In Situ X‑ray Diffraction Study of Layered Li–Ni–Mn–Co Oxides: Effect of Particle Size and Structural Stability of Core–Shell Materials
Lithium-rich Li[Li x M1–x ]O2 (M = Ni, Mn, Co) materials have been claimed to be two phase by some researchers and to be one phase by others when all the available lithium is extracted electrochemically. To clear up this confusion, the Li-rich samples [Li[Li0.12(Ni0.5Mn0.5)0.88]O2 and Li[Li0.23...
Saved in:
Published in | Chemistry of materials Vol. 28; no. 1; pp. 162 - 171 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
12.01.2016
|
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium-rich Li[Li x M1–x ]O2 (M = Ni, Mn, Co) materials have been claimed to be two phase by some researchers and to be one phase by others when all the available lithium is extracted electrochemically. To clear up this confusion, the Li-rich samples [Li[Li0.12(Ni0.5Mn0.5)0.88]O2 and Li[Li0.23(Ni0.2Mn0.8)0.77]O2 with different particle sizes were synthesized for in situ X-ray diffraction experiments. In situ X-ray diffraction measurements revealed two-phase behavior of 10 μm particles and one-phase behavior for samples with submicrometer particles. The phase separation in samples with large particles agrees with literature proposals of oxygen release from a surface layer and the observation of distinct surface and bulk phases. The small particle samples are so small that they are entirely composed of the surface phase found in the large particle samples. These results strongly suggest that the size of particles can significantly affect the structural evolution testing and electrochemical performance of the Li- and Mn-rich materials. It is proposed that the surface phase continuously grows during charge–discharge cycling, which leads to voltage fade in large particle samples. Meanwhile, in situ X-ray diffraction measurements were also performed for the layered Li–Ni–Mn–Co oxides with varying nickel contents, including NMC811 (LiNi0.8Mn0.1Co0.1O2), NMC442 (LiNi0.42Mn0.42Co0.16O2), [Li[Li0.12(Ni0.5Mn0.5)0.88]O2, and Li[Li0.23(Ni0.2Mn0.8)0.77]O2. Samples with higher nickel content showed much faster contraction of unit cell volume as a function of cell voltage, which suggests that the core–shell structures with a nickel-rich core (e.g., NMC811) and a Mn-rich shell (e.g., Li1.23Ni0.154Mn0.616O2) should not crack during charge–discharge cycling. |
---|---|
AbstractList | Lithium-rich Li[Li x M1–x ]O2 (M = Ni, Mn, Co) materials have been claimed to be two phase by some researchers and to be one phase by others when all the available lithium is extracted electrochemically. To clear up this confusion, the Li-rich samples [Li[Li0.12(Ni0.5Mn0.5)0.88]O2 and Li[Li0.23(Ni0.2Mn0.8)0.77]O2 with different particle sizes were synthesized for in situ X-ray diffraction experiments. In situ X-ray diffraction measurements revealed two-phase behavior of 10 μm particles and one-phase behavior for samples with submicrometer particles. The phase separation in samples with large particles agrees with literature proposals of oxygen release from a surface layer and the observation of distinct surface and bulk phases. The small particle samples are so small that they are entirely composed of the surface phase found in the large particle samples. These results strongly suggest that the size of particles can significantly affect the structural evolution testing and electrochemical performance of the Li- and Mn-rich materials. It is proposed that the surface phase continuously grows during charge–discharge cycling, which leads to voltage fade in large particle samples. Meanwhile, in situ X-ray diffraction measurements were also performed for the layered Li–Ni–Mn–Co oxides with varying nickel contents, including NMC811 (LiNi0.8Mn0.1Co0.1O2), NMC442 (LiNi0.42Mn0.42Co0.16O2), [Li[Li0.12(Ni0.5Mn0.5)0.88]O2, and Li[Li0.23(Ni0.2Mn0.8)0.77]O2. Samples with higher nickel content showed much faster contraction of unit cell volume as a function of cell voltage, which suggests that the core–shell structures with a nickel-rich core (e.g., NMC811) and a Mn-rich shell (e.g., Li1.23Ni0.154Mn0.616O2) should not crack during charge–discharge cycling. |
Author | Li, Jing Shunmugasundaram, Ramesh Doig, Renny Dahn, J. R |
AuthorAffiliation | Department of Chemistry Dalhousie University Department of Process Engineering and Applied Science Department of Physics and Atmosphere Science |
AuthorAffiliation_xml | – name: – name: Department of Chemistry – name: Department of Process Engineering and Applied Science – name: Dalhousie University – name: Department of Physics and Atmosphere Science |
Author_xml | – sequence: 1 givenname: Jing surname: Li fullname: Li, Jing – sequence: 2 givenname: Ramesh surname: Shunmugasundaram fullname: Shunmugasundaram, Ramesh – sequence: 3 givenname: Renny surname: Doig fullname: Doig, Renny – sequence: 4 givenname: J. R surname: Dahn fullname: Dahn, J. R email: jeff.dahn@dal.ca |
BookMark | eNqFkN9KwzAUxoNMcJs-gpAX6Ezapn-8kzp10DlhCt6VkzRhGV0raQrOq73C8A33JKZueOvN-Q7nnO_H4RuhQd3UEqFrSiaU-PQGRDsRK7nZgJVmwjgJGCFnaEiZTzzX-gM0JEkae2HMogs0ats1IdRZkyHaz2q81LbD74fd3sAW32ulDAirG7ewXbnFjcI5bKWRJc71Yff93Jd57UrW4MWnLmV7i6dKSWH72xcwVotKOuyXxFCXDmM6YTsDlWuB60rbX2rWGOkoy5WsKjzvn9dQtZfoXDmRVycdo7eH6Wv25OWLx1l2l3sQRNR64FMVqYRzgMQNRMlKJeO0jLhIA0F4HJI0jKIEgBORqpBImoYiShijISeqDMaIHbnCNG1rpCo-jN6A2RaUFH2uhcu1-Mu1OOXqfPTo69frpjO1-_Ifzw8QOoj9 |
CitedBy_id | crossref_primary_10_1007_s41918_019_00032_8 crossref_primary_10_1038_s41598_020_66411_0 crossref_primary_10_1021_acsaem_8b01524 crossref_primary_10_1149_1945_7111_ac2f78 crossref_primary_10_1016_j_heliyon_2023_e21881 crossref_primary_10_1016_j_jechem_2022_08_025 crossref_primary_10_1149_2_0991713jes crossref_primary_10_1149_2_0031803jes crossref_primary_10_1016_j_electacta_2020_137471 crossref_primary_10_1149_1945_7111_abd571 crossref_primary_10_1016_j_electacta_2021_139419 crossref_primary_10_1016_j_ensm_2024_103606 crossref_primary_10_1016_j_nanoen_2020_105562 crossref_primary_10_1021_jacs_2c09725 crossref_primary_10_1002_adfm_202110502 crossref_primary_10_1039_D3TA03057A crossref_primary_10_1039_C6CP03683J crossref_primary_10_1134_S0020168521050058 crossref_primary_10_1039_D1QM00052G crossref_primary_10_1016_j_xcrp_2021_100647 crossref_primary_10_4028_www_scientific_net_MSF_1044_59 crossref_primary_10_1038_s41578_022_00416_1 crossref_primary_10_1039_D0EE02290J crossref_primary_10_1016_j_ensm_2022_06_048 crossref_primary_10_1134_S0020168522100119 crossref_primary_10_1149_1945_7111_ac3157 crossref_primary_10_1016_j_jpowsour_2022_231775 crossref_primary_10_1021_acsmaterialslett_9b00476 crossref_primary_10_1109_TIM_2024_3390696 crossref_primary_10_1002_aenm_202301471 crossref_primary_10_1016_j_jallcom_2021_159761 crossref_primary_10_1039_C7CC08505B crossref_primary_10_1149_2_1381709jes crossref_primary_10_1021_acs_chemmater_1c04150 crossref_primary_10_1002_aenm_201600597 crossref_primary_10_1016_j_nanoen_2021_106194 crossref_primary_10_1021_acsaem_0c00803 crossref_primary_10_1021_acsomega_3c08702 crossref_primary_10_1149_1945_7111_ac285d crossref_primary_10_1007_s42864_022_00187_w crossref_primary_10_14233_ajchem_2020_22543 crossref_primary_10_1002_slct_201904290 crossref_primary_10_1021_acsomega_8b01090 crossref_primary_10_1002_aenm_202100126 crossref_primary_10_1007_s10800_021_01530_8 crossref_primary_10_1021_acsaem_9b02483 crossref_primary_10_1021_jacs_8b13798 crossref_primary_10_1134_S0020168519020080 crossref_primary_10_1016_j_gee_2017_05_005 crossref_primary_10_1002_sstr_202300001 crossref_primary_10_1002_aenm_201901795 crossref_primary_10_1039_C8EE00907D crossref_primary_10_1149_2_1231613jes crossref_primary_10_1016_j_nanoen_2021_106081 crossref_primary_10_1016_j_cej_2020_125821 crossref_primary_10_1002_cssc_202201169 crossref_primary_10_1021_acs_jpcc_7b06598 crossref_primary_10_1016_j_joule_2020_10_010 crossref_primary_10_1021_acs_jpcc_7b06122 crossref_primary_10_1016_j_jpowsour_2024_234626 crossref_primary_10_1039_C6NH00016A crossref_primary_10_1016_j_est_2023_108187 crossref_primary_10_20964_2022_12_78 crossref_primary_10_1002_admi_201700483 crossref_primary_10_1149_2_0051903jes crossref_primary_10_3390_inorganics5020032 crossref_primary_10_1016_j_ceramint_2018_09_022 crossref_primary_10_1016_j_xcrp_2023_101480 crossref_primary_10_1016_j_susmat_2021_e00305 crossref_primary_10_1016_j_jpowsour_2020_228592 crossref_primary_10_1021_acsenergylett_0c02121 crossref_primary_10_1021_acsami_9b21288 crossref_primary_10_1149_2_1381707jes crossref_primary_10_1039_D0TA07965K crossref_primary_10_1038_s41467_017_02041_x crossref_primary_10_1016_j_ensm_2022_11_038 crossref_primary_10_1002_batt_202400107 crossref_primary_10_3390_en11102712 crossref_primary_10_1149_2_1091702jes crossref_primary_10_1149_1945_7111_abb350 crossref_primary_10_1007_s41918_019_00053_3 crossref_primary_10_1149_2_0351701jes crossref_primary_10_1016_j_nanoen_2020_105365 crossref_primary_10_1149_1945_7111_acc6f5 crossref_primary_10_1149_2_0861707jes crossref_primary_10_1007_s10008_023_05706_4 crossref_primary_10_1016_j_electacta_2018_05_175 crossref_primary_10_1016_j_jhazmat_2021_127757 crossref_primary_10_1021_jacs_6b05111 crossref_primary_10_1002_aenm_202003885 crossref_primary_10_1016_j_pmatsci_2020_100655 crossref_primary_10_1002_aenm_201900161 crossref_primary_10_1021_acssuschemeng_0c06804 crossref_primary_10_1016_j_electacta_2017_01_014 crossref_primary_10_1002_celc_201900733 crossref_primary_10_1039_D3QM00226H crossref_primary_10_1063_5_0088838 crossref_primary_10_1016_j_jpowsour_2022_231181 crossref_primary_10_1039_D0EE01694B crossref_primary_10_1002_er_7143 crossref_primary_10_1016_j_joule_2022_04_001 crossref_primary_10_1002_celc_201901338 crossref_primary_10_1039_C8RA10116G crossref_primary_10_1039_D2MH01254E crossref_primary_10_1016_j_chempr_2022_03_007 crossref_primary_10_1016_j_electacta_2016_07_040 crossref_primary_10_1039_D0CP01851A crossref_primary_10_1016_j_matpr_2020_08_752 crossref_primary_10_2139_ssrn_3983713 crossref_primary_10_1016_j_ensm_2017_05_008 crossref_primary_10_1016_j_nanoen_2018_11_046 crossref_primary_10_1038_s41560_021_00832_7 crossref_primary_10_1021_acsenergylett_8b02302 crossref_primary_10_1016_j_ceramint_2022_10_227 crossref_primary_10_1021_acsami_0c18758 crossref_primary_10_1002_elsa_202100135 crossref_primary_10_1002_jccs_201900448 crossref_primary_10_1002_aenm_201702028 crossref_primary_10_1149_2_0461701jes crossref_primary_10_1021_acsami_2c07560 crossref_primary_10_1021_acsami_6b11111 crossref_primary_10_1039_C9TA06977A crossref_primary_10_1002_er_5630 crossref_primary_10_1016_j_cej_2020_128189 crossref_primary_10_1021_acs_chemmater_8b01077 crossref_primary_10_1016_j_jpowsour_2017_08_006 crossref_primary_10_1016_j_electacta_2020_137413 crossref_primary_10_1002_smll_202203412 crossref_primary_10_3390_en11112963 crossref_primary_10_1007_s40242_020_0198_8 crossref_primary_10_1016_j_jpowsour_2024_234551 crossref_primary_10_1039_C9TA06474E crossref_primary_10_1021_acs_chemmater_8b03827 crossref_primary_10_1016_j_jallcom_2024_173931 crossref_primary_10_1149_2_1691712jes crossref_primary_10_1021_acsami_1c22147 crossref_primary_10_1039_C9QI00333A crossref_primary_10_1021_acsami_9b21061 crossref_primary_10_1002_pssb_202000420 |
Cites_doi | 10.1149/1.1519850 10.1021/jp4097887 10.1149/1.1471541 10.1016/j.jssc.2005.05.027 10.1021/acs.chemmater.5b00617 10.1103/PhysRevB.49.826 10.1149/1.1407994 10.1021/jp412197z 10.1016/j.jpowsour.2014.09.161 10.1021/jp0571473 10.1016/j.ssi.2011.11.018 10.1149/2.0081503jes 10.1149/2.040403jes 10.1021/cm400193m 10.1103/PhysRevB.51.734 10.1021/acsami.5b00788 10.1149/2.042406jes 10.1021/cm061746k 10.1021/cm304002b 10.1021/cm4001619 10.1149/2.083404jes 10.1038/nmat3435 10.1021/jp509388j 10.1021/nn305065u 10.1021/cr020731c 10.1016/j.electacta.2015.08.122 10.1103/PhysRevB.47.8486 10.1021/acscombsci.5b00048 10.1021/am403684z 10.1149/1.1505633 10.1149/2.038306jes 10.1103/PhysRevB.42.6424 10.1021/jp301879x 10.1149/2.049403jes 10.1021/cm503505b 10.1021/cm502774u 10.1016/S0167-2738(96)00370-0 10.1149/2.1011507jes 10.1039/C4CP01799D 10.1016/0167-2738(93)90317-V 10.1016/j.jpowsour.2013.01.063 10.1021/nl4019275 10.1021/cm4000119 10.1016/j.ssi.2013.09.051 10.1038/ncomms9711 10.1149/1.1480014 10.1016/j.jpowsour.2012.11.144 10.1021/jp506731v 10.1016/j.jpowsour.2013.02.075 10.1002/aenm.201400478 |
ContentType | Journal Article |
Copyright | Copyright © 2015 American Chemical Society |
Copyright_xml | – notice: Copyright © 2015 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.chemmater.5b03500 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5002 |
EndPage | 171 |
ExternalDocumentID | 10_1021_acs_chemmater_5b03500 c409941872 |
GroupedDBID | 29B 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P ROL TN5 TWZ UI2 UPT VF5 VG9 W1F X YZZ -~X .K2 4.4 5VS AAHBH AAYXX ABJNI ABQRX ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a361t-a21f6f8bbaa8361cd5dfe79d6bc93c0b74094668aab0c9f40e194c685514b0fd3 |
IEDL.DBID | ACS |
ISSN | 0897-4756 |
IngestDate | Fri Aug 23 03:34:26 EDT 2024 Thu Aug 27 13:41:57 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a361t-a21f6f8bbaa8361cd5dfe79d6bc93c0b74094668aab0c9f40e194c685514b0fd3 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1021_acs_chemmater_5b03500 acs_journals_10_1021_acs_chemmater_5b03500 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2016-01-12 |
PublicationDateYYYYMMDD | 2016-01-12 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-12 day: 12 |
PublicationDecade | 2010 |
PublicationTitle | Chemistry of materials |
PublicationTitleAlternate | Chem. Mater |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 Sun Y. (ref29/cit29) 2006; 110 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref46/cit46 doi: 10.1149/1.1519850 – ident: ref25/cit25 doi: 10.1021/jp4097887 – ident: ref9/cit9 doi: 10.1149/1.1471541 – ident: ref33/cit33 doi: 10.1016/j.jssc.2005.05.027 – ident: ref23/cit23 doi: 10.1021/acs.chemmater.5b00617 – ident: ref5/cit5 doi: 10.1103/PhysRevB.49.826 – ident: ref8/cit8 doi: 10.1149/1.1407994 – ident: ref43/cit43 doi: 10.1021/jp412197z – ident: ref24/cit24 doi: 10.1016/j.jpowsour.2014.09.161 – volume: 110 start-page: 6810 issue: 13 year: 2006 ident: ref29/cit29 publication-title: J. Phys. Chem.B doi: 10.1021/jp0571473 contributor: fullname: Sun Y. – ident: ref40/cit40 doi: 10.1016/j.ssi.2011.11.018 – ident: ref22/cit22 doi: 10.1149/2.0081503jes – ident: ref50/cit50 doi: 10.1149/2.040403jes – ident: ref44/cit44 doi: 10.1021/cm400193m – ident: ref48/cit48 doi: 10.1103/PhysRevB.51.734 – ident: ref16/cit16 doi: 10.1021/acsami.5b00788 – ident: ref18/cit18 doi: 10.1149/2.042406jes – ident: ref28/cit28 doi: 10.1021/cm061746k – ident: ref10/cit10 doi: 10.1021/cm304002b – ident: ref11/cit11 doi: 10.1021/cm4001619 – ident: ref14/cit14 doi: 10.1149/2.083404jes – ident: ref27/cit27 doi: 10.1038/nmat3435 – ident: ref32/cit32 doi: 10.1021/jp509388j – ident: ref49/cit49 doi: 10.1021/nn305065u – ident: ref1/cit1 doi: 10.1021/cr020731c – ident: ref45/cit45 doi: 10.1016/j.electacta.2015.08.122 – ident: ref6/cit6 doi: 10.1103/PhysRevB.47.8486 – ident: ref13/cit13 doi: 10.1021/acscombsci.5b00048 – ident: ref20/cit20 doi: 10.1021/am403684z – ident: ref2/cit2 doi: 10.1149/1.1505633 – ident: ref35/cit35 doi: 10.1149/2.038306jes – ident: ref47/cit47 doi: 10.1103/PhysRevB.42.6424 – ident: ref36/cit36 doi: 10.1021/jp301879x – ident: ref31/cit31 doi: 10.1149/2.049403jes – ident: ref7/cit7 doi: 10.1021/cm503505b – ident: ref26/cit26 doi: 10.1021/cm502774u – ident: ref4/cit4 doi: 10.1016/S0167-2738(96)00370-0 – ident: ref21/cit21 doi: 10.1149/2.1011507jes – ident: ref38/cit38 doi: 10.1039/C4CP01799D – ident: ref19/cit19 doi: 10.1016/0167-2738(93)90317-V – ident: ref17/cit17 doi: 10.1016/j.jpowsour.2013.01.063 – ident: ref34/cit34 doi: 10.1021/nl4019275 – ident: ref37/cit37 doi: 10.1021/cm4000119 – ident: ref12/cit12 doi: 10.1016/j.ssi.2013.09.051 – ident: ref30/cit30 doi: 10.1038/ncomms9711 – ident: ref39/cit39 doi: 10.1149/1.1480014 – ident: ref42/cit42 doi: 10.1016/j.jpowsour.2012.11.144 – ident: ref15/cit15 doi: 10.1021/jp506731v – ident: ref41/cit41 doi: 10.1016/j.jpowsour.2013.02.075 – ident: ref3/cit3 doi: 10.1002/aenm.201400478 |
SSID | ssj0011028 |
Score | 2.5856464 |
Snippet | Lithium-rich Li[Li x M1–x ]O2 (M = Ni, Mn, Co) materials have been claimed to be two phase by some researchers and to be one phase by others when all the... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 162 |
Title | In Situ X‑ray Diffraction Study of Layered Li–Ni–Mn–Co Oxides: Effect of Particle Size and Structural Stability of Core–Shell Materials |
URI | http://dx.doi.org/10.1021/acs.chemmater.5b03500 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KHtSDb7G-2IMnIW2ySTZZbxIVlbYWaqG3sLvZxSCm0gfYnvoXxH_oL3E2SaUgil6WsCRDMplhvtmZ_RahU1c60tWebwUhhQTFJb4lmMlSNARnJqRiebd7s0Vvut5dz-9VUP2HCj5x6lyC8h_VMwA4Naj5wpTCIEdfJgE4iMFCUeerbGCiZQ4bWWB5gU_nW3Z-EmNCkhwuhKSF2HK9gdrzHTpFS8lTbTwSNTn9Ttj419feROslzsQXhWFsoYrKttFKND_ebRutLTAR7qC32wx30tEY9z5mbwM-wZep1oNi0wM2vYYT3Ne4wSfmaE_cSD9m7y0zNDMYoj6-f00TNTzHBRmyubdd2iSInSrMswR3cqpaQ_MBlwU9eC416g8USOmYllTcNB9ifGIXda-vHqIbqzytweIudUYWJ46mOhSC8xAmZOInWgUsoUIyV9oiMJkkpSHnwpZMe7ZymCdpaCCbsHXi7qGlrJ-pfYQFZFUu0Vza3POEYEzbkPgQxQJFuK1ZFZ2BeuPS24ZxXkgnTmwmv3Qelzqvotr878YvBYPH7w8c_Ef6IVoFCJUvyjjkCC2BJtUxwJSROMlN8xPRruob |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57070,57120 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fT9swED8h9sD2MBjbBIMxP-xpUrr8deK9oQxUtrabVND6FtmOLVWIdGqKtPLEV0B8Qz4Jd05aKiQm8WJFVnKyL2fd73znnwE-RzrQkY0TL804BihRmHhKUJRi0TkLpY1w1e79Ae-exT9GyWgN-OIsDA6iRkm1S-I_sAsEX6kPp3GBOM5MO4mijBiG6i-SFI2WIFE-XGYPyGk69ChSL04Tvji585QY8ky6XvFMKy7meBP-LAfnKkvOO5cz1dFXj3gbnz_6LXjdok522JjJG1gz1TZs5IvL3rbh1Qov4Vu4OanYcDy7ZKO765upnLPvY2unzREIRpWHczaxrCfndNEn643vrm8H1PQrbPIJ-_VvXJr6G2uokend362Fotgrw2RVsqEjriXSD3xsyMKd1HwyNShlSAWqrE8ToRXyDs6Oj07zrtfe3eDJiAczT4aB5TZTSsoMO3SZlNakouRKi0j7KqW4kvNMSuVrYWPfBCLWPCMAp3xbRu9hvZpUZgeYwhgrCq3UvoxjpYSwPoZBoRGpCaVvxS58QfUW7dqrC5dWD4OCOpc6L1qd70Jn8ZOLvw2fx_8_-PAc6Z9go3va7xW9k8HPPXiJ4Mpt1wThPqyjVs1HBDAzdeCs9R7hCPJ7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA6i4OPg-sTHrubgSeixn-mON2l30HVmFEZhYA9Nkk5gEHtkegTHk39B_If-kq1K9wyDsAvrJTShu0iqq6iqVOUrQo4C5anAhJETJwwClMCPHMkxSjFgnLlUmttq93aHXdyFv3pRr66qxLswsIgSKJU2iY9a_ZibGmHAO8F52MoD-HJ62IgkZsUgXF-IYs_Htg1naXeaQUDDaT1IHjthHLHJ7Z2_kUHrpMoZ6zRjZprfyO_pAm11yX3jaSQb6uUTduPXdrBGVmvvk55V4rJO5nSxQZbSSdO3DbIyg0-4Sd4uC9rtj55o7-P1bSjG9LxvzLC6CkGxAnFMB4a2xBgbftJW_-P1vYNDu4AhHdDr536uy1NaQSTjuze1pALZF01FkdOuBbBF8A94rEDDLdV0MNRApYuFqrSNG0FN2SJ3zZ-36YVT93BwRMC8kSN8zzCTSClEAhMqj3KjY54zqXigXBljfMlYIoR0FTehqz0eKpagIyddkwfbZL4YFHqHUAmxVuAboVwRhlJyblwIh3zNY-0L1_BdcgzszWodLDObXve9DCenPM9qnu-SxuRHZ48Vrse_P9j7H-qHZPHmvJm1LjtX-2QZfCx7auP538k8MFX_AD9mJA-swP4BbJP09Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+X-ray+Diffraction+Study+of+Layered+Li%E2%80%93Ni%E2%80%93Mn%E2%80%93Co+Oxides%3A+Effect+of+Particle+Size+and+Structural+Stability+of+Core%E2%80%93Shell+Materials&rft.jtitle=Chemistry+of+materials&rft.au=Li%2C+Jing&rft.au=Shunmugasundaram%2C+Ramesh&rft.au=Doig%2C+Renny&rft.au=Dahn%2C+J.+R.&rft.date=2016-01-12&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=28&rft.issue=1&rft.spage=162&rft.epage=171&rft_id=info:doi/10.1021%2Facs.chemmater.5b03500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_chemmater_5b03500 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon |