Wavelength-Dependent Damage to Adenoviral Proteins Across the Germicidal UV Spectrum

Adenovirus, a waterborne pathogen responsible for causing bronchitis, pneumonia, and gastrointestinal infections, is highly resistant to UV disinfection and therefore drives the virus disinfection regulations set by the U.S. Environmental Protection Agency. Polychromatic UV irradiation has been show...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 52; no. 1; pp. 223 - 229
Main Authors Beck, Sara E, Hull, Natalie M, Poepping, Christopher, Linden, Karl G
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adenovirus, a waterborne pathogen responsible for causing bronchitis, pneumonia, and gastrointestinal infections, is highly resistant to UV disinfection and therefore drives the virus disinfection regulations set by the U.S. Environmental Protection Agency. Polychromatic UV irradiation has been shown to be more effective at inactivating adenovirus and other viruses than traditional monochromatic irradiation emitted at 254 nm; the enhanced efficacy has been attributed to UV-induced damage to viral proteins. This research shows UV-induced damage to adenoviral proteins across the germicidal UV spectrum at wavelength intervals between 200 and 300 nm. A deuterium lamp with bandpass filters and UV light-emitting diodes (UV LEDs) isolated wavelengths in approximate 10 nm intervals. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and image densitometry were used to detect signatures for the hexon, penton, fiber, minor capsid, and core proteins. The greatest loss of protein signature, indicating damage to viral proteins, occurred below 240 nm. Hexon and penton proteins exposed to a dose of 28 mJ/cm2 emitted at 214 nm were approximately 4 times as sensitive and fiber proteins approximately 3 times as sensitive as those exposed to a dose of 50 mJ/cm2 emitted at 254 nm. At 220 nm, a dose of 38 mJ/cm2 reduced the hexon and penton protein quantities to approximately 33% and 31% of the original amounts, respectively. In contrast, a much higher dose of 400 mJ/cm2 emitted at 261 and 278 nm reduced the original protein quantity to between 66–89% and 80–93%, respectively. No significant damage was seen with a dose of 400 mJ/cm2 at 254 nm. This research directly correlates enhanced inactivation at low wavelengths with adenoviral protein damage at those wavelengths, adding fundamental insight into the mechanisms of inactivation of polychromatic germicidal UV irradiation for improving UV water disinfection.
AbstractList Adenovirus, a waterborne pathogen responsible for causing bronchitis, pneumonia, and gastrointestinal infections, is highly resistant to UV disinfection and therefore drives the virus disinfection regulations set by the U.S. Environmental Protection Agency. Polychromatic UV irradiation has been shown to be more effective at inactivating adenovirus and other viruses than traditional monochromatic irradiation emitted at 254 nm; the enhanced efficacy has been attributed to UV-induced damage to viral proteins. This research shows UV-induced damage to adenoviral proteins across the germicidal UV spectrum at wavelength intervals between 200 and 300 nm. A deuterium lamp with bandpass filters and UV light-emitting diodes (UV LEDs) isolated wavelengths in approximate 10 nm intervals. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and image densitometry were used to detect signatures for the hexon, penton, fiber, minor capsid, and core proteins. The greatest loss of protein signature, indicating damage to viral proteins, occurred below 240 nm. Hexon and penton proteins exposed to a dose of 28 mJ/cm2 emitted at 214 nm were approximately 4 times as sensitive and fiber proteins approximately 3 times as sensitive as those exposed to a dose of 50 mJ/cm2 emitted at 254 nm. At 220 nm, a dose of 38 mJ/cm2 reduced the hexon and penton protein quantities to approximately 33% and 31% of the original amounts, respectively. In contrast, a much higher dose of 400 mJ/cm2 emitted at 261 and 278 nm reduced the original protein quantity to between 66-89% and 80-93%, respectively. No significant damage was seen with a dose of 400 mJ/cm2 at 254 nm. This research directly correlates enhanced inactivation at low wavelengths with adenoviral protein damage at those wavelengths, adding fundamental insight into the mechanisms of inactivation of polychromatic germicidal UV irradiation for improving UV water disinfection.
Adenovirus, a waterborne pathogen responsible for causing bronchitis, pneumonia, and gastrointestinal infections, is highly resistant to UV disinfection and therefore drives the virus disinfection regulations set by the U.S. Environmental Protection Agency. Polychromatic UV irradiation has been shown to be more effective at inactivating adenovirus and other viruses than traditional monochromatic irradiation emitted at 254 nm; the enhanced efficacy has been attributed to UV-induced damage to viral proteins. This research shows UV-induced damage to adenoviral proteins across the germicidal UV spectrum at wavelength intervals between 200 and 300 nm. A deuterium lamp with bandpass filters and UV light-emitting diodes (UV LEDs) isolated wavelengths in approximate 10 nm intervals. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and image densitometry were used to detect signatures for the hexon, penton, fiber, minor capsid, and core proteins. The greatest loss of protein signature, indicating damage to viral proteins, occurred below 240 nm. Hexon and penton proteins exposed to a dose of 28 mJ/cm emitted at 214 nm were approximately 4 times as sensitive and fiber proteins approximately 3 times as sensitive as those exposed to a dose of 50 mJ/cm emitted at 254 nm. At 220 nm, a dose of 38 mJ/cm reduced the hexon and penton protein quantities to approximately 33% and 31% of the original amounts, respectively. In contrast, a much higher dose of 400 mJ/cm emitted at 261 and 278 nm reduced the original protein quantity to between 66-89% and 80-93%, respectively. No significant damage was seen with a dose of 400 mJ/cm at 254 nm. This research directly correlates enhanced inactivation at low wavelengths with adenoviral protein damage at those wavelengths, adding fundamental insight into the mechanisms of inactivation of polychromatic germicidal UV irradiation for improving UV water disinfection.
Author Beck, Sara E
Linden, Karl G
Hull, Natalie M
Poepping, Christopher
AuthorAffiliation University of Colorado Boulder
Department of Civil, Environmental, and Architectural Engineering
AuthorAffiliation_xml – name: University of Colorado Boulder
– name: Department of Civil, Environmental, and Architectural Engineering
Author_xml – sequence: 1
  givenname: Sara E
  surname: Beck
  fullname: Beck, Sara E
– sequence: 2
  givenname: Natalie M
  orcidid: 0000-0003-2876-6721
  surname: Hull
  fullname: Hull, Natalie M
– sequence: 3
  givenname: Christopher
  surname: Poepping
  fullname: Poepping, Christopher
– sequence: 4
  givenname: Karl G
  orcidid: 0000-0003-4301-7227
  surname: Linden
  fullname: Linden, Karl G
  email: karl.linden@colorado.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29261289$$D View this record in MEDLINE/PubMed
BookMark eNp1kF1LwzAUhoMo7kOvvZOCN4J0O0nWtL0cm05hoOCm3pW0Pdk6-mXSDvz3Zm4qCF6FcJ73zcnTI8dlVSIhFxQGFBgdysQM0DQDP4aRAHZEutRj4HqBR49JF4ByN-TirUN6xmwAgHEITkmHhUxQFoRdsniVW8yxXDVrd4o1limWjTOVhVyh01TO2N6rbaZl7jzpqsGsNM440ZUxTrNGZ4a6yJIstePli_NcY9LotjgjJ0rmBs8PZ58s724Xk3t3_jh7mIznruSCNm6QMvRjyVRoF01G4ImUK-H7aaJUHCQolBSAqaVAecADPmJ2wFiQxqDCWPE-ud731rp6b62HqMhMgnkuS6xaE9HQDz2g1PctevUH3VStLu12lgqBC8-nnqWGe-rrhxpVVOuskPojohDthEdWeLRLH4TbxOWht40LTH_4b8MWuNkDu-Tvm__UfQIi642U
CitedBy_id crossref_primary_10_1016_j_watres_2024_121533
crossref_primary_10_1109_JSEN_2021_3091876
crossref_primary_10_1371_journal_pone_0243554
crossref_primary_10_3390_app132312886
crossref_primary_10_3390_w11091894
crossref_primary_10_3390_s19092153
crossref_primary_10_1016_j_watres_2023_120169
crossref_primary_10_1016_j_watres_2020_116386
crossref_primary_10_1016_j_watres_2022_119094
crossref_primary_10_1016_j_jphotobiol_2022_112503
crossref_primary_10_1021_acs_est_3c00703
crossref_primary_10_1021_acs_est_3c00824
crossref_primary_10_1038_s41598_022_22969_5
crossref_primary_10_1016_j_jviromet_2022_114610
crossref_primary_10_1063_5_0124017
crossref_primary_10_1021_acs_est_7b06082
crossref_primary_10_2166_ws_2019_022
crossref_primary_10_1021_acs_estlett_0c00416
crossref_primary_10_1016_j_scitotenv_2023_167781
crossref_primary_10_1038_s41598_021_93231_7
crossref_primary_10_3390_w11061196
crossref_primary_10_1016_j_scitotenv_2022_154258
crossref_primary_10_1016_j_jhazmat_2022_129876
crossref_primary_10_1016_j_jphotobiol_2022_112410
crossref_primary_10_1128_AEM_03039_19
crossref_primary_10_3390_applmicrobiol1030035
crossref_primary_10_1021_acs_est_3c03026
crossref_primary_10_35848_1347_4065_ac2b4f
crossref_primary_10_1089_ast_2021_0009
crossref_primary_10_1021_acs_est_3c00518
crossref_primary_10_1016_j_cej_2022_136043
crossref_primary_10_1016_j_heliyon_2024_e30738
crossref_primary_10_1021_acsphotonics_3c00828
crossref_primary_10_1016_j_watres_2019_05_084
crossref_primary_10_1128_AEM_02436_19
crossref_primary_10_1016_j_coche_2021_100709
crossref_primary_10_1038_s41598_022_18385_4
crossref_primary_10_1038_s44221_023_00111_7
crossref_primary_10_1371_journal_pntd_0009572
crossref_primary_10_5956_jriet_48_327
crossref_primary_10_35848_1882_0786_ab65fb
crossref_primary_10_1021_acs_estlett_3c00313
crossref_primary_10_1016_j_ijfoodmicro_2022_109824
crossref_primary_10_1038_s41598_018_21058_w
crossref_primary_10_3390_aerospace11070538
crossref_primary_10_1016_j_scitotenv_2023_163007
crossref_primary_10_1111_php_13724
crossref_primary_10_1364_OE_474513
crossref_primary_10_1007_s12393_020_09221_4
crossref_primary_10_1016_j_scitotenv_2022_160256
crossref_primary_10_1007_s12016_020_08811_8
crossref_primary_10_1111_php_13364
crossref_primary_10_3390_foods10123141
crossref_primary_10_1111_php_13961
crossref_primary_10_1016_j_chemosphere_2021_131682
crossref_primary_10_1038_s41598_022_09930_2
crossref_primary_10_3390_w11061131
crossref_primary_10_1016_j_watres_2022_118496
crossref_primary_10_1080_10643389_2022_2084315
crossref_primary_10_1016_j_watres_2024_121189
crossref_primary_10_1021_acsestwater_3c00779
crossref_primary_10_1016_j_eti_2022_102837
crossref_primary_10_1016_j_watres_2022_118379
crossref_primary_10_1016_j_wroa_2020_100080
crossref_primary_10_1039_D3EW00277B
crossref_primary_10_1016_j_watres_2021_117265
crossref_primary_10_1021_acsbiomaterials_0c00317
crossref_primary_10_1364_JOSAB_506363
crossref_primary_10_1016_j_chemosphere_2021_131828
crossref_primary_10_1021_acs_estlett_1c00178
crossref_primary_10_1016_j_chemosphere_2018_09_065
crossref_primary_10_3788_CJL221541
crossref_primary_10_1016_j_jclepro_2023_135974
crossref_primary_10_1128_AEM_01532_21
Cites_doi 10.1002/j.1551-8833.2009.tb09876.x
10.1016/S0273-1223(97)00225-4
10.2175/106143003X140944
10.1128/AEM.02199-08
10.1128/AEM.03457-12
10.1139/s04-036
10.1099/vir.0.003087-0
10.1016/j.scitotenv.2016.02.039
10.3390/v4050847
10.1061/(ASCE)EE.1943-7870.0001061
10.1128/AEM.01587-07
10.1016/j.watres.2016.03.003
10.1021/es100435a
10.1007/s12560-014-9162-4
10.1099/vir.0.80877-0
10.1128/JVI.02538-10
10.3109/00365549709011840
10.1128/AEM.68.10.5167-5169.2002
10.1128/AEM.02270-12
10.1016/j.jviromet.2011.11.017
10.1128/JVI.77.24.13448-13454.2003
10.1007/BF01318063
10.1111/jam.12169
10.1016/j.jviromet.2016.09.002
10.1016/S0043-1354(01)00199-3
10.2166/wst.2009.414
10.1061/(ASCE)0733-9372(1997)123:11(1142)
10.1016/0092-8674(93)90231-E
10.1128/jvi.56.2.439-448.1985
10.1128/AEM.00185-10
10.1016/j.vaccine.2005.12.062
10.1016/0042-6822(68)90121-9
10.1128/AEM.00403-10
10.1016/j.watres.2016.11.024
10.1021/es403850b
10.1061/(ASCE)0733-9372(2003)129:3(209)
10.1016/S0273-1223(98)00816-6
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright American Chemical Society Jan 2, 2018
Copyright_xml – notice: Copyright © 2017 American Chemical Society
– notice: Copyright American Chemical Society Jan 2, 2018
DBID NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
DOI 10.1021/acs.est.7b04602
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 229
ExternalDocumentID 10_1021_acs_est_7b04602
29261289
a744983879
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
ABJNI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CUPRZ
GGK
MS~
MW2
NPM
XSW
ZCA
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
ID FETCH-LOGICAL-a361t-8d2e7ba2f9001c4056d3f677dcffb8ce6fa60edd2e0f5038342ffb228db0f9bf3
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Fri Aug 16 01:25:00 EDT 2024
Thu Oct 10 19:30:32 EDT 2024
Fri Aug 23 00:38:03 EDT 2024
Sat Sep 28 08:38:29 EDT 2024
Thu Aug 27 13:42:51 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a361t-8d2e7ba2f9001c4056d3f677dcffb8ce6fa60edd2e0f5038342ffb228db0f9bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4301-7227
0000-0003-2876-6721
PMID 29261289
PQID 1990365715
PQPubID 45412
PageCount 7
ParticipantIDs proquest_miscellaneous_1979501177
proquest_journals_1990365715
crossref_primary_10_1021_acs_est_7b04602
pubmed_primary_29261289
acs_journals_10_1021_acs_est_7b04602
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20180102
2018-01-02
PublicationDateYYYYMMDD 2018-01-02
PublicationDate_xml – month: 01
  year: 2018
  text: 20180102
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
(ref9/cit9) 2003
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
Schmid F. X. (ref44/cit44) 2001
ref37/cit37
ref28/cit28
Linden K. G. (ref8/cit8) 2009; 101
ref40/cit40
ref20/cit20
ref17/cit17
Wang S. S.-S. (ref42/cit42) 2010; 16
ref26/cit26
Rux J. R. (ref36/cit36) 1999
ref19/cit19
ref21/cit21
ref12/cit12
Aitken A. (ref45/cit45) 2001
ref15/cit15
ref46/cit46
(ref10/cit10) 2006
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
van Oostrom J. (ref35/cit35) 1985; 56
References_xml – volume: 101
  start-page: 90
  issue: 4
  year: 2009
  ident: ref8/cit8
  publication-title: J. Am. Water Works Assoc.
  doi: 10.1002/j.1551-8833.2009.tb09876.x
  contributor:
    fullname: Linden K. G.
– ident: ref4/cit4
  doi: 10.1016/S0273-1223(97)00225-4
– start-page: 3
  volume-title: The Protein Protocols Handbook
  year: 2001
  ident: ref45/cit45
  contributor:
    fullname: Aitken A.
– ident: ref6/cit6
  doi: 10.2175/106143003X140944
– ident: ref31/cit31
– ident: ref15/cit15
  doi: 10.1128/AEM.02199-08
– start-page: 5
  volume-title: Adenoviruses: Basic Biology to Gene Therapy
  year: 1999
  ident: ref36/cit36
  contributor:
    fullname: Rux J. R.
– ident: ref47/cit47
  doi: 10.1128/AEM.03457-12
– ident: ref7/cit7
  doi: 10.1139/s04-036
– ident: ref18/cit18
  doi: 10.1099/vir.0.003087-0
– ident: ref23/cit23
  doi: 10.1016/j.scitotenv.2016.02.039
– ident: ref32/cit32
– ident: ref21/cit21
  doi: 10.3390/v4050847
– ident: ref24/cit24
  doi: 10.1061/(ASCE)EE.1943-7870.0001061
– ident: ref11/cit11
  doi: 10.1128/AEM.01587-07
– ident: ref25/cit25
  doi: 10.1016/j.watres.2016.03.003
– ident: ref46/cit46
  doi: 10.1021/es100435a
– ident: ref43/cit43
  doi: 10.1007/s12560-014-9162-4
– ident: ref37/cit37
  doi: 10.1099/vir.0.80877-0
– ident: ref22/cit22
– ident: ref41/cit41
  doi: 10.1128/JVI.02538-10
– ident: ref2/cit2
  doi: 10.3109/00365549709011840
– ident: ref5/cit5
  doi: 10.1128/AEM.68.10.5167-5169.2002
– ident: ref28/cit28
  doi: 10.1128/AEM.02270-12
– ident: ref27/cit27
  doi: 10.1016/j.jviromet.2011.11.017
– ident: ref20/cit20
  doi: 10.1128/JVI.77.24.13448-13454.2003
– ident: ref40/cit40
  doi: 10.1007/BF01318063
– ident: ref14/cit14
  doi: 10.1111/jam.12169
– volume-title: UV Disinfection Guidance Manual
  year: 2003
  ident: ref9/cit9
– ident: ref29/cit29
  doi: 10.1016/j.jviromet.2016.09.002
– ident: ref3/cit3
  doi: 10.1016/S0043-1354(01)00199-3
– ident: ref39/cit39
– ident: ref12/cit12
  doi: 10.2166/wst.2009.414
– ident: ref34/cit34
  doi: 10.1061/(ASCE)0733-9372(1997)123:11(1142)
– ident: ref19/cit19
  doi: 10.1016/0092-8674(93)90231-E
– volume: 56
  start-page: 439
  issue: 2
  year: 1985
  ident: ref35/cit35
  publication-title: J. Virol.
  doi: 10.1128/jvi.56.2.439-448.1985
  contributor:
    fullname: van Oostrom J.
– volume: 16
  start-page: 2777
  year: 2010
  ident: ref42/cit42
  publication-title: Mol. Vis.
  contributor:
    fullname: Wang S. S.-S.
– ident: ref13/cit13
  doi: 10.1128/AEM.00185-10
– ident: ref1/cit1
  doi: 10.1016/j.vaccine.2005.12.062
– volume-title: Ultraviolet Disinfection Guidance Manual for the Final Long Term 2 Enhanced Surface Water Treatment Rule
  year: 2006
  ident: ref10/cit10
– ident: ref38/cit38
  doi: 10.1016/0042-6822(68)90121-9
– ident: ref17/cit17
  doi: 10.1128/AEM.00403-10
– ident: ref26/cit26
  doi: 10.1016/j.watres.2016.11.024
– volume-title: Encyclopedia of Life Sciences
  year: 2001
  ident: ref44/cit44
  contributor:
    fullname: Schmid F. X.
– ident: ref16/cit16
  doi: 10.1021/es403850b
– ident: ref30/cit30
  doi: 10.1061/(ASCE)0733-9372(2003)129:3(209)
– ident: ref33/cit33
  doi: 10.1016/S0273-1223(98)00816-6
SSID ssj0002308
Score 2.5581906
Snippet Adenovirus, a waterborne pathogen responsible for causing bronchitis, pneumonia, and gastrointestinal infections, is highly resistant to UV disinfection and...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 223
SubjectTerms Adenoviruses
Bandpass filters
Bronchitis
Core loss
Deactivation
Densitometers
Densitometry
Deuterium
Disinfection
Dosage
Electromagnetic wave filters
Environmental protection
Environmental regulations
Gel electrophoresis
Image detection
Inactivation
Intervals
Irradiation
Light emitting diodes
Organic light emitting diodes
Penton protein
Proteins
Sodium
Sodium dodecyl sulfate
Sodium lauryl sulfate
Ultraviolet radiation
Viruses
Water treatment
Wavelength
Wavelengths
Title Wavelength-Dependent Damage to Adenoviral Proteins Across the Germicidal UV Spectrum
URI http://dx.doi.org/10.1021/acs.est.7b04602
https://www.ncbi.nlm.nih.gov/pubmed/29261289
https://www.proquest.com/docview/1990365715
https://search.proquest.com/docview/1979501177
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QXODAY7wGAwWJA5eONu3S5DiNl5BASGywW5WkCSCgQ7S78Ouxu24M0ATHNlaa2okftfuZkEMRW6F5hLEJt14kUuMpC8GKjEKbKuOcLLuWXF3zi1502W_1v8Cif2bwWXCsTN4EBdmMNebwQNsuMLCKGGe1O7cTpQuetBg3K5Ah709QfH5NgGbI5N_N0AzfsrQxZyuj6qy8hCbE0pLn5rDQTfPxG7jx7-WvkuXK06Tt0dZYI3M2q5GlKfzBGtk8_frNDUirc56vk-69woYU2UPx6J1UbXILeqJeQfvQYkDbcD3A8uAXeoNAD09ZTtvlm1JwKOk5VtiYpxSGe3cUW9wX78PXDdI7O-12Lryq_4KnQh4UnkiZjbViTgJbDXh2PA0dj-MURKiFsdwp7tsUqHyHqDJhxGCAMZFq30ntwk0ynw0yu02oH2irpA-idzLSECVxhIiQjnOjTShFnRwCo5Lq_ORJmRpnQYI3gXtJxb06ORpLLXkboXHMJm2MpTo1LdjekLfioFUnB5NhOFCYJVGZHQyRJpYtRMqL62RrtBsmz2ISEdeE3PnfcnfJIvhXovxiwxpkHnht98CHKfR-uXs_AZ5s7G0
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hOLQ9AKWlLNDWlTj0km2efhxXPLptAbXqbru3yHbsgoAsItkLv56ZbDbQVkjtMfbIscfjmc-x8w3AnhROGp7S3oS7IJWFDbTDzYpKE1do671qspacnPLhOP08ySZLEC7-hcFOVNhS1Rzi37MLRB-oDP1kXxg6ykOnu5IJjHUEhva_d74XAbVc5CxQCZ90ZD5_NUDRyFa_R6NHIGYTao7W4FvXyeaGyUV_Vpu-vf2Dv_F_RrEOqy3uZIO5oTyHJVduwLMHbIQbsHl4_9MbirarvnoBo5-a0lOUv-qz4KBNmluzA32FvojVUzbA5yldFr5kX4n24bys2KAZMEN4yT7SfRt7XmD1-AejhPf1zezqJYyPDkf7w6DNxhDohEd1IIvYCaNjr1C7FnEeLxLPhShwQo20jnvNQ1egVOiJYyZJY6yIY1mY0Cvjk01YLqel2wIWRsZpFaIheJUa3DNxIoxQnnNrbKJkD_ZQUXm7mqq8OSiPo5wKUXt5q70evF9MXn495-Z4XHR3MbkPmsVInPBMRFkP3nXVuLzozESXbjojGaEy4s0TPXg1N4ruXbEi_jWptv-tu2_hyXB0cpwffzr9sgNPEXnJ5ltOvAvLqHf3GtFNbd40Bn0HiFb02A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6hIiE4FAi0TSmwSDn04uBX1rvHqElaXlWkNpCbtU-o2jpV7Vz49cw4julDleBo72i9Ozuv9ex-A9ATmROap7Q34S5IhTWBcrhZkWnirDLey7pqybdjfjRLP88H8-ZSGN2FwUGU2FNZJ_FJq6-sbxAGoo_0Hm1lP9OUzkPD-3iQRSmp4_DgpLW_GFSLdd0CmfB5C-hzrwPySKa87ZEeCDNrdzN5DrN2oPUpk_P-stJ98_sOhuP_zuQFbDbxJxuuBOYlPHJFB57dQCXswNb47-U3JG20v3wFpz8Ulakofla_glFTPLdiI3WJNolVCzbE5wUdGr5gU4J_OCtKNqwnzTDMZId07sacWWyefWdU-L66Xl6-htlkfHpwFDRVGQKV8KgKhI1dplXsJXLYYLzHbeJ5lllcWC2M417x0FmkCj1hzSRpjA1xLKwOvdQ-2YKNYlG4HWBhpJ2SIQqEl6nGvRMn4AjpOTfaJFJ0oYeMyhutKvM6YR5HOb1E7uUN97qwv17A_GqF0fEw6d56gW90ix454ShKgy58aJtRzSh3ogq3WBJNJgeEn5d1YXslGO23Ykk4bELu_ttw38OT6WiSf_10_OUNPMUATNS_dOI92EC2u7cY5FT6XS3TfwBlo_dS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelength-Dependent+Damage+to+Adenoviral+Proteins+Across+the+Germicidal+UV+Spectrum&rft.jtitle=Environmental+science+%26+technology&rft.au=Beck%2C+Sara+E.&rft.au=Hull%2C+Natalie+M.&rft.au=Poepping%2C+Christopher&rft.au=Linden%2C+Karl+G.&rft.date=2018-01-02&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=52&rft.issue=1&rft.spage=223&rft.epage=229&rft_id=info:doi/10.1021%2Facs.est.7b04602&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_7b04602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon