Effect of Various Natural Dissolved Organic Carbon on Copper Lability and Toxicity to the Tropical Freshwater Microalga Chlorella sp

This study adds further critical information to the limited body of knowledge on the ameliorative ability of Australian dissolved organic carbon (DOC), reinforcing the importance of DOC source and concentration as significant factors controlling the risk copper poses to organisms in freshwater syste...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 53; no. 5; pp. 2768 - 2777
Main Authors Macoustra, Gabriella, Holland, Aleicia, Stauber, Jenny, Jolley, Dianne F
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study adds further critical information to the limited body of knowledge on the ameliorative ability of Australian dissolved organic carbon (DOC), reinforcing the importance of DOC source and concentration as significant factors controlling the risk copper poses to organisms in freshwater systems. The ameliorative ability of five unstudied DOCs on the chronic toxicity of copper to the tropical alga Chlorella sp. was compared. Sensitivity to copper varied dramatically; effect concentrations at the 50 percent effect level (EC50) increased by up to 22-fold in the high DOC treatment compared to controls and more than 2-fold between DOCs at the same concentration. The analytical techniques, diffusive gradients in thin films (DGT) and Chelex column, were used to understand whether differences in copper toxicity could be explained by copper lability. Labile copper mirrored the trends seen in the toxicity tests; lability decreased with increasing DOC concentration and varied between DOCs at the same concentration. The equilibrium model, WHAM VII, was also used to better understand the role of the free copper ion on the toxicity observed. Disagreement between EC50 values derived using the WHAM-predicted free Cu2+ concentrations and agreement between DGT-labile and the maximum dynamic concentration (c max dyn) suggest free copper is not the sole contributor to toxicity and that the source of the specific DOCs also plays a role.
AbstractList This study adds further critical information to the limited body of knowledge on the ameliorative ability of Australian dissolved organic carbon (DOC), reinforcing the importance of DOC source and concentration as significant factors controlling the risk copper poses to organisms in freshwater systems. The ameliorative ability of five unstudied DOCs on the chronic toxicity of copper to the tropical alga Chlorella sp. was compared. Sensitivity to copper varied dramatically; effect concentrations at the 50 percent effect level (EC ) increased by up to 22-fold in the high DOC treatment compared to controls and more than 2-fold between DOCs at the same concentration. The analytical techniques, diffusive gradients in thin films (DGT) and Chelex column, were used to understand whether differences in copper toxicity could be explained by copper lability. Labile copper mirrored the trends seen in the toxicity tests; lability decreased with increasing DOC concentration and varied between DOCs at the same concentration. The equilibrium model, WHAM VII, was also used to better understand the role of the free copper ion on the toxicity observed. Disagreement between EC values derived using the WHAM-predicted free Cu concentrations and agreement between DGT-labile and the maximum dynamic concentration ( c ) suggest free copper is not the sole contributor to toxicity and that the source of the specific DOCs also plays a role.
This study adds further critical information to the limited body of knowledge on the ameliorative ability of Australian dissolved organic carbon (DOC), reinforcing the importance of DOC source and concentration as significant factors controlling the risk copper poses to organisms in freshwater systems. The ameliorative ability of five unstudied DOCs on the chronic toxicity of copper to the tropical alga Chlorella sp. was compared. Sensitivity to copper varied dramatically; effect concentrations at the 50 percent effect level (EC50) increased by up to 22-fold in the high DOC treatment compared to controls and more than 2-fold between DOCs at the same concentration. The analytical techniques, diffusive gradients in thin films (DGT) and Chelex column, were used to understand whether differences in copper toxicity could be explained by copper lability. Labile copper mirrored the trends seen in the toxicity tests; lability decreased with increasing DOC concentration and varied between DOCs at the same concentration. The equilibrium model, WHAM VII, was also used to better understand the role of the free copper ion on the toxicity observed. Disagreement between EC50 values derived using the WHAM-predicted free Cu2+ concentrations and agreement between DGT-labile and the maximum dynamic concentration (cmaxdyn) suggest free copper is not the sole contributor to toxicity and that the source of the specific DOCs also plays a role.
This study adds further critical information to the limited body of knowledge on the ameliorative ability of Australian dissolved organic carbon (DOC), reinforcing the importance of DOC source and concentration as significant factors controlling the risk copper poses to organisms in freshwater systems. The ameliorative ability of five unstudied DOCs on the chronic toxicity of copper to the tropical alga Chlorella sp. was compared. Sensitivity to copper varied dramatically; effect concentrations at the 50 percent effect level (EC50) increased by up to 22-fold in the high DOC treatment compared to controls and more than 2-fold between DOCs at the same concentration. The analytical techniques, diffusive gradients in thin films (DGT) and Chelex column, were used to understand whether differences in copper toxicity could be explained by copper lability. Labile copper mirrored the trends seen in the toxicity tests; lability decreased with increasing DOC concentration and varied between DOCs at the same concentration. The equilibrium model, WHAM VII, was also used to better understand the role of the free copper ion on the toxicity observed. Disagreement between EC50 values derived using the WHAM-predicted free Cu2+ concentrations and agreement between DGT-labile and the maximum dynamic concentration (c max dyn) suggest free copper is not the sole contributor to toxicity and that the source of the specific DOCs also plays a role.
Author Jolley, Dianne F
Holland, Aleicia
Macoustra, Gabriella
Stauber, Jenny
AuthorAffiliation CSIRO Land and Water
School of Chemistry, Centre for Molecular and Medical Biosciences
School of Life Science, Department of Ecology, Environment and Evolution, Murray Darling Freshwater Research Centre
AuthorAffiliation_xml – name: CSIRO Land and Water
– name: School of Chemistry, Centre for Molecular and Medical Biosciences
– name: School of Life Science, Department of Ecology, Environment and Evolution, Murray Darling Freshwater Research Centre
Author_xml – sequence: 1
  givenname: Gabriella
  surname: Macoustra
  fullname: Macoustra, Gabriella
  organization: School of Chemistry, Centre for Molecular and Medical Biosciences
– sequence: 2
  givenname: Aleicia
  orcidid: 0000-0001-9418-2252
  surname: Holland
  fullname: Holland, Aleicia
  email: a.holland2@latrobe.edu.au
  organization: CSIRO Land and Water
– sequence: 3
  givenname: Jenny
  surname: Stauber
  fullname: Stauber, Jenny
  organization: CSIRO Land and Water
– sequence: 4
  givenname: Dianne F
  orcidid: 0000-0003-1028-1603
  surname: Jolley
  fullname: Jolley, Dianne F
  organization: School of Chemistry, Centre for Molecular and Medical Biosciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30695643$$D View this record in MEDLINE/PubMed
BookMark eNp1kL1v2zAQxYkiQWMnnbsVBDoWcvghktJYKB8N4CSLU3QTjhIZ01BElZTaes8fXhp2vAUkeCDw3ru73xyd9L43CH2mZEEJo5fQxIWJ46LQJFdcfUAzKhjJRCHoCZoRQnlWcvnrDM1j3BBCGCfFR3TGiSyFzPkMvV5ba5oRe4t_QnB-ivgBxilAh69cjL77Y1r8GJ6hdw2uIGjf43QrPwwm4CVo17lxi6Fv8cr_c83uM3o8rg1eBT-4JgXdBBPXf2FMhnvXBA_dM-Bq3flgug5wHC7QqYUumk-Heo6ebq5X1Y9s-Xh7V31fZsAlHTNpRVpGSMY0M9wqKIm0xJZaCdkyrUCrlua8BCgUYbkRTVFwMDq9Jk-Hn6Ov-9wh-N9T4lZv_BT61LJmjEqmBFVFUl3uVWnUGIOx9RDcC4RtTUm9o14n6vXOfaCeHF8OuZN-Me1R_4Y5Cb7tBTvnsed7cf8BYc-QSg
CitedBy_id crossref_primary_10_1016_j_chemosphere_2020_126465
crossref_primary_10_1016_j_scitotenv_2020_137827
crossref_primary_10_1016_j_envpol_2024_123680
crossref_primary_10_1016_j_biortech_2023_129352
crossref_primary_10_1002_etc_5038
crossref_primary_10_1016_j_watres_2022_119075
crossref_primary_10_1016_j_ecoenv_2020_111346
crossref_primary_10_1002_etc_5177
crossref_primary_10_1007_s11356_022_19699_6
crossref_primary_10_1016_j_envpol_2020_115141
crossref_primary_10_1016_j_aquatox_2024_106963
crossref_primary_10_1016_j_chemosphere_2021_130598
crossref_primary_10_3389_fenvs_2021_630668
crossref_primary_10_1007_s11783_024_1806_5
crossref_primary_10_1016_j_scitotenv_2019_136393
crossref_primary_10_1016_j_scitotenv_2021_151201
crossref_primary_10_3389_fchem_2021_624511
crossref_primary_10_1016_j_biortech_2022_128496
crossref_primary_10_1016_j_envpol_2021_117627
crossref_primary_10_1002_etc_5722
crossref_primary_10_1039_D2EM00063F
crossref_primary_10_1016_j_chemosphere_2020_128454
crossref_primary_10_1016_j_chemosphere_2023_140618
crossref_primary_10_1016_j_envpol_2022_120797
crossref_primary_10_1016_j_ecoenv_2022_113336
crossref_primary_10_1016_j_scitotenv_2023_161870
crossref_primary_10_1016_j_scitotenv_2021_151219
crossref_primary_10_1021_acs_est_1c05408
crossref_primary_10_1016_j_jallcom_2024_174642
crossref_primary_10_1016_j_jes_2022_06_002
crossref_primary_10_1071_EN22037
Cites_doi 10.1002/etc.5620201034
10.1016/0016-7037(88)90067-1
10.1021/es030566y
10.1002/etc.5620200118
10.1897/1551-5028(2001)020<1159:EONOMS>2.0.CO;2
10.1016/j.aquatox.2016.10.011
10.1016/j.scitotenv.2015.06.120
10.1002/etc.5620210409
10.1016/S1532-0456(02)00083-2
10.1016/S0048-9697(98)00232-0
10.1071/CH04095
10.1371/journal.pone.0146021
10.1139/f93-291
10.1021/ac00115a005
10.1016/j.watres.2018.02.043
10.1021/es051246c
10.1071/EN05048
10.1021/es0496524
10.1016/j.aquatox.2011.02.015
10.1007/978-94-009-5095-5
10.1017/CBO9780511535598
10.1897/02-476
10.1016/j.aquatox.2011.03.007
10.1016/j.cbpc.2013.08.004
10.1016/j.watres.2017.06.044
10.1016/j.aquatox.2010.01.003
10.1038/srep20377
10.1071/EN14105
10.1007/978-3-319-24277-4
10.1016/j.envpol.2017.07.013
10.1071/EN15123
10.1021/es103330w
10.1007/s10646-011-0813-z
10.1021/acs.est.6b05533
10.1021/acs.est.7b05302
10.1016/j.aca.2005.10.071
10.1071/EN11049
10.1071/EN11084
10.1897/03-561.1
10.1016/0098-3004(94)90038-8
10.1016/j.apgeochem.2008.06.031
ContentType Journal Article
Copyright Copyright American Chemical Society Mar 5, 2019
Copyright_xml – notice: Copyright American Chemical Society Mar 5, 2019
DBID NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
DOI 10.1021/acs.est.8b04737
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
DatabaseTitle PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList PubMed
Biotechnology Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 2777
ExternalDocumentID 10_1021_acs_est_8b04737
30695643
d246470179
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
ABJNI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CUPRZ
GGK
MS~
MW2
NPM
XSW
ZCA
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
ID FETCH-LOGICAL-a361t-6f59365622b2e3f7a906f0f9b756d2b7ab7d1439aa87024e5c883aeb883e4e4e3
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Thu Oct 10 16:30:00 EDT 2024
Fri Aug 23 00:38:11 EDT 2024
Wed Oct 16 00:52:04 EDT 2024
Thu Aug 27 13:43:29 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a361t-6f59365622b2e3f7a906f0f9b756d2b7ab7d1439aa87024e5c883aeb883e4e4e3
ORCID 0000-0001-9418-2252
0000-0003-1028-1603
PMID 30695643
PQID 2216275178
PQPubID 45412
PageCount 10
ParticipantIDs proquest_journals_2216275178
crossref_primary_10_1021_acs_est_8b04737
pubmed_primary_30695643
acs_journals_10_1021_acs_est_8b04737
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20190305
2019-03-05
PublicationDateYYYYMMDD 2019-03-05
PublicationDate_xml – month: 03
  year: 2019
  text: 20190305
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
Thompson A. S. (ref28/cit28) 1988
U.S. Environmental Protection (ref29/cit29) 2002
ref32/cit32
ref23/cit23
Wickham H. (ref36/cit36) 2016
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref40/cit40
Campbell P. G. C. (ref45/cit45) 1995
ref20/cit20
Litchfield J. T. (ref37/cit37) 1949; 96
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref30/cit30
ref47/cit47
ref24/cit24
ref38/cit38
Thurman E. M. (ref1/cit1) 1985
Tipping E. (ref4/cit4) 2002
ref44/cit44
ref7/cit7
References_xml – ident: ref25/cit25
  doi: 10.1002/etc.5620201034
– ident: ref5/cit5
  doi: 10.1016/0016-7037(88)90067-1
– ident: ref9/cit9
  doi: 10.1021/es030566y
– ident: ref31/cit31
  doi: 10.1002/etc.5620200118
– ident: ref41/cit41
  doi: 10.1897/1551-5028(2001)020<1159:EONOMS>2.0.CO;2
– ident: ref12/cit12
  doi: 10.1016/j.aquatox.2016.10.011
– ident: ref6/cit6
  doi: 10.1016/j.scitotenv.2015.06.120
– ident: ref30/cit30
  doi: 10.1002/etc.5620210409
– ident: ref33/cit33
  doi: 10.1016/S1532-0456(02)00083-2
– ident: ref40/cit40
  doi: 10.1016/S0048-9697(98)00232-0
– ident: ref17/cit17
  doi: 10.1071/CH04095
– ident: ref35/cit35
  doi: 10.1371/journal.pone.0146021
– ident: ref3/cit3
  doi: 10.1139/f93-291
– ident: ref32/cit32
  doi: 10.1021/ac00115a005
– ident: ref16/cit16
  doi: 10.1016/j.watres.2018.02.043
– ident: ref21/cit21
  doi: 10.1021/es051246c
– ident: ref20/cit20
  doi: 10.1071/EN05048
– volume-title: Agency Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms
  year: 2002
  ident: ref29/cit29
  contributor:
    fullname: U.S. Environmental Protection
– volume: 96
  start-page: 99
  issue: 2
  year: 1949
  ident: ref37/cit37
  publication-title: J. Pharmacol. Exp. Ther.
  contributor:
    fullname: Litchfield J. T.
– volume-title: Metal Speciation and bioavailability in aquatic systems
  year: 1995
  ident: ref45/cit45
  contributor:
    fullname: Campbell P. G. C.
– ident: ref24/cit24
  doi: 10.1021/es0496524
– ident: ref2/cit2
  doi: 10.1016/j.aquatox.2011.02.015
– volume-title: Organic Geochemistry of Natural Waters
  year: 1985
  ident: ref1/cit1
  doi: 10.1007/978-94-009-5095-5
  contributor:
    fullname: Thurman E. M.
– volume-title: Cation binding by humic substances
  year: 2002
  ident: ref4/cit4
  doi: 10.1017/CBO9780511535598
  contributor:
    fullname: Tipping E.
– ident: ref39/cit39
  doi: 10.1897/02-476
– ident: ref43/cit43
  doi: 10.1016/j.aquatox.2011.03.007
– ident: ref34/cit34
– volume-title: Culture Collection of Algae and Protozoa. Catalogue of Strains
  year: 1988
  ident: ref28/cit28
  contributor:
    fullname: Thompson A. S.
– ident: ref10/cit10
  doi: 10.1016/j.cbpc.2013.08.004
– ident: ref42/cit42
  doi: 10.1016/j.watres.2017.06.044
– ident: ref47/cit47
  doi: 10.1016/j.aquatox.2010.01.003
– ident: ref13/cit13
  doi: 10.1038/srep20377
– ident: ref18/cit18
  doi: 10.1071/EN14105
– volume-title: ggplot2: Elegant Graphics for Data Analysis
  year: 2016
  ident: ref36/cit36
  doi: 10.1007/978-3-319-24277-4
  contributor:
    fullname: Wickham H.
– ident: ref38/cit38
  doi: 10.1016/j.envpol.2017.07.013
– ident: ref14/cit14
  doi: 10.1071/EN15123
– ident: ref27/cit27
– ident: ref15/cit15
  doi: 10.1021/es103330w
– ident: ref11/cit11
  doi: 10.1007/s10646-011-0813-z
– ident: ref26/cit26
  doi: 10.1021/acs.est.6b05533
– ident: ref7/cit7
  doi: 10.1021/acs.est.7b05302
– ident: ref19/cit19
  doi: 10.1016/j.aca.2005.10.071
– ident: ref22/cit22
  doi: 10.1071/EN11049
– ident: ref44/cit44
  doi: 10.1071/EN11084
– ident: ref8/cit8
  doi: 10.1897/03-561.1
– ident: ref23/cit23
  doi: 10.1016/0098-3004(94)90038-8
– ident: ref46/cit46
  doi: 10.1016/j.apgeochem.2008.06.031
SSID ssj0002308
Score 2.4859848
Snippet This study adds further critical information to the limited body of knowledge on the ameliorative ability of Australian dissolved organic carbon (DOC),...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 2768
SubjectTerms Chlorella
Chronic toxicity
Concentration gradient
Copper
Dissolved organic carbon
Freshwater organisms
Lability
Risk factors
Risk management
Thin films
Toxicity
Toxicity testing
Title Effect of Various Natural Dissolved Organic Carbon on Copper Lability and Toxicity to the Tropical Freshwater Microalga Chlorella sp
URI http://dx.doi.org/10.1021/acs.est.8b04737
https://www.ncbi.nlm.nih.gov/pubmed/30695643
https://www.proquest.com/docview/2216275178
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgXOBAoVBYWpAPPXDJsraT2DlWoasKQS9s0d4i2xmrVVEcJVk-eu4PZ5xkd4GqAiWKlMgaWc545o0884aQIycgdVIlkcnARbFxuOfAskiVwJQxwMD22RZn6el5_GGZLLdk0X-f4HP2Ttt2igZyqswslkLeJw84esUQZx3nnzdGF5G0WjcryES63LD43BIQ3JBt_3RDd2DL3sfMd4fsrLanJgypJVfTVWem9vo2ceO_p_-EPB6RJj0eVOMpuQfVHnn0G__gHtk_2Za54dBxn7fPyM1Aaky9o18wmParlp7pnqGDvr8M6voNSjqUcVqa68b4iuKd-7qGhn4cuL9_Ul2VdOF_XNrw0nmKYJMuGl8HxaBzDPQvviPUbeinkBUYikpofvHVNyEhi7b1c3I-P1nkp9HYryHSImVdlLrQHhABFTcchJM6m6Vu5jIjk7TkRmojS4RnmdZoJHgMiVVKaDD4hBgvsU92Kl_BS0KVS4TVzEoFEGp9jQCHthWNCWegVDkhR7iwxbjf2qI_SuesCB9xtYtxtSfk7fovF_XA3nH30MO1FmzFcs4CizOTakJeDJqxkYOxFsaWsXj1f1M5IA8Ra2V9-lpySHa6ZgWvEc905k2vyb8AKF_xvA
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tywE48FhYKCzgwx64pNRxEjtHFLYq0K2E6KLeIjsZa1eLkihJeZ354YyTtOWhlUCJIsWyRo4znvlGnvkMcGwFRlaq0DMxWi8wltYcZtxTOXJlDHLMumyLRTQ7C96uwtUeTDa1MDSIhiQ13Sb-jl2Av3RtZCfHykwCKeQ1uB5K8nUODCUftraXALXanFkQi2i1JfP5S4DzRlnzuze6AmJ2rmZ6B95vB9llmFyO160ZZ9__4G_8n6-4C7cH3Mle9YpyD_awOIBbv7ARHsDhya7ojboOq765Dz96imNWWvaRQuty3bCF7vg62OsLp7yfMWd9UWfGEl2bsmB0J2VVYc3mPRP4N6aLnC3LrxeZe2lLRtCTLeuycmrCphT2n38h4FuzU5cj6EpMWHL-qaxdehZrqgdwNj1ZJjNvOL3B0yLirRdZd1ggwSvf-Cis1PEkshMbGxlGuW-kNjInsBZrTSbDDzDMlBIaDT0xoEscwn5RFvgImLKhyDTPpEJ0lb9GoCVLS6bF56hUPoJjmth0WH1N2m2s-zx1jTTb6TDbI3ix-dlp1XN5XN31aKMMO7G-zx2nM5dqBA97BdnKociLIs1APP63oTyHG7Pl6Tydv1m8ewI3CYXFXWJbeAT7bb3Gp4R0WvOsU-6fnjP6Jw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSAgOFAqFpQV86IFLlnWcxM6xSrsqUFZI7KK9RbYzVquiOEqyfJ354R0n2W0BVQIlihTLGjnOzPiNPPNMyIHlkFgh40CnYINIW7Q5MCyQBTCpNTAwXbbFLDlZRO-W8XIoCvO1MDiIBiU13Sa-t-qqsAPDAHvj29FXjqWeRIKL2-ROLFjkzfEw-7Txvwiq5frcgpQnyw2hz18C_Ipkmt9XpBtgZrfcTLfJYjPQLsvkYrxq9dj8_IPD8X-_5CF5MOBPetgrzCNyC8odcv8aK-EO2T2-Kn7DroP1N4_Jr57qmDpLP2OI7VYNnamOt4MenXsl_goF7Ys7Dc1UrV1J8c5cVUFNT3tG8B9UlQWdu-_nxr-0jiIEpfPaVV5d6BTD_7NvCIBr-sHnCvpSE5qdfXG1T9OiTfWELKbH8-wkGE5xCBRPWBsk1h8aiDAr1CFwK1Q6SezEplrESRFqobQoELSlSqHrCCOIjZRcgcYnRHjxXbJVuhKeESptzI1iRkgAXwGsOVj0uOhiQgZSFiNygBObD1bY5N0Ge8hy34iznQ-zPSKv1z88r3pOj5u77q8V4kpsGDLP7cyEHJGnvZJs5GAEhhFnxJ__21Bekbsfj6b56dvZ-z1yD8FY2uW3xftkq61X8AIBT6tfdvp9CZ43_KE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Various+Natural+Dissolved+Organic+Carbon+on+Copper+Lability+and+Toxicity+to+the+Tropical+Freshwater+Microalga+Chlorella+sp&rft.jtitle=Environmental+science+%26+technology&rft.au=Macoustra%2C+Gabriella&rft.au=Holland%2C+Aleicia&rft.au=Stauber%2C+Jenny&rft.au=Jolley%2C+Dianne+F.&rft.date=2019-03-05&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=53&rft.issue=5&rft.spage=2768&rft.epage=2777&rft_id=info:doi/10.1021%2Facs.est.8b04737&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_8b04737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon