Highly Anisotropic and Water Molecule-Dependent Proton Conductivity in a 2D Homochiral Copper(II) Metal–Organic Framework

Proton conductivity research on single crystals is essential to elucidate their conduction mechanism and guide the unidirectional crystal growth to improve the performance of electrolyte materials. Herein, we report a highly anisotropic proton-conductive 2D metal–organic framework (MOF) [Cu2(Htzehp)...

Full description

Saved in:
Bibliographic Details
Published inChemistry of materials Vol. 29; no. 5; pp. 2321 - 2331
Main Authors Li, Rong, Wang, Shuai-Hua, Chen, Xu-Xing, Lu, Jian, Fu, Zhi-Hua, Li, Yan, Xu, Gang, Zheng, Fa-Kun, Guo, Guo-Cong
Format Journal Article
LanguageEnglish
Published American Chemical Society 14.03.2017
Online AccessGet full text

Cover

Loading…
Abstract Proton conductivity research on single crystals is essential to elucidate their conduction mechanism and guide the unidirectional crystal growth to improve the performance of electrolyte materials. Herein, we report a highly anisotropic proton-conductive 2D metal–organic framework (MOF) [Cu2(Htzehp)2(4,4′-bipy)]·3H2O (1·3H 2 O, H3tzehp = N-[2-(1H-tetrazol-5-yl)­ethyl]-l-hydroxyproline) with definite crystal structures showing single-crystal to single-crystal transformation between the anhydrate (1) and trihydrate (1·3H 2 O) phases. The hydrogen bonded chains consisted of well-defined lattice water molecules and hydroxyl functional groups of the Htzehp2– ligand array inside the 2D interlayer spaces along the crystallographic a-axis ([100] direction) in 1·3H 2 O. Temperature- and humidity-dependent proton conductivity was achieved along the [100] and [010] directions, respectively. The anisotropic proton conductivity of σ[100]/σ[010] in a single crystal of 1·3H 2 O was as high as 2 orders of magnitude. The highest proton conductivity of 1.43 × 10–3 S cm–1 of 1·3H 2 O at 80 °C and 95% relative humidity was observed among the reported 2D MOF crystals. The relation between the proton conductivity and structure was also revealed. The hydrogen bonded chain in 1·nH 2 O plays a significant role in the proton transport. The time-dependent proton conductivity and single-crystal X-ray diffraction measurements demonstrated that 1·3H 2 O is temperature- and humidity-stable and acts as an underlying electrolyte material for fuel cell applications.
AbstractList Proton conductivity research on single crystals is essential to elucidate their conduction mechanism and guide the unidirectional crystal growth to improve the performance of electrolyte materials. Herein, we report a highly anisotropic proton-conductive 2D metal–organic framework (MOF) [Cu2(Htzehp)2(4,4′-bipy)]·3H2O (1·3H 2 O, H3tzehp = N-[2-(1H-tetrazol-5-yl)­ethyl]-l-hydroxyproline) with definite crystal structures showing single-crystal to single-crystal transformation between the anhydrate (1) and trihydrate (1·3H 2 O) phases. The hydrogen bonded chains consisted of well-defined lattice water molecules and hydroxyl functional groups of the Htzehp2– ligand array inside the 2D interlayer spaces along the crystallographic a-axis ([100] direction) in 1·3H 2 O. Temperature- and humidity-dependent proton conductivity was achieved along the [100] and [010] directions, respectively. The anisotropic proton conductivity of σ[100]/σ[010] in a single crystal of 1·3H 2 O was as high as 2 orders of magnitude. The highest proton conductivity of 1.43 × 10–3 S cm–1 of 1·3H 2 O at 80 °C and 95% relative humidity was observed among the reported 2D MOF crystals. The relation between the proton conductivity and structure was also revealed. The hydrogen bonded chain in 1·nH 2 O plays a significant role in the proton transport. The time-dependent proton conductivity and single-crystal X-ray diffraction measurements demonstrated that 1·3H 2 O is temperature- and humidity-stable and acts as an underlying electrolyte material for fuel cell applications.
Author Li, Rong
Lu, Jian
Fu, Zhi-Hua
Li, Yan
Guo, Guo-Cong
Wang, Shuai-Hua
Chen, Xu-Xing
Xu, Gang
Zheng, Fa-Kun
AuthorAffiliation Department of Chemistry
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter
East China University of Science and Technology
Chinese Academy of Sciences
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: Department of Chemistry
– name: University of Chinese Academy of Sciences
– name: Chinese Academy of Sciences
– name: East China University of Science and Technology
– name: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter
Author_xml – sequence: 1
  givenname: Rong
  surname: Li
  fullname: Li, Rong
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Shuai-Hua
  surname: Wang
  fullname: Wang, Shuai-Hua
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Xu-Xing
  surname: Chen
  fullname: Chen, Xu-Xing
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Jian
  surname: Lu
  fullname: Lu, Jian
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Zhi-Hua
  surname: Fu
  fullname: Fu, Zhi-Hua
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: East China University of Science and Technology
– sequence: 7
  givenname: Gang
  surname: Xu
  fullname: Xu, Gang
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Fa-Kun
  orcidid: 0000-0002-7264-170X
  surname: Zheng
  fullname: Zheng, Fa-Kun
  email: zfk@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Guo-Cong
  orcidid: 0000-0002-7450-9702
  surname: Guo
  fullname: Guo, Guo-Cong
  email: gcguo@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkM1KAzEUhYNUsK0-gpClLqZmfjIzwVVprS201IXickgyd9rUmWTIpEpx4zv4hj6JU1pcuOnqcjh8B-7XQx1tNCB07ZOBTwL_jstmINdQVdyBHcSC0IglZ6jr04B4lJCgg7okZYkXJTS-QL2m2RDit2jaRZ9TtVqXOzzUqjHOmlpJzHWOX_dbeGFKkNsSvDHUoHPQDj9Z44zGI6PzrXTqXbkdVhpzHIzx1FRGrpXlZdvXNdib2ewWL8Dx8ufre2lXXLfzE8sr-DD27RKdF7xs4Op4--hl8vA8mnrz5eNsNJx7PIx95-WEJhIgz3khCGFxmPA2RlzGoWAsSSAFSiGOiAhZxKQIQBRpTkUoiqBgRRH20f1hV1rTNBaKTCrHnTLaWa7KzCfZ3mPWesz-PGZHjy1N_9G1VRW3u5Ocf-D29cZsrW5_PMH8AmOsk_I
CitedBy_id crossref_primary_10_1039_C9CE01334B
crossref_primary_10_1021_acs_jpcc_9b10130
crossref_primary_10_3390_nano10071263
crossref_primary_10_1016_j_mtchem_2018_12_002
crossref_primary_10_1021_jacs_7b03397
crossref_primary_10_1016_j_watres_2024_122102
crossref_primary_10_1039_D1NJ04237H
crossref_primary_10_1039_D0TA01733G
crossref_primary_10_1016_j_talanta_2024_126303
crossref_primary_10_1039_D0TC03687K
crossref_primary_10_1070_RCR5032
crossref_primary_10_1016_j_ccr_2019_213100
crossref_primary_10_1039_C8CC08700H
crossref_primary_10_1007_s10876_019_01615_7
crossref_primary_10_1039_D2QI00023G
crossref_primary_10_1016_j_ccr_2021_213915
crossref_primary_10_1039_D2DT03383F
crossref_primary_10_1039_D3DT00259D
crossref_primary_10_1039_D3CC00404J
crossref_primary_10_1021_acs_inorgchem_2c01150
crossref_primary_10_1021_acs_cgd_2c00601
crossref_primary_10_1016_j_ica_2020_119800
crossref_primary_10_1016_j_inoche_2019_05_003
crossref_primary_10_1021_acs_inorgchem_2c03445
crossref_primary_10_1039_D3CE00046J
crossref_primary_10_1016_j_ccr_2023_215516
crossref_primary_10_1039_D3RA01130E
crossref_primary_10_1016_j_ccr_2020_213754
crossref_primary_10_1039_C9NJ00400A
crossref_primary_10_1039_C8CE00693H
crossref_primary_10_1039_C9TA08253K
crossref_primary_10_1021_acs_chemrev_0c01049
crossref_primary_10_1002_adfm_202311912
crossref_primary_10_1021_acsanm_8b01902
crossref_primary_10_1007_s42864_021_00123_4
crossref_primary_10_1021_acsami_8b11816
crossref_primary_10_1039_D1DT01163D
crossref_primary_10_1021_acs_inorgchem_8b03278
crossref_primary_10_1039_D0QI00040J
crossref_primary_10_1039_C9CC02758K
crossref_primary_10_1002_cphc_202000102
crossref_primary_10_1021_acs_jpcc_8b00814
crossref_primary_10_1039_D1DT01116B
crossref_primary_10_1039_C7DT02976D
crossref_primary_10_1016_j_inoche_2020_108128
crossref_primary_10_1021_acs_inorgchem_2c02822
crossref_primary_10_1021_acsami_4c15534
crossref_primary_10_1039_D0TC04423G
crossref_primary_10_1039_C9CC08402A
crossref_primary_10_1039_D0CC05402J
crossref_primary_10_1021_acs_inorgchem_9b03395
crossref_primary_10_1002_adma_201907090
crossref_primary_10_1016_j_inoche_2020_108049
crossref_primary_10_1021_acs_cgd_2c01243
crossref_primary_10_1016_j_molstruc_2024_140700
crossref_primary_10_1021_acs_chemmater_1c02562
crossref_primary_10_1021_jacs_7b11364
crossref_primary_10_1039_D4CC06378C
crossref_primary_10_1002_aoc_4517
crossref_primary_10_2139_ssrn_4156349
crossref_primary_10_1039_C8DT04171G
crossref_primary_10_1039_C9CC01828J
crossref_primary_10_1039_D2QI01103D
crossref_primary_10_1002_ejic_201900448
crossref_primary_10_15541_jim20220128
crossref_primary_10_1021_acs_cgd_7b01689
crossref_primary_10_1021_acs_inorgchem_4c05053
crossref_primary_10_1021_jacs_7b07987
crossref_primary_10_1039_D0NJ02085K
crossref_primary_10_1021_acsami_9b01075
crossref_primary_10_1016_j_apmt_2020_100895
crossref_primary_10_1002_asia_201901338
crossref_primary_10_1016_j_jssc_2019_121020
crossref_primary_10_1021_jacs_7b09163
crossref_primary_10_1039_D3QM00007A
crossref_primary_10_1002_app_52829
crossref_primary_10_1021_acs_inorgchem_0c00053
crossref_primary_10_1002_chem_202403296
Cites_doi 10.1021/ic401409b
10.1021/ja01080a015
10.1007/978-1-4899-2424-7_3
10.1146/annurev.matsci.33.022802.091825
10.1016/j.inoche.2016.06.018
10.1021/jacs.5b02777
10.1021/ic020580w
10.1021/cr050182l
10.1021/ic000313v
10.1021/ja107035w
10.1021/acs.chemmater.6b01286
10.1557/mrs2008.84
10.1021/ja307953m
10.1016/0009-2614(95)00905-J
10.1002/anie.198202082
10.1039/B616738C
10.1039/C2SC21927A
10.1021/ja109810w
10.1111/j.1151-2916.1998.tb02662.x
10.1039/C4RA11473F
10.1021/acs.chemmater.5b03723
10.1021/cr4005814
10.1021/ja302991b
10.1021/ja301875x
10.1039/C3CS60483G
10.1002/anie.201206410
10.1021/ja511389q
10.1021/cg3008443
10.1002/anie.201503095
10.1021/acs.chemmater.5b03897
10.1021/acs.inorgchem.6b00320
10.1039/B915642A
10.1039/c0cs00147c
10.1002/1521-3773(20021018)41:20<3800::AID-ANIE3800>3.0.CO;2-3
10.1021/ar300291s
10.1021/ja300122r
10.1039/c1cc11202c
10.1002/anie.201309077
10.1021/ja5069855
10.1021/cm500473f
10.1039/C1CC15162B
10.1021/ja310675x
10.1088/0022-3727/10/11/013
10.1038/nchem.402
10.1021/ja206917z
10.1021/ja203291n
10.1088/0953-8984/14/11/301
10.1021/ja305587n
10.1039/B800582F
10.1016/0022-3697(69)90039-0
10.1021/ja402727d
10.1021/ic3009656
10.1126/science.1230444
10.1021/ja2078637
10.1002/anie.201000048
10.1021/ja309968u
10.1152/physrev.00028.2002
10.1021/ja505916c
10.1039/C4CS00093E
10.1021/cm950192a
10.1002/anie.201101777
10.1021/ja304693r
10.1038/nature06900
10.1021/cm102674u
10.1021/jacs.5b04399
10.1039/c3cs60028a
10.1021/ja5022014
10.1039/DT9840001349
10.1038/460809a
10.1021/ic4021367
10.1021/cr020711a
10.1002/anie.200602242
10.1039/C2CE26075A
10.1021/jo010635w
10.1016/j.ssi.2007.02.009
10.1126/science.aaa8075
10.1021/cr0207123
10.1021/cr60295a004
10.1107/S2053229614024218
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.chemmater.6b05497
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5002
EndPage 2331
ExternalDocumentID 10_1021_acs_chemmater_6b05497
b009006708
GroupedDBID 29B
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TN5
TWZ
UI2
UPT
VF5
VG9
W1F
X
YZZ
-~X
.K2
4.4
5VS
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a361t-d057ceeddafb009637acee4ac63b9977e8e55e640b3949cb2ebf8d5b3bf2f9ff3
IEDL.DBID ACS
ISSN 0897-4756
IngestDate Tue Jul 01 01:13:25 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Thu Aug 27 13:42:09 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a361t-d057ceeddafb009637acee4ac63b9977e8e55e640b3949cb2ebf8d5b3bf2f9ff3
ORCID 0000-0002-7264-170X
0000-0002-7450-9702
PageCount 11
ParticipantIDs crossref_citationtrail_10_1021_acs_chemmater_6b05497
crossref_primary_10_1021_acs_chemmater_6b05497
acs_journals_10_1021_acs_chemmater_6b05497
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-14
PublicationDateYYYYMMDD 2017-03-14
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-14
  day: 14
PublicationDecade 2010
PublicationTitle Chemistry of materials
PublicationTitleAlternate Chem. Mater
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
U.S. Department of Energy (ref7/cit7) 2012
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
(ref57/cit57) 2002
ref59/cit59
ref85/cit85
ref2/cit2
Spek A. L. (ref68/cit68) 1990; 46
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
Berry A. (ref43/cit43) 2003
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref80/cit80
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
Bruhn T. (ref73/cit73) 2012
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
References_xml – ident: ref48/cit48
  doi: 10.1021/ic401409b
– ident: ref54/cit54
  doi: 10.1021/ja01080a015
– ident: ref11/cit11
  doi: 10.1007/978-1-4899-2424-7_3
– ident: ref15/cit15
  doi: 10.1146/annurev.matsci.33.022802.091825
– volume-title: SpecDis
  year: 2012
  ident: ref73/cit73
– ident: ref64/cit64
  doi: 10.1016/j.inoche.2016.06.018
– ident: ref71/cit71
  doi: 10.1021/jacs.5b02777
– ident: ref56/cit56
  doi: 10.1021/ic020580w
– ident: ref14/cit14
  doi: 10.1021/cr050182l
– ident: ref67/cit67
  doi: 10.1021/ic000313v
– ident: ref77/cit77
  doi: 10.1021/ja107035w
– ident: ref50/cit50
  doi: 10.1021/acs.chemmater.6b01286
– ident: ref1/cit1
  doi: 10.1557/mrs2008.84
– ident: ref25/cit25
  doi: 10.1021/ja307953m
– volume: 46
  start-page: c34
  year: 1990
  ident: ref68/cit68
  publication-title: Acta Crystallogr.
– ident: ref86/cit86
  doi: 10.1016/0009-2614(95)00905-J
– ident: ref72/cit72
– ident: ref82/cit82
  doi: 10.1002/anie.198202082
– ident: ref61/cit61
  doi: 10.1039/B616738C
– ident: ref83/cit83
  doi: 10.1039/C2SC21927A
– ident: ref34/cit34
  doi: 10.1021/ja109810w
– ident: ref16/cit16
  doi: 10.1111/j.1151-2916.1998.tb02662.x
– ident: ref38/cit38
  doi: 10.1039/C4RA11473F
– ident: ref47/cit47
  doi: 10.1021/acs.chemmater.5b03723
– ident: ref5/cit5
  doi: 10.1021/cr4005814
– ident: ref70/cit70
  doi: 10.1021/ja302991b
– ident: ref33/cit33
  doi: 10.1021/ja301875x
– ident: ref27/cit27
  doi: 10.1039/C3CS60483G
– ident: ref4/cit4
  doi: 10.1002/anie.201206410
– ident: ref28/cit28
  doi: 10.1021/ja511389q
– ident: ref46/cit46
  doi: 10.1021/cg3008443
– volume-title: DNA: the secret of life
  year: 2003
  ident: ref43/cit43
– ident: ref22/cit22
  doi: 10.1002/anie.201503095
– ident: ref80/cit80
  doi: 10.1021/acs.chemmater.5b03897
– ident: ref63/cit63
  doi: 10.1021/acs.inorgchem.6b00320
– ident: ref69/cit69
  doi: 10.1039/B915642A
– ident: ref17/cit17
  doi: 10.1039/c0cs00147c
– ident: ref62/cit62
  doi: 10.1002/1521-3773(20021018)41:20<3800::AID-ANIE3800>3.0.CO;2-3
– ident: ref8/cit8
  doi: 10.1021/ar300291s
– volume-title: CrystalClear, version 1.35, Software User’s Guide for the Rigaku R–Axis, and Mercury and Jupiter CCD Automated X–ray Imaging System
  year: 2002
  ident: ref57/cit57
– ident: ref32/cit32
  doi: 10.1021/ja300122r
– ident: ref45/cit45
  doi: 10.1039/c1cc11202c
– ident: ref21/cit21
  doi: 10.1002/anie.201309077
– ident: ref37/cit37
  doi: 10.1021/ja5069855
– ident: ref42/cit42
  doi: 10.1021/cm500473f
– ident: ref31/cit31
  doi: 10.1039/C1CC15162B
– ident: ref20/cit20
  doi: 10.1021/ja310675x
– ident: ref76/cit76
  doi: 10.1088/0022-3727/10/11/013
– ident: ref24/cit24
  doi: 10.1038/nchem.402
– ident: ref78/cit78
  doi: 10.1021/ja206917z
– ident: ref74/cit74
  doi: 10.1021/ja203291n
– ident: ref53/cit53
  doi: 10.1088/0953-8984/14/11/301
– ident: ref29/cit29
  doi: 10.1021/ja305587n
– ident: ref2/cit2
  doi: 10.1039/B800582F
– ident: ref75/cit75
  doi: 10.1016/0022-3697(69)90039-0
– ident: ref26/cit26
  doi: 10.1021/ja402727d
– ident: ref30/cit30
  doi: 10.1021/ic3009656
– ident: ref18/cit18
  doi: 10.1126/science.1230444
– ident: ref49/cit49
  doi: 10.1021/ja2078637
– volume-title: Fuel Cell Technologies Office: Multi-Year Research, Development, Demonstration Plan
  year: 2012
  ident: ref7/cit7
– ident: ref44/cit44
  doi: 10.1002/anie.201000048
– ident: ref85/cit85
  doi: 10.1021/ja309968u
– ident: ref6/cit6
  doi: 10.1152/physrev.00028.2002
– ident: ref41/cit41
  doi: 10.1021/ja505916c
– ident: ref10/cit10
  doi: 10.1039/C4CS00093E
– ident: ref81/cit81
  doi: 10.1021/cm950192a
– ident: ref36/cit36
  doi: 10.1002/anie.201101777
– ident: ref40/cit40
  doi: 10.1021/ja304693r
– ident: ref60/cit60
  doi: 10.1038/nature06900
– ident: ref84/cit84
  doi: 10.1021/cm102674u
– ident: ref23/cit23
  doi: 10.1021/jacs.5b04399
– ident: ref9/cit9
  doi: 10.1039/c3cs60028a
– ident: ref39/cit39
  doi: 10.1021/ja5022014
– ident: ref66/cit66
  doi: 10.1039/DT9840001349
– ident: ref3/cit3
  doi: 10.1038/460809a
– ident: ref51/cit51
  doi: 10.1021/ic4021367
– ident: ref13/cit13
  doi: 10.1021/cr020711a
– ident: ref65/cit65
  doi: 10.1002/anie.200602242
– ident: ref35/cit35
  doi: 10.1039/C2CE26075A
– ident: ref52/cit52
– ident: ref59/cit59
  doi: 10.1021/jo010635w
– ident: ref79/cit79
  doi: 10.1016/j.ssi.2007.02.009
– ident: ref19/cit19
  doi: 10.1126/science.aaa8075
– ident: ref12/cit12
  doi: 10.1021/cr0207123
– ident: ref55/cit55
  doi: 10.1021/cr60295a004
– ident: ref58/cit58
  doi: 10.1107/S2053229614024218
SSID ssj0011028
Score 2.50249
Snippet Proton conductivity research on single crystals is essential to elucidate their conduction mechanism and guide the unidirectional crystal growth to improve the...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 2321
Title Highly Anisotropic and Water Molecule-Dependent Proton Conductivity in a 2D Homochiral Copper(II) Metal–Organic Framework
URI http://dx.doi.org/10.1021/acs.chemmater.6b05497
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH70x2Hdod26jbVbhw47bAOliSRb9jE4DWkhJbCV9WakZ4mGtnZw3MO2S_-H_of7SybFdgiUtuvFYMOTxbPM9z3ejw_gMxOopJIB9SUWVNhA0MhgRl3g4-AVZaS473cen4ajM3FyHpyvweEDGXzWO1TonH9hrh2BM2Un1I5jxHIdNlkYSR9t9ZPvy7SBR8sFbYwlFTII25adh5bxkITzFUhawZbhDkzaDp26pOSyc1PpDv6-P7Dxf7f9CrYbnkn69cF4DWsm34UXSSvvtgsvVyYRvoE_vt7j6hfp59N5UZXFbIpE5Rn56dcl41pD19BBI5lbkUlZONZIkiL3A2MXChRkmhNF2ICMiusCL6ale39SzGam_HJ8_JWMjeP5f2_v6u5PJMO2LOwtnA2PfiQj2ugyUMXDXkUzx_E8tmbKah8CcancrVAYch07PmkiEwQmFF3NYxGjZkbbKAs015bZ2Fr-DjbyIjfvgSByFFIz7a5CMqtRSm25CaO4i8p09-Cbc2Ta_FfzdJEyZ73UP1x6N228uwei_Y4pNhPOvdDG1VNmnaXZrB7x8bjB_nM29QG2mGcCvgRQfISNqrwxB47HVPrT4uz-A2Ff9Gw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6V9lB6gFJALb8-9ABIXnZtJ06Oq5TVLnSrSrRqb5Ht2GJFm6yS9AC99B14Q56EcTZZVkil6iVSLM1kMnH0fSPPD8A-E0ZJJQPqUyyocIGgkTUZxcAH4dXISHFf7zw9Csen4vN5cL4GYVcLg0ZUqKlqDvH_dhcYfPRr-BqXyONs2Qs1Uo1YPoANJCTMB13D5Ovy9MCDZsMeY0mFDMKucuc2NR6ZTLWCTCsQM3oMZ0vjmsyS772rWvfMz3_6Nt7f-m141LJOMlxskyewZvMd2Ey6YW87sLXSl_ApXPvsj4sfZJjPqqIui_nMEJVn5MzrJdPFRF1LD9oBujU5LgvkkCQpct8-tplHQWY5UYQdkHFxWZhvsxKfnxTzuS3fTSbvydQi6_9982tRC2rIqEsSewano08nyZi2Uxqo4uGgphkyPo-0mXLaB0RcKrwVyoRcx8gubWSDwIair3ksYqOZ1S7KAs21Yy52jj-H9bzI7S4QY7gRUjONVyGZ00ZK7bgNo7hvlO3vwQd0ZNr-ZVXaHKCzQeoXl95NW-_ugeg-Z2rafud-7MbFXWK9pdh80fDj_wIv7mPUW9gcn0wP08PJ0ZeX8JB5juCTA8UrWK_LK_saGU6t3zTb-Q-o5_zN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED_BkMb2MGAwbYyBH3gYk9y1sRMnj1W6qh10mrRNm8RDZDu2qLYlUZI9DF74DnxDPgm-NK0qJEDjJVIs3eV8sXW_0_0DeO9xLYUUPsUUC8qtz2lodEqd4-PMqxahZFjvPDkJRhf8-Mq_arMqsRbGCVE5TlUTxMdbXaS27TDQO8R1t5Vbh-VM2QmUgxuReAxPMHSHjlc_PltEENBwNggyEpQLP5hX7_yJDVonXS1ZpyUzM3wGnxcCNtkl1527WnX01996N_7fDp7DRos-SX92XF7AI5NtwtN4PvRtE9aX-hO-hG-YBXJzT_rZtMrrMi-mmsgsJZfIl0xmk3UNHbSDdGtyWuYOS5I4z7CNbDOXgkwzIok3IKP8NtdfpqX7fpwXhSn3x-MPZGIc-v_5_cesJlST4TxZ7BVcDI_O4xFtpzVQyYJeTVOH_NDiptIqdIyYkO6VSx0wFTmUaULj-ybgXcUiHmnlGWXD1FdMWc9G1rItWMnyzGwD0ZppLpSn3JMLzyothLLMBGHU1dJ0d-DAKTJpb1uVNIF0r5fg4kK7SavdHeDzX5rotu85jt-4-RdZZ0FWzBp__J3g9UOEegerp4Nh8ml88nEX1jyECpgjyN_ASl3emT0HdGr1tjnRvwCklP9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Anisotropic+and+Water+Molecule-Dependent+Proton+Conductivity+in+a+2D+Homochiral+Copper%28II%29+Metal%E2%80%93Organic+Framework&rft.jtitle=Chemistry+of+materials&rft.au=Li%2C+Rong&rft.au=Wang%2C+Shuai-Hua&rft.au=Chen%2C+Xu-Xing&rft.au=Lu%2C+Jian&rft.date=2017-03-14&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=29&rft.issue=5&rft.spage=2321&rft.epage=2331&rft_id=info:doi/10.1021%2Facs.chemmater.6b05497&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_chemmater_6b05497
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon