac.8b00415 10.1016/j.watres.2011.10.046 10.1021/ja908667p 10.1002/hlca.19740570823 10.1039/b600498a 10.1021/jo301911w 10.1002/jctb.1988 10.1126/science.1127291 10.1002/(SICI)1099-1395(199705)10:5<254::AID-POC875>3.0.CO;2-3 10.1039/C8CS00531A 10.1016/j.envpol.2013.09.013 10.1016/j.jcis.2009.04.071 10.1021/ja311961k 10.1002/ejic.201300010 10.1021/acsami.7b16546 10.1016/j.envpol.2010.08.009 10.1016/j.seppur.2018.07.060 10.1016/j.cis.2008.09.012 10.1021/acs.chemmater.7b03273 10.1038/natrevmats.2017.81 10.1016/j.ccr.2017.10.029 10.1021/es900070h 10.1002/chem.201800623 10.1002/adfm.201603364 10.1126/sciadv.aat8192 10.1016/j.progpolymsci.2012.06.005 10.1002/chem.201803496 10.1016/S0032-9592(98)00112-5 10.1021/cr020088u 10.1021/jp207459k 10.1039/c3ob41467a 10.1039/C7DT02076G 10.1002/ep.11616 10.1002/chem.201301567 10.1039/c2sc20098h 10.1021/la9817821 10.1073/pnas.220426897 10.1016/S0143-7208(99)00063-7 10.1016/0039-9140(80)80125-1 10.1126/science.1205962 10.1021/ja982748b 10.1590/S0103-50531998000100012 10.1016/S0045-6535(00)00079-5 10.1016/j.reactfunctpolym.2017.11.008 10.1021/ja203792n 10.3390/gels4010004 10.1002/anie.201208397 10.1016/j.jenvman.2016.07.090 10.1021/acsami.8b20743 10.1002/chem.201703348 10.1021/la801839b 10.1016/j.progpolymsci.2013.05.011 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.chemmater.9b00725 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5002 |
EndPage | 4417 |
ExternalDocumentID | 10_1021_acs_chemmater_9b00725 c275929523 |
GroupedDBID | 29B 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P ROL TN5 TWZ UI2 UPT VF5 VG9 W1F X YZZ -~X .K2 4.4 5VS AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a361t-dba13def2b3970803d60e6c9f7fb5a550911664afbd38789f6a6adbc6d78f9da3 |
IEDL.DBID | ACS |
ISSN | 0897-4756 |
IngestDate | Tue Jul 01 01:13:44 EDT 2025 Thu Apr 24 22:58:52 EDT 2025 Thu Aug 27 13:44:03 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a361t-dba13def2b3970803d60e6c9f7fb5a550911664afbd38789f6a6adbc6d78f9da3 |
ORCID | 0000-0003-4757-5664 0000-0003-0398-5063 0000-0001-6015-2178 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1021_acs_chemmater_9b00725 crossref_primary_10_1021_acs_chemmater_9b00725 acs_journals_10_1021_acs_chemmater_9b00725 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-25 |
PublicationDateYYYYMMDD | 2019-06-25 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-25 day: 25 |
PublicationDecade | 2010 |
PublicationTitle | Chemistry of materials |
PublicationTitleAlternate | Chem. Mater |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref13/cit13 ref61/cit61 ref67/cit67 ref38/cit38 Nowak F. M. (ref79/cit79) 2010 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 Summers L. A. (ref82/cit82) 1980 ref50/cit50 ref36/cit36 ref83/cit83 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 Ashokkumar M. (ref78/cit78) 2016 ref84/cit84 ref1/cit1 (ref90/cit90) 2019 ref7/cit7 |
References_xml | – ident: ref38/cit38 doi: 10.1002/pola.24325 – ident: ref62/cit62 doi: 10.1016/j.clay.2004.09.004 – ident: ref32/cit32 doi: 10.1002/adfm.201806567 – ident: ref26/cit26 doi: 10.1038/nmat2891 – ident: ref51/cit51 doi: 10.1039/C4PY00718B – ident: ref84/cit84 doi: 10.1021/la980208m – ident: ref85/cit85 doi: 10.3390/polym6061756 – ident: ref86/cit86 doi: 10.1021/ja5032437 – ident: ref92/cit92 doi: 10.1021/ja01404a016 – ident: ref74/cit74 doi: 10.1177/1559325815598308 – ident: ref98/cit98 doi: 10.1002/anie.201605420 – ident: ref63/cit63 doi: 10.1039/B302144K – ident: ref28/cit28 doi: 10.1295/polymj.PJ2008219 – ident: ref102/cit102 doi: 10.1039/C5CS00278H – ident: ref53/cit53 doi: 10.1039/C6OB00109B – ident: ref20/cit20 doi: 10.1039/C8TA04722G – ident: ref21/cit21 doi: 10.1021/jacs.8b06958 – ident: ref89/cit89 doi: 10.1039/C8SM00136G – ident: ref104/cit104 – ident: ref9/cit9 doi: 10.1016/j.jcis.2005.09.063 – ident: ref16/cit16 doi: 10.1016/j.cej.2018.03.004 – ident: ref25/cit25 doi: 10.1038/natrevmats.2016.24 – ident: ref83/cit83 doi: 10.1016/0005-2728(68)90060-1 – ident: ref47/cit47 doi: 10.1039/C6TA06439F – ident: ref70/cit70 doi: 10.1021/cr500633b – ident: ref41/cit41 doi: 10.1021/jacs.7b00039 – ident: ref95/cit95 doi: 10.1021/ja02242a004 – ident: ref15/cit15 doi: 10.1021/jacs.7b13656 – ident: ref59/cit59 doi: 10.1021/ma500245j – ident: ref14/cit14 doi: 10.1038/nature16185 – volume-title: Handbook of Ultrasonics and Sonochemistry year: 2016 ident: ref78/cit78 doi: 10.1007/978-981-287-470-2 – ident: ref65/cit65 doi: 10.1002/anie.198906441 – ident: ref103/cit103 doi: 10.1126/science.aaa2397 – ident: ref49/cit49 doi: 10.1038/285468a0 – ident: ref81/cit81 doi: 10.1103/physreve.72.011507 – ident: ref33/cit33 doi: 10.1016/S0168-1656(97)00135-1 – ident: ref64/cit64 doi: 10.1016/0032-3861(96)00439-9 – ident: ref18/cit18 doi: 10.1021/jacs.7b02381 – ident: ref22/cit22 doi: 10.1002/adma.201800683 – ident: ref27/cit27 doi: 10.1295/polymj.37.512 – ident: ref24/cit24 doi: 10.1002/anie.201409399 – ident: ref13/cit13 doi: 10.1016/S0043-1354(00)00549-2 – ident: ref48/cit48 doi: 10.1039/cs9811000049 – ident: ref73/cit73 doi: 10.1021/jacs.7b08275 – ident: ref72/cit72 doi: 10.1021/jacs.7b06857 – ident: ref12/cit12 doi: 10.2166/wst.1997.0287 – ident: ref80/cit80 doi: 10.1039/C4SM01386G – ident: ref11/cit11 doi: 10.1016/j.watres.2009.02.039 – volume-title: Estimation Programs Interface Suite for Microsoft Windows, v4.11 year: 2019 ident: ref90/cit90 – ident: ref29/cit29 doi: 10.1021/acs.biomac.8b00415 – ident: ref10/cit10 doi: 10.1016/j.watres.2011.10.046 – ident: ref71/cit71 doi: 10.1021/ja908667p – ident: ref88/cit88 doi: 10.1002/hlca.19740570823 – ident: ref34/cit34 doi: 10.1039/b600498a – ident: ref97/cit97 doi: 10.1021/jo301911w – ident: ref7/cit7 doi: 10.1002/jctb.1988 – ident: ref3/cit3 doi: 10.1126/science.1127291 – ident: ref57/cit57 doi: 10.1002/(SICI)1099-1395(199705)10:5<254::AID-POC875>3.0.CO;2-3 – ident: ref37/cit37 doi: 10.1039/C8CS00531A – ident: ref1/cit1 doi: 10.1016/j.envpol.2013.09.013 – ident: ref96/cit96 doi: 10.1016/j.jcis.2009.04.071 – ident: ref31/cit31 doi: 10.1021/ja311961k – ident: ref42/cit42 doi: 10.1002/ejic.201300010 – ident: ref17/cit17 doi: 10.1021/acsami.7b16546 – ident: ref2/cit2 doi: 10.1016/j.envpol.2010.08.009 – ident: ref4/cit4 doi: 10.1016/j.seppur.2018.07.060 – ident: ref61/cit61 doi: 10.1016/j.cis.2008.09.012 – ident: ref54/cit54 doi: 10.1021/acs.chemmater.7b03273 – ident: ref101/cit101 doi: 10.1038/natrevmats.2017.81 – ident: ref46/cit46 doi: 10.1016/j.ccr.2017.10.029 – ident: ref75/cit75 doi: 10.1021/es900070h – ident: ref44/cit44 doi: 10.1002/chem.201800623 – ident: ref56/cit56 doi: 10.1002/adfm.201603364 – ident: ref40/cit40 doi: 10.1126/sciadv.aat8192 – ident: ref100/cit100 doi: 10.1016/j.progpolymsci.2012.06.005 – ident: ref55/cit55 doi: 10.1002/chem.201803496 – ident: ref93/cit93 doi: 10.1016/S0032-9592(98)00112-5 – ident: ref69/cit69 doi: 10.1021/cr020088u – ident: ref76/cit76 doi: 10.1021/jp207459k – ident: ref43/cit43 doi: 10.1039/c3ob41467a – ident: ref77/cit77 doi: 10.1039/C7DT02076G – ident: ref5/cit5 doi: 10.1002/ep.11616 – ident: ref36/cit36 doi: 10.1002/chem.201301567 – ident: ref39/cit39 doi: 10.1039/c2sc20098h – ident: ref60/cit60 doi: 10.1021/la9817821 – ident: ref35/cit35 doi: 10.1073/pnas.220426897 – ident: ref67/cit67 – ident: ref50/cit50 doi: 10.1016/S0143-7208(99)00063-7 – ident: ref91/cit91 doi: 10.1016/0039-9140(80)80125-1 – ident: ref68/cit68 doi: 10.1126/science.1205962 – ident: ref58/cit58 doi: 10.1021/ja982748b – ident: ref87/cit87 doi: 10.1590/S0103-50531998000100012 – volume-title: Sonochemistry: Theory, reactions, syntheses, and applications year: 2010 ident: ref79/cit79 – ident: ref8/cit8 doi: 10.1016/S0045-6535(00)00079-5 – ident: ref19/cit19 doi: 10.1016/j.reactfunctpolym.2017.11.008 – ident: ref30/cit30 doi: 10.1021/ja203792n – ident: ref99/cit99 doi: 10.3390/gels4010004 – ident: ref23/cit23 doi: 10.1002/anie.201208397 – ident: ref6/cit6 doi: 10.1016/j.jenvman.2016.07.090 – ident: ref52/cit52 doi: 10.1021/acsami.8b20743 – ident: ref45/cit45 doi: 10.1002/chem.201703348 – volume-title: The Bipyridinium Herbicides year: 1980 ident: ref82/cit82 – ident: ref94/cit94 doi: 10.1021/la801839b – ident: ref66/cit66 doi: 10.1016/j.progpolymsci.2013.05.011 |
SSID | ssj0011028 |
Score | 2.4041257 |
Snippet | The increasing frequency with which organic pollutants can be found in global surface water poses a formidable threat to both our environment and its... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 4405 |
Title | Poly-Lipoic Ester-Based Coacervates for the Efficient Removal of Organic Pollutants from Water and Increased Point-of-Use Versatility |
URI | http://dx.doi.org/10.1021/acs.chemmater.9b00725 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEB0BPbQcoKVFhEK1h54qbYi963V8hCgIoaqK2kblZu2nGkG8KHEO7b3_uzOOE0WqoHC1vKPReHbf887uG4CPTnmcNLnjUgTPEaEDN9YYrou88D3nqXZIpy2-qKuxvL7Jbrbg7IEKfpqcaYvB_-mnSOD8rEsSfnmabcOLVOFEJi40-LYuGxBaNrSxyLnMM7W6svOQGYIkO9-ApA1sudyH0eqGzvJIyW13UZuu_f2vYONT3X4Ney3PZOfLxHgDW746gJeDVXu3A9jdUCJ8C39G8e4X_zy5jxPLhiSewC8Q3xwbRG2bfVs_Z8hvGfJFNmxkJxCt2Fc_jZiqLAa2vNRp2Yh6J1NrYnx_FqfsB3nGdOUYLkV0Ah6NjuKkqnkMfDz3jHbsMD3od-AdjC-H3wdXvO3QwLVQSc2d0YlwPqQGaQ1yT-FUzytbhDyYTGdERhKlpA7GiX7eL4LSSjtjlcv7oXBaHMJOFSt_BEx4K4XGOAUZpHRouZ956QISVicL0evAJwxp2c6wedkUz9OkpIfrOJdtnDsgV1-0tK3WObXcuPvfsO562P1S7OPxAcfPceo9vEK2RZoPPM1OYKeeLfwpMprafGiy-C8G0ffP |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB2VcigcKBQQhQJ74IS0Ifau1_GxRKkChCqCRu3N2k8povFWsXuAO_-bGcdJo0qAel15R-PxrN-zZ_cNwDunPC6a3HEpgueI0IEbawzXRV74vvNUO6TdFqdqPJOfL7KLHVDrszDoRI2W6raIf6MukHygMbyNBfI4v-yRkl-eZvfgPhKSlDL7ePh9Uz0g0GzZY5FzmWdqfXLnb2YImWy9hUxbEHOyD-cb59qdJT96143p2V-3dBvv7v1jeNSxTna8SpMnsOOrA9gbrpu9HcDDLV3Cp_B7Gi9_8sn8Ks4tG5GUAv-IaOfYMGrb_sX1NUO2y5A9slErQoHYxb75RcTEZTGw1RFPy6bUSZkaFeP1y7hg5-QZ05Vj-GKi_fBodBrnVcNj4LPaM_p_h8lCHwfPYHYyOhuOedevgWuhkoY7oxPhfEgNkhxkosKpvle2CHkwmc6ImiRKSR2ME4N8UASllXbGKpcPQuG0eA67Vaz8C2DCWyk0xinIIKVDy4PMSxeQvjpZiP4hvMeQlt16q8u2lJ4mJQ1u4lx2cT4EuX6wpe2Uz6kBx-X_pvU2065W0h__nvDyLk69hb3x2ddJOfl0-uUVPEAeRmoQPM2OYLdZXvvXyHUa86ZN7D_AGAA_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB7RIlF6KFCKKOWxB05IG-Lseh0fS5qoQFVFQNRKHKx9ShGNN4rdQ7n3fzPjOFGERBFcV97R7HjW83ln9huAt0553DSZ41IEzzFCB26sMVznWe67zlPukKotztXpRH66TC_bqkq6C4NKVCipapL4tKvnLrQMA8l7GselzBDL-UWH2PyyXroF9yl1R959PPi6ziBQ4GwQZJ5xmaVqdXvnT2IoOtlqIzpthJnRI_i-VrCpLvnRua5Nx_78jbvx_1bwGPZa9MmOl-7yBO75ch92Bqumb_uwu8FP-BRux_Hqhp9N53Fq2ZAoFfgHjHqODaK2zWmurxiiXoYokg0bMgqMYeyLn0V0YBYDW171tGxMHZWpYTE-v4gzdkGaMV06hh8oqotHoeM4LWseA59UntE5HjoN_SQcwGQ0_DY45W3fBq6FSmrujE6E86FnEOwgIhVOdb2yeciCSXVKECVRSupgnOhn_TworbQzVrmsH3KnxTPYLmPpnwMT3kqh0U5BBikdSu6nXrqAMNbJXHQP4R2atGj3XVU0KfVeUtDg2s5Fa-dDkKuXW9iWAZ0acVz9bVpnPW2-pAC5e8KLf1HqDTwYn4yKs4_nn4_gIcIxIoXgvfQlbNeLa_8KIU9tXje-_Qvf2wLC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly-Lipoic+Ester-Based+Coacervates+for+the+Efficient+Removal+of+Organic+Pollutants+from+Water+and+Increased+Point-of-Use+Versatility&rft.jtitle=Chemistry+of+materials&rft.au=Zhang%2C+Zhao&rft.au=Liu%2C+Qian&rft.au=Sun%2C+Zhimin&rft.au=Phillips%2C+Bailey+K&rft.date=2019-06-25&rft.pub=American+Chemical+Society&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=31&rft.issue=12&rft.spage=4405&rft.epage=4417&rft_id=info:doi/10.1021%2Facs.chemmater.9b00725&rft.externalDocID=c275929523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon |