In Situ X‑ray Diffraction Study of Layered Li–Ni–Mn–Co Oxides: Effect of Particle Size and Structural Stability of Core–Shell Materials

Lithium-rich Li­[Li x M1–x ]­O2 (M = Ni, Mn, Co) materials have been claimed to be two phase by some researchers and to be one phase by others when all the available lithium is extracted electrochemically. To clear up this confusion, the Li-rich samples [Li­[Li0.12(Ni0.5Mn0.5)0.88]­O2 and Li­[Li0.23...

Full description

Saved in:
Bibliographic Details
Published inChemistry of materials Vol. 28; no. 1; pp. 162 - 171
Main Authors Li, Jing, Shunmugasundaram, Ramesh, Doig, Renny, Dahn, J. R
Format Journal Article
LanguageEnglish
Published American Chemical Society 12.01.2016
Online AccessGet full text

Cover

Loading…
Abstract Lithium-rich Li­[Li x M1–x ]­O2 (M = Ni, Mn, Co) materials have been claimed to be two phase by some researchers and to be one phase by others when all the available lithium is extracted electrochemically. To clear up this confusion, the Li-rich samples [Li­[Li0.12(Ni0.5Mn0.5)0.88]­O2 and Li­[Li0.23(Ni0.2Mn0.8)0.77]­O2 with different particle sizes were synthesized for in situ X-ray diffraction experiments. In situ X-ray diffraction measurements revealed two-phase behavior of 10 μm particles and one-phase behavior for samples with submicrometer particles. The phase separation in samples with large particles agrees with literature proposals of oxygen release from a surface layer and the observation of distinct surface and bulk phases. The small particle samples are so small that they are entirely composed of the surface phase found in the large particle samples. These results strongly suggest that the size of particles can significantly affect the structural evolution testing and electrochemical performance of the Li- and Mn-rich materials. It is proposed that the surface phase continuously grows during charge–discharge cycling, which leads to voltage fade in large particle samples. Meanwhile, in situ X-ray diffraction measurements were also performed for the layered Li–Ni–Mn–Co oxides with varying nickel contents, including NMC811 (LiNi0.8Mn0.1Co0.1O2), NMC442 (LiNi0.42Mn0.42Co0.16O2), [Li­[Li0.12(Ni0.5Mn0.5)0.88]­O2, and Li­[Li0.23(Ni0.2Mn0.8)0.77]­O2. Samples with higher nickel content showed much faster contraction of unit cell volume as a function of cell voltage, which suggests that the core–shell structures with a nickel-rich core (e.g., NMC811) and a Mn-rich shell (e.g., Li1.23Ni0.154Mn0.616O2) should not crack during charge–discharge cycling.
AbstractList Lithium-rich Li­[Li x M1–x ]­O2 (M = Ni, Mn, Co) materials have been claimed to be two phase by some researchers and to be one phase by others when all the available lithium is extracted electrochemically. To clear up this confusion, the Li-rich samples [Li­[Li0.12(Ni0.5Mn0.5)0.88]­O2 and Li­[Li0.23(Ni0.2Mn0.8)0.77]­O2 with different particle sizes were synthesized for in situ X-ray diffraction experiments. In situ X-ray diffraction measurements revealed two-phase behavior of 10 μm particles and one-phase behavior for samples with submicrometer particles. The phase separation in samples with large particles agrees with literature proposals of oxygen release from a surface layer and the observation of distinct surface and bulk phases. The small particle samples are so small that they are entirely composed of the surface phase found in the large particle samples. These results strongly suggest that the size of particles can significantly affect the structural evolution testing and electrochemical performance of the Li- and Mn-rich materials. It is proposed that the surface phase continuously grows during charge–discharge cycling, which leads to voltage fade in large particle samples. Meanwhile, in situ X-ray diffraction measurements were also performed for the layered Li–Ni–Mn–Co oxides with varying nickel contents, including NMC811 (LiNi0.8Mn0.1Co0.1O2), NMC442 (LiNi0.42Mn0.42Co0.16O2), [Li­[Li0.12(Ni0.5Mn0.5)0.88]­O2, and Li­[Li0.23(Ni0.2Mn0.8)0.77]­O2. Samples with higher nickel content showed much faster contraction of unit cell volume as a function of cell voltage, which suggests that the core–shell structures with a nickel-rich core (e.g., NMC811) and a Mn-rich shell (e.g., Li1.23Ni0.154Mn0.616O2) should not crack during charge–discharge cycling.
Author Li, Jing
Shunmugasundaram, Ramesh
Doig, Renny
Dahn, J. R
AuthorAffiliation Department of Chemistry
Dalhousie University
Department of Process Engineering and Applied Science
Department of Physics and Atmosphere Science
AuthorAffiliation_xml – name:
– name: Department of Chemistry
– name: Department of Process Engineering and Applied Science
– name: Dalhousie University
– name: Department of Physics and Atmosphere Science
Author_xml – sequence: 1
  givenname: Jing
  surname: Li
  fullname: Li, Jing
– sequence: 2
  givenname: Ramesh
  surname: Shunmugasundaram
  fullname: Shunmugasundaram, Ramesh
– sequence: 3
  givenname: Renny
  surname: Doig
  fullname: Doig, Renny
– sequence: 4
  givenname: J. R
  surname: Dahn
  fullname: Dahn, J. R
  email: jeff.dahn@dal.ca
BookMark eNqFkN9KwzAUxoNMcJs-gpAX6Ezapn-8kzp10DlhCt6VkzRhGV0raQrOq73C8A33JKZueOvN-Q7nnO_H4RuhQd3UEqFrSiaU-PQGRDsRK7nZgJVmwjgJGCFnaEiZTzzX-gM0JEkae2HMogs0ats1IdRZkyHaz2q81LbD74fd3sAW32ulDAirG7ewXbnFjcI5bKWRJc71Yff93Jd57UrW4MWnLmV7i6dKSWH72xcwVotKOuyXxFCXDmM6YTsDlWuB60rbX2rWGOkoy5WsKjzvn9dQtZfoXDmRVycdo7eH6Wv25OWLx1l2l3sQRNR64FMVqYRzgMQNRMlKJeO0jLhIA0F4HJI0jKIEgBORqpBImoYiShijISeqDMaIHbnCNG1rpCo-jN6A2RaUFH2uhcu1-Mu1OOXqfPTo69frpjO1-_Ifzw8QOoj9
CitedBy_id crossref_primary_10_1007_s41918_019_00032_8
crossref_primary_10_1038_s41598_020_66411_0
crossref_primary_10_1021_acsaem_8b01524
crossref_primary_10_1149_1945_7111_ac2f78
crossref_primary_10_1016_j_heliyon_2023_e21881
crossref_primary_10_1016_j_jechem_2022_08_025
crossref_primary_10_1149_2_0991713jes
crossref_primary_10_1149_2_0031803jes
crossref_primary_10_1016_j_electacta_2020_137471
crossref_primary_10_1149_1945_7111_abd571
crossref_primary_10_1016_j_electacta_2021_139419
crossref_primary_10_1016_j_ensm_2024_103606
crossref_primary_10_1016_j_nanoen_2020_105562
crossref_primary_10_1021_jacs_2c09725
crossref_primary_10_1002_adfm_202110502
crossref_primary_10_1039_D3TA03057A
crossref_primary_10_1039_C6CP03683J
crossref_primary_10_1134_S0020168521050058
crossref_primary_10_1039_D1QM00052G
crossref_primary_10_1016_j_xcrp_2021_100647
crossref_primary_10_4028_www_scientific_net_MSF_1044_59
crossref_primary_10_1038_s41578_022_00416_1
crossref_primary_10_1039_D0EE02290J
crossref_primary_10_1016_j_ensm_2022_06_048
crossref_primary_10_1134_S0020168522100119
crossref_primary_10_1149_1945_7111_ac3157
crossref_primary_10_1016_j_jpowsour_2022_231775
crossref_primary_10_1021_acsmaterialslett_9b00476
crossref_primary_10_1109_TIM_2024_3390696
crossref_primary_10_1002_aenm_202301471
crossref_primary_10_1016_j_jallcom_2021_159761
crossref_primary_10_1039_C7CC08505B
crossref_primary_10_1149_2_1381709jes
crossref_primary_10_1021_acs_chemmater_1c04150
crossref_primary_10_1002_aenm_201600597
crossref_primary_10_1016_j_nanoen_2021_106194
crossref_primary_10_1021_acsaem_0c00803
crossref_primary_10_1021_acsomega_3c08702
crossref_primary_10_1149_1945_7111_ac285d
crossref_primary_10_1007_s42864_022_00187_w
crossref_primary_10_14233_ajchem_2020_22543
crossref_primary_10_1002_slct_201904290
crossref_primary_10_1021_acsomega_8b01090
crossref_primary_10_1002_aenm_202100126
crossref_primary_10_1007_s10800_021_01530_8
crossref_primary_10_1021_acsaem_9b02483
crossref_primary_10_1021_jacs_8b13798
crossref_primary_10_1134_S0020168519020080
crossref_primary_10_1016_j_gee_2017_05_005
crossref_primary_10_1002_sstr_202300001
crossref_primary_10_1002_aenm_201901795
crossref_primary_10_1039_C8EE00907D
crossref_primary_10_1149_2_1231613jes
crossref_primary_10_1016_j_nanoen_2021_106081
crossref_primary_10_1016_j_cej_2020_125821
crossref_primary_10_1002_cssc_202201169
crossref_primary_10_1021_acs_jpcc_7b06598
crossref_primary_10_1016_j_joule_2020_10_010
crossref_primary_10_1021_acs_jpcc_7b06122
crossref_primary_10_1016_j_jpowsour_2024_234626
crossref_primary_10_1039_C6NH00016A
crossref_primary_10_1016_j_est_2023_108187
crossref_primary_10_20964_2022_12_78
crossref_primary_10_1002_admi_201700483
crossref_primary_10_1149_2_0051903jes
crossref_primary_10_3390_inorganics5020032
crossref_primary_10_1016_j_ceramint_2018_09_022
crossref_primary_10_1016_j_xcrp_2023_101480
crossref_primary_10_1016_j_susmat_2021_e00305
crossref_primary_10_1016_j_jpowsour_2020_228592
crossref_primary_10_1021_acsenergylett_0c02121
crossref_primary_10_1021_acsami_9b21288
crossref_primary_10_1149_2_1381707jes
crossref_primary_10_1039_D0TA07965K
crossref_primary_10_1038_s41467_017_02041_x
crossref_primary_10_1016_j_ensm_2022_11_038
crossref_primary_10_1002_batt_202400107
crossref_primary_10_3390_en11102712
crossref_primary_10_1149_2_1091702jes
crossref_primary_10_1149_1945_7111_abb350
crossref_primary_10_1007_s41918_019_00053_3
crossref_primary_10_1149_2_0351701jes
crossref_primary_10_1016_j_nanoen_2020_105365
crossref_primary_10_1149_1945_7111_acc6f5
crossref_primary_10_1149_2_0861707jes
crossref_primary_10_1007_s10008_023_05706_4
crossref_primary_10_1016_j_electacta_2018_05_175
crossref_primary_10_1016_j_jhazmat_2021_127757
crossref_primary_10_1021_jacs_6b05111
crossref_primary_10_1002_aenm_202003885
crossref_primary_10_1016_j_pmatsci_2020_100655
crossref_primary_10_1002_aenm_201900161
crossref_primary_10_1021_acssuschemeng_0c06804
crossref_primary_10_1016_j_electacta_2017_01_014
crossref_primary_10_1002_celc_201900733
crossref_primary_10_1039_D3QM00226H
crossref_primary_10_1063_5_0088838
crossref_primary_10_1016_j_jpowsour_2022_231181
crossref_primary_10_1039_D0EE01694B
crossref_primary_10_1002_er_7143
crossref_primary_10_1016_j_joule_2022_04_001
crossref_primary_10_1002_celc_201901338
crossref_primary_10_1039_C8RA10116G
crossref_primary_10_1039_D2MH01254E
crossref_primary_10_1016_j_chempr_2022_03_007
crossref_primary_10_1016_j_electacta_2016_07_040
crossref_primary_10_1039_D0CP01851A
crossref_primary_10_1016_j_matpr_2020_08_752
crossref_primary_10_2139_ssrn_3983713
crossref_primary_10_1016_j_ensm_2017_05_008
crossref_primary_10_1016_j_nanoen_2018_11_046
crossref_primary_10_1038_s41560_021_00832_7
crossref_primary_10_1021_acsenergylett_8b02302
crossref_primary_10_1016_j_ceramint_2022_10_227
crossref_primary_10_1021_acsami_0c18758
crossref_primary_10_1002_elsa_202100135
crossref_primary_10_1002_jccs_201900448
crossref_primary_10_1002_aenm_201702028
crossref_primary_10_1149_2_0461701jes
crossref_primary_10_1021_acsami_2c07560
crossref_primary_10_1021_acsami_6b11111
crossref_primary_10_1039_C9TA06977A
crossref_primary_10_1002_er_5630
crossref_primary_10_1016_j_cej_2020_128189
crossref_primary_10_1021_acs_chemmater_8b01077
crossref_primary_10_1016_j_jpowsour_2017_08_006
crossref_primary_10_1016_j_electacta_2020_137413
crossref_primary_10_1002_smll_202203412
crossref_primary_10_3390_en11112963
crossref_primary_10_1007_s40242_020_0198_8
crossref_primary_10_1016_j_jpowsour_2024_234551
crossref_primary_10_1039_C9TA06474E
crossref_primary_10_1021_acs_chemmater_8b03827
crossref_primary_10_1016_j_jallcom_2024_173931
crossref_primary_10_1149_2_1691712jes
crossref_primary_10_1021_acsami_1c22147
crossref_primary_10_1039_C9QI00333A
crossref_primary_10_1021_acsami_9b21061
crossref_primary_10_1002_pssb_202000420
Cites_doi 10.1149/1.1519850
10.1021/jp4097887
10.1149/1.1471541
10.1016/j.jssc.2005.05.027
10.1021/acs.chemmater.5b00617
10.1103/PhysRevB.49.826
10.1149/1.1407994
10.1021/jp412197z
10.1016/j.jpowsour.2014.09.161
10.1021/jp0571473
10.1016/j.ssi.2011.11.018
10.1149/2.0081503jes
10.1149/2.040403jes
10.1021/cm400193m
10.1103/PhysRevB.51.734
10.1021/acsami.5b00788
10.1149/2.042406jes
10.1021/cm061746k
10.1021/cm304002b
10.1021/cm4001619
10.1149/2.083404jes
10.1038/nmat3435
10.1021/jp509388j
10.1021/nn305065u
10.1021/cr020731c
10.1016/j.electacta.2015.08.122
10.1103/PhysRevB.47.8486
10.1021/acscombsci.5b00048
10.1021/am403684z
10.1149/1.1505633
10.1149/2.038306jes
10.1103/PhysRevB.42.6424
10.1021/jp301879x
10.1149/2.049403jes
10.1021/cm503505b
10.1021/cm502774u
10.1016/S0167-2738(96)00370-0
10.1149/2.1011507jes
10.1039/C4CP01799D
10.1016/0167-2738(93)90317-V
10.1016/j.jpowsour.2013.01.063
10.1021/nl4019275
10.1021/cm4000119
10.1016/j.ssi.2013.09.051
10.1038/ncomms9711
10.1149/1.1480014
10.1016/j.jpowsour.2012.11.144
10.1021/jp506731v
10.1016/j.jpowsour.2013.02.075
10.1002/aenm.201400478
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.chemmater.5b03500
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5002
EndPage 171
ExternalDocumentID 10_1021_acs_chemmater_5b03500
c409941872
GroupedDBID 29B
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TN5
TWZ
UI2
UPT
VF5
VG9
W1F
X
YZZ
-~X
.K2
4.4
5VS
AAHBH
AAYXX
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a361t-a21f6f8bbaa8361cd5dfe79d6bc93c0b74094668aab0c9f40e194c685514b0fd3
IEDL.DBID ACS
ISSN 0897-4756
IngestDate Fri Aug 23 03:34:26 EDT 2024
Thu Aug 27 13:41:57 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a361t-a21f6f8bbaa8361cd5dfe79d6bc93c0b74094668aab0c9f40e194c685514b0fd3
PageCount 10
ParticipantIDs crossref_primary_10_1021_acs_chemmater_5b03500
acs_journals_10_1021_acs_chemmater_5b03500
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2016-01-12
PublicationDateYYYYMMDD 2016-01-12
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-12
  day: 12
PublicationDecade 2010
PublicationTitle Chemistry of materials
PublicationTitleAlternate Chem. Mater
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
Sun Y. (ref29/cit29) 2006; 110
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref46/cit46
  doi: 10.1149/1.1519850
– ident: ref25/cit25
  doi: 10.1021/jp4097887
– ident: ref9/cit9
  doi: 10.1149/1.1471541
– ident: ref33/cit33
  doi: 10.1016/j.jssc.2005.05.027
– ident: ref23/cit23
  doi: 10.1021/acs.chemmater.5b00617
– ident: ref5/cit5
  doi: 10.1103/PhysRevB.49.826
– ident: ref8/cit8
  doi: 10.1149/1.1407994
– ident: ref43/cit43
  doi: 10.1021/jp412197z
– ident: ref24/cit24
  doi: 10.1016/j.jpowsour.2014.09.161
– volume: 110
  start-page: 6810
  issue: 13
  year: 2006
  ident: ref29/cit29
  publication-title: J. Phys. Chem.B
  doi: 10.1021/jp0571473
  contributor:
    fullname: Sun Y.
– ident: ref40/cit40
  doi: 10.1016/j.ssi.2011.11.018
– ident: ref22/cit22
  doi: 10.1149/2.0081503jes
– ident: ref50/cit50
  doi: 10.1149/2.040403jes
– ident: ref44/cit44
  doi: 10.1021/cm400193m
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.51.734
– ident: ref16/cit16
  doi: 10.1021/acsami.5b00788
– ident: ref18/cit18
  doi: 10.1149/2.042406jes
– ident: ref28/cit28
  doi: 10.1021/cm061746k
– ident: ref10/cit10
  doi: 10.1021/cm304002b
– ident: ref11/cit11
  doi: 10.1021/cm4001619
– ident: ref14/cit14
  doi: 10.1149/2.083404jes
– ident: ref27/cit27
  doi: 10.1038/nmat3435
– ident: ref32/cit32
  doi: 10.1021/jp509388j
– ident: ref49/cit49
  doi: 10.1021/nn305065u
– ident: ref1/cit1
  doi: 10.1021/cr020731c
– ident: ref45/cit45
  doi: 10.1016/j.electacta.2015.08.122
– ident: ref6/cit6
  doi: 10.1103/PhysRevB.47.8486
– ident: ref13/cit13
  doi: 10.1021/acscombsci.5b00048
– ident: ref20/cit20
  doi: 10.1021/am403684z
– ident: ref2/cit2
  doi: 10.1149/1.1505633
– ident: ref35/cit35
  doi: 10.1149/2.038306jes
– ident: ref47/cit47
  doi: 10.1103/PhysRevB.42.6424
– ident: ref36/cit36
  doi: 10.1021/jp301879x
– ident: ref31/cit31
  doi: 10.1149/2.049403jes
– ident: ref7/cit7
  doi: 10.1021/cm503505b
– ident: ref26/cit26
  doi: 10.1021/cm502774u
– ident: ref4/cit4
  doi: 10.1016/S0167-2738(96)00370-0
– ident: ref21/cit21
  doi: 10.1149/2.1011507jes
– ident: ref38/cit38
  doi: 10.1039/C4CP01799D
– ident: ref19/cit19
  doi: 10.1016/0167-2738(93)90317-V
– ident: ref17/cit17
  doi: 10.1016/j.jpowsour.2013.01.063
– ident: ref34/cit34
  doi: 10.1021/nl4019275
– ident: ref37/cit37
  doi: 10.1021/cm4000119
– ident: ref12/cit12
  doi: 10.1016/j.ssi.2013.09.051
– ident: ref30/cit30
  doi: 10.1038/ncomms9711
– ident: ref39/cit39
  doi: 10.1149/1.1480014
– ident: ref42/cit42
  doi: 10.1016/j.jpowsour.2012.11.144
– ident: ref15/cit15
  doi: 10.1021/jp506731v
– ident: ref41/cit41
  doi: 10.1016/j.jpowsour.2013.02.075
– ident: ref3/cit3
  doi: 10.1002/aenm.201400478
SSID ssj0011028
Score 2.5856464
Snippet Lithium-rich Li­[Li x M1–x ]­O2 (M = Ni, Mn, Co) materials have been claimed to be two phase by some researchers and to be one phase by others when all the...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 162
Title In Situ X‑ray Diffraction Study of Layered Li–Ni–Mn–Co Oxides: Effect of Particle Size and Structural Stability of Core–Shell Materials
URI http://dx.doi.org/10.1021/acs.chemmater.5b03500
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KHtSDb7G-2IMnIW2ySTZZbxIVlbYWaqG3sLvZxSCm0gfYnvoXxH_oL3E2SaUgil6WsCRDMplhvtmZ_RahU1c60tWebwUhhQTFJb4lmMlSNARnJqRiebd7s0Vvut5dz-9VUP2HCj5x6lyC8h_VMwA4Naj5wpTCIEdfJgE4iMFCUeerbGCiZQ4bWWB5gU_nW3Z-EmNCkhwuhKSF2HK9gdrzHTpFS8lTbTwSNTn9Ttj419feROslzsQXhWFsoYrKttFKND_ebRutLTAR7qC32wx30tEY9z5mbwM-wZep1oNi0wM2vYYT3Ne4wSfmaE_cSD9m7y0zNDMYoj6-f00TNTzHBRmyubdd2iSInSrMswR3cqpaQ_MBlwU9eC416g8USOmYllTcNB9ifGIXda-vHqIbqzytweIudUYWJ46mOhSC8xAmZOInWgUsoUIyV9oiMJkkpSHnwpZMe7ZymCdpaCCbsHXi7qGlrJ-pfYQFZFUu0Vza3POEYEzbkPgQxQJFuK1ZFZ2BeuPS24ZxXkgnTmwmv3Qelzqvotr878YvBYPH7w8c_Ef6IVoFCJUvyjjkCC2BJtUxwJSROMlN8xPRruob
link.rule.ids 315,783,787,2772,27088,27936,27937,57070,57120
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fT9swED8h9sD2MBjbBIMxP-xpUrr8deK9oQxUtrabVND6FtmOLVWIdGqKtPLEV0B8Qz4Jd05aKiQm8WJFVnKyL2fd73znnwE-RzrQkY0TL804BihRmHhKUJRi0TkLpY1w1e79Ae-exT9GyWgN-OIsDA6iRkm1S-I_sAsEX6kPp3GBOM5MO4mijBiG6i-SFI2WIFE-XGYPyGk69ChSL04Tvji585QY8ky6XvFMKy7meBP-LAfnKkvOO5cz1dFXj3gbnz_6LXjdok522JjJG1gz1TZs5IvL3rbh1Qov4Vu4OanYcDy7ZKO765upnLPvY2unzREIRpWHczaxrCfndNEn643vrm8H1PQrbPIJ-_VvXJr6G2uokend362Fotgrw2RVsqEjriXSD3xsyMKd1HwyNShlSAWqrE8ToRXyDs6Oj07zrtfe3eDJiAczT4aB5TZTSsoMO3SZlNakouRKi0j7KqW4kvNMSuVrYWPfBCLWPCMAp3xbRu9hvZpUZgeYwhgrCq3UvoxjpYSwPoZBoRGpCaVvxS58QfUW7dqrC5dWD4OCOpc6L1qd70Jn8ZOLvw2fx_8_-PAc6Z9go3va7xW9k8HPPXiJ4Mpt1wThPqyjVs1HBDAzdeCs9R7hCPJ7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA6i4OPg-sTHrubgSeixn-mON2l30HVmFEZhYA9Nkk5gEHtkegTHk39B_If-kq1K9wyDsAvrJTShu0iqq6iqVOUrQo4C5anAhJETJwwClMCPHMkxSjFgnLlUmttq93aHXdyFv3pRr66qxLswsIgSKJU2iY9a_ZibGmHAO8F52MoD-HJ62IgkZsUgXF-IYs_Htg1naXeaQUDDaT1IHjthHLHJ7Z2_kUHrpMoZ6zRjZprfyO_pAm11yX3jaSQb6uUTduPXdrBGVmvvk55V4rJO5nSxQZbSSdO3DbIyg0-4Sd4uC9rtj55o7-P1bSjG9LxvzLC6CkGxAnFMB4a2xBgbftJW_-P1vYNDu4AhHdDr536uy1NaQSTjuze1pALZF01FkdOuBbBF8A94rEDDLdV0MNRApYuFqrSNG0FN2SJ3zZ-36YVT93BwRMC8kSN8zzCTSClEAhMqj3KjY54zqXigXBljfMlYIoR0FTehqz0eKpagIyddkwfbZL4YFHqHUAmxVuAboVwRhlJyblwIh3zNY-0L1_BdcgzszWodLDObXve9DCenPM9qnu-SxuRHZ48Vrse_P9j7H-qHZPHmvJm1LjtX-2QZfCx7auP538k8MFX_AD9mJA-swP4BbJP09Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+X-ray+Diffraction+Study+of+Layered+Li%E2%80%93Ni%E2%80%93Mn%E2%80%93Co+Oxides%3A+Effect+of+Particle+Size+and+Structural+Stability+of+Core%E2%80%93Shell+Materials&rft.jtitle=Chemistry+of+materials&rft.au=Li%2C+Jing&rft.au=Shunmugasundaram%2C+Ramesh&rft.au=Doig%2C+Renny&rft.au=Dahn%2C+J.+R.&rft.date=2016-01-12&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=28&rft.issue=1&rft.spage=162&rft.epage=171&rft_id=info:doi/10.1021%2Facs.chemmater.5b03500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_chemmater_5b03500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon