Fast-Recoverable, Self-Healable, and Adhesive Nanocomposite Hydrogel Consisting of Hybrid Nanoparticles for Ultrasensitive Strain and Pressure Sensing

To meet various practical requirements and enhance human experience, hydrogels possessing multifunctionality are of great significance for flexible wearable sensors. Herein, a novel strategy has been developed to fabricate nanocomposite hydrogels with a combination of excellent stretchability, rapid...

Full description

Saved in:
Bibliographic Details
Published inChemistry of materials Vol. 33; no. 15; pp. 6146 - 6157
Main Authors Yu, Xiaohui, Zheng, Yong, Zhang, Haopeng, Wang, Yufei, Fan, Xiaoshan, Liu, Tianxi
Format Journal Article
LanguageEnglish
Published American Chemical Society 10.08.2021
Online AccessGet full text

Cover

Loading…
Abstract To meet various practical requirements and enhance human experience, hydrogels possessing multifunctionality are of great significance for flexible wearable sensors. Herein, a novel strategy has been developed to fabricate nanocomposite hydrogels with a combination of excellent stretchability, rapid recoverability, self-healing, and outstanding adhesiveness. The PAAc/SiO2-g-PAAm nanocomposite hydrogels were facilely prepared through the polymerization of acrylic acid (AAc) using SiO2-g-polyacrylamide core–shell hybrid nanoparticles (SiO2-g-PAAm) as the dynamic cross-linking center. The densely dynamic hydrogen bonds between PAAc matrices and grafted PAAm chains could reversibly be destructed and reconstructed to dissipate a large amount of energy. Due to this unique feature, the formulated hydrogels showed a wide spectrum of desirable properties, including skin-mimetic modulus, excellent stretchability (1600%), exceptional self-healing properties (96.5% at ambient temperature), and fast recoverability. The sensors fabricated with the prepared hydrogels exhibited a high detection sensitivity in the strain range from 50% to 500% with a gauge factor value of 5.86, rapid response time, and good antifatigue performance. Depending on the outstanding adhesiveness, this sensor could attach to different substrates to release the real-time motion monitoring. In the practical wearable sensing test, various human motions, including tiny-scaled swallowing, laughing, and speaking, as well as large-scaled wrist, elbow, and knee movements during basketball shooting, could be sensed. These demonstrations heralded the potential application of our sensor in accurate and long-term human motion monitoring.
AbstractList To meet various practical requirements and enhance human experience, hydrogels possessing multifunctionality are of great significance for flexible wearable sensors. Herein, a novel strategy has been developed to fabricate nanocomposite hydrogels with a combination of excellent stretchability, rapid recoverability, self-healing, and outstanding adhesiveness. The PAAc/SiO2-g-PAAm nanocomposite hydrogels were facilely prepared through the polymerization of acrylic acid (AAc) using SiO2-g-polyacrylamide core–shell hybrid nanoparticles (SiO2-g-PAAm) as the dynamic cross-linking center. The densely dynamic hydrogen bonds between PAAc matrices and grafted PAAm chains could reversibly be destructed and reconstructed to dissipate a large amount of energy. Due to this unique feature, the formulated hydrogels showed a wide spectrum of desirable properties, including skin-mimetic modulus, excellent stretchability (1600%), exceptional self-healing properties (96.5% at ambient temperature), and fast recoverability. The sensors fabricated with the prepared hydrogels exhibited a high detection sensitivity in the strain range from 50% to 500% with a gauge factor value of 5.86, rapid response time, and good antifatigue performance. Depending on the outstanding adhesiveness, this sensor could attach to different substrates to release the real-time motion monitoring. In the practical wearable sensing test, various human motions, including tiny-scaled swallowing, laughing, and speaking, as well as large-scaled wrist, elbow, and knee movements during basketball shooting, could be sensed. These demonstrations heralded the potential application of our sensor in accurate and long-term human motion monitoring.
Author Zhang, Haopeng
Wang, Yufei
Zheng, Yong
Yu, Xiaohui
Fan, Xiaoshan
Liu, Tianxi
AuthorAffiliation Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology
Jiangnan University
AuthorAffiliation_xml – name: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology
– name: Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering
– name: Jiangnan University
Author_xml – sequence: 1
  givenname: Xiaohui
  surname: Yu
  fullname: Yu, Xiaohui
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology
– sequence: 2
  givenname: Yong
  surname: Zheng
  fullname: Zheng, Yong
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology
– sequence: 3
  givenname: Haopeng
  surname: Zhang
  fullname: Zhang, Haopeng
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology
– sequence: 4
  givenname: Yufei
  surname: Wang
  fullname: Wang, Yufei
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology
– sequence: 5
  givenname: Xiaoshan
  orcidid: 0000-0002-0617-7400
  surname: Fan
  fullname: Fan, Xiaoshan
  email: xsfan@dhu.edu.cn
  organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology
– sequence: 6
  givenname: Tianxi
  orcidid: 0000-0002-5592-7386
  surname: Liu
  fullname: Liu, Tianxi
  email: txliu@fudan.edu.cn
  organization: Jiangnan University
BookMark eNqFkN9OwjAUxhuDiYA-gkkfwGG7rZRdEiJiQtSIXC9ddwolW0vaQsKL-Lx2QLz15pycP993Tn4D1DPWAEKPlIwoSemzkH4kt9C2IoAbUUkoK9gN6lOWkoQRkvZQn0wKnuScje_QwPsdITRKJ330Mxc-JF8g7RGcqBp4witoVLIA0VxKYWo8rbfg9RHwuzBW2nZvvQ6AF6fa2Q00eGaN1z5os8FWxXbldH3e3QsXtGzAY2UdXjfBCQ9xN3Rmq1hpcz7w6cD7g4u9bmo29-hWicbDwzUP0Xr-8j1bJMuP17fZdJmIbExDMp4QpRRjhOa8UikpaE5JXmQFRApVTbgCrgTleVZXvKCpBM7SGAuoU8oJy4aIXXyls947UOXe6Va4U0lJ2cEtI9zyD255hRt19KLrxjt7cCZ--Y_mFwO7hw0
CitedBy_id crossref_primary_10_1016_j_eurpolymj_2022_111099
crossref_primary_10_1016_j_cej_2023_145701
crossref_primary_10_1039_D3MH00192J
crossref_primary_10_1007_s11705_022_2232_5
crossref_primary_10_1002_pol_20210935
crossref_primary_10_1016_j_coco_2024_101970
crossref_primary_10_1039_D3NR05049A
crossref_primary_10_1021_acs_chemmater_2c00188
crossref_primary_10_3390_gels10060371
crossref_primary_10_1016_j_carbpol_2024_122048
crossref_primary_10_1016_j_mtcomm_2021_102757
crossref_primary_10_1021_acs_chemmater_3c02570
crossref_primary_10_1021_acsami_3c03234
crossref_primary_10_3390_bios12050301
crossref_primary_10_1002_pol_20220266
crossref_primary_10_1021_acs_macromol_3c02006
crossref_primary_10_1080_00914037_2024_2316191
crossref_primary_10_1016_j_carbpol_2023_121515
crossref_primary_10_1039_D3CS00387F
crossref_primary_10_1039_D3TB01413D
crossref_primary_10_1021_acsami_1c21325
crossref_primary_10_1080_25740881_2022_2126784
crossref_primary_10_1021_acsapm_3c00017
crossref_primary_10_1002_adfm_202214917
crossref_primary_10_1016_j_ijbiomac_2021_10_060
crossref_primary_10_1002_adhm_202101808
crossref_primary_10_1016_j_supmat_2023_100047
crossref_primary_10_1021_acsami_1c22099
crossref_primary_10_1002_elan_202200228
crossref_primary_10_2174_1573413719666230217141149
crossref_primary_10_1016_j_mtphys_2024_101448
crossref_primary_10_1002_advs_202301713
crossref_primary_10_1016_j_cherd_2023_07_026
crossref_primary_10_1021_acsami_2c00101
crossref_primary_10_1039_D2CE00925K
crossref_primary_10_1016_j_cej_2024_151231
crossref_primary_10_1021_acs_chemmater_2c00934
crossref_primary_10_1021_acs_chemmater_1c03547
crossref_primary_10_1016_j_giant_2023_100234
crossref_primary_10_3390_polym15010180
crossref_primary_10_3390_ma16124310
crossref_primary_10_1039_D2MA00527A
crossref_primary_10_1016_j_jphotochem_2023_115193
crossref_primary_10_1002_marc_202300737
crossref_primary_10_1016_j_supmat_2023_100032
crossref_primary_10_1016_j_cej_2021_134406
crossref_primary_10_1155_2022_4676968
crossref_primary_10_1016_j_jcis_2021_11_048
crossref_primary_10_1016_j_coco_2022_101116
crossref_primary_10_1016_j_colsurfa_2021_127793
crossref_primary_10_1021_acsami_3c04346
crossref_primary_10_1016_j_carbpol_2023_121092
crossref_primary_10_1016_j_carbpol_2023_121093
crossref_primary_10_1016_j_cej_2022_137021
crossref_primary_10_1021_acsmaterialslett_3c00320
crossref_primary_10_1021_acs_chemmater_3c02075
crossref_primary_10_1039_D1RA05896G
crossref_primary_10_1016_j_jmrt_2023_04_005
crossref_primary_10_1002_adfm_202204366
crossref_primary_10_1016_j_jcis_2022_11_086
crossref_primary_10_1016_j_sna_2023_114510
crossref_primary_10_1021_acs_chemmater_2c01001
crossref_primary_10_1016_j_ccr_2024_215790
crossref_primary_10_3390_polym14122365
crossref_primary_10_1021_acsami_3c04870
crossref_primary_10_1021_acsami_2c13223
crossref_primary_10_1021_acs_macromol_2c00563
crossref_primary_10_1021_acsami_2c11124
crossref_primary_10_1016_j_nanoen_2022_107359
crossref_primary_10_1016_j_indcrop_2024_118695
crossref_primary_10_1039_D2TA03399B
Cites_doi 10.1002/marc.202000602
10.1002/adma.201700321
10.1016/j.eml.2020.100891
10.1021/acs.chemmater.9b03919
10.1002/adma.201601422
10.1039/D0TA09735G
10.1016/j.progpolymsci.2020.101279
10.1002/marc.202000185
10.1021/acsami.1c01348
10.1021/acsami.0c18250
10.1002/adma.201905527
10.1016/j.nanoen.2020.105064
10.1126/science.abe7366
10.1021/acs.macromol.9b01044
10.1021/acsami.9b21659
10.1039/C9CS90019E
10.1002/aelm.201900285
10.1016/j.coco.2021.100733
10.1021/acsami.9b19721
10.1002/adma.201800671
10.1002/adma.201804435
10.1021/acs.macromol.7b02653
10.1021/acs.macromol.9b00053
10.1016/j.carbpol.2019.115022
10.1002/adfm.202004407
10.1002/adfm.202003430
10.1126/science.aaf3627
10.1021/jacs.7b00528
10.1021/ma1022555
10.1021/acsami.7b17118
10.1002/adfm.201909954
10.1016/j.mattod.2019.12.026
10.1021/acs.chemmater.8b05262
10.1021/acsnano.9b10230
10.1021/acs.macromol.6b00156
10.1002/adma.201601613
10.1002/adfm.202008355
10.1021/acs.accounts.8b00500
10.1021/acs.macromol.0c00238
10.1021/acs.biomac.7b01249
10.1002/smll.202004342
10.1021/acsnano.0c05932
10.1021/acs.macromol.9b01308
10.1039/C8MH01208C
10.1039/C8MH01188E
10.1021/acs.biomac.7b01693
10.1016/j.compscitech.2016.01.009
10.1016/j.coco.2021.100669
10.1021/acs.biomac.8b00144
10.1021/acs.chemmater.9b02039
10.1002/mame.202000475
10.1016/j.coco.2021.100677
10.1002/adfm.201504755
10.1002/adfm.201804416
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.chemmater.1c01595
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5002
EndPage 6157
ExternalDocumentID 10_1021_acs_chemmater_1c01595
d067206812
GroupedDBID .K2
29B
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GGK
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
TN5
TWZ
UI2
UPT
VF5
VG9
W1F
X
YZZ
-~X
AAHBH
AAYXX
ABJNI
ABQRX
ADHLV
AGXLV
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a361t-680fff550147bf20914104939e1c0bd07fe7fa1743db7912ce7522ce9ed217053
IEDL.DBID ACS
ISSN 0897-4756
IngestDate Fri Aug 23 02:07:42 EDT 2024
Thu Aug 12 03:15:17 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a361t-680fff550147bf20914104939e1c0bd07fe7fa1743db7912ce7522ce9ed217053
ORCID 0000-0002-0617-7400
0000-0002-5592-7386
PageCount 12
ParticipantIDs crossref_primary_10_1021_acs_chemmater_1c01595
acs_journals_10_1021_acs_chemmater_1c01595
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2021-08-10
PublicationDateYYYYMMDD 2021-08-10
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-10
  day: 10
PublicationDecade 2020
PublicationTitle Chemistry of materials
PublicationTitleAlternate Chem. Mater
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref53/cit53
  doi: 10.1002/marc.202000602
– ident: ref7/cit7
  doi: 10.1002/adma.201700321
– ident: ref26/cit26
  doi: 10.1016/j.eml.2020.100891
– ident: ref40/cit40
  doi: 10.1021/acs.chemmater.9b03919
– ident: ref5/cit5
  doi: 10.1002/adma.201601422
– ident: ref51/cit51
  doi: 10.1039/D0TA09735G
– ident: ref1/cit1
  doi: 10.1016/j.progpolymsci.2020.101279
– ident: ref54/cit54
  doi: 10.1002/marc.202000185
– ident: ref16/cit16
  doi: 10.1021/acsami.1c01348
– ident: ref25/cit25
  doi: 10.1021/acsami.0c18250
– ident: ref11/cit11
  doi: 10.1002/adma.201905527
– ident: ref10/cit10
  doi: 10.1016/j.nanoen.2020.105064
– ident: ref3/cit3
  doi: 10.1126/science.abe7366
– ident: ref35/cit35
  doi: 10.1021/acs.macromol.9b01044
– ident: ref46/cit46
  doi: 10.1021/acsami.9b21659
– ident: ref2/cit2
  doi: 10.1039/C9CS90019E
– ident: ref8/cit8
  doi: 10.1002/aelm.201900285
– ident: ref28/cit28
  doi: 10.1016/j.coco.2021.100733
– ident: ref45/cit45
  doi: 10.1021/acsami.9b19721
– ident: ref24/cit24
  doi: 10.1002/adma.201800671
– ident: ref30/cit30
  doi: 10.1002/adma.201804435
– ident: ref13/cit13
  doi: 10.1021/acs.macromol.7b02653
– ident: ref20/cit20
  doi: 10.1021/acs.macromol.9b00053
– ident: ref39/cit39
  doi: 10.1016/j.carbpol.2019.115022
– ident: ref23/cit23
  doi: 10.1002/adfm.202004407
– ident: ref49/cit49
  doi: 10.1002/adfm.202003430
– ident: ref14/cit14
  doi: 10.1126/science.aaf3627
– ident: ref38/cit38
  doi: 10.1021/jacs.7b00528
– ident: ref36/cit36
  doi: 10.1021/ma1022555
– ident: ref22/cit22
  doi: 10.1021/acsami.7b17118
– ident: ref27/cit27
  doi: 10.1002/adfm.201909954
– ident: ref17/cit17
  doi: 10.1016/j.mattod.2019.12.026
– ident: ref44/cit44
  doi: 10.1021/acs.chemmater.8b05262
– ident: ref6/cit6
  doi: 10.1021/acsnano.9b10230
– ident: ref19/cit19
  doi: 10.1021/acs.macromol.6b00156
– ident: ref18/cit18
  doi: 10.1002/adma.201601613
– ident: ref48/cit48
  doi: 10.1002/adfm.202008355
– ident: ref4/cit4
  doi: 10.1021/acs.accounts.8b00500
– ident: ref12/cit12
  doi: 10.1021/acs.macromol.0c00238
– ident: ref32/cit32
  doi: 10.1021/acs.biomac.7b01249
– ident: ref15/cit15
  doi: 10.1002/smll.202004342
– ident: ref47/cit47
  doi: 10.1021/acsnano.0c05932
– ident: ref34/cit34
  doi: 10.1021/acs.macromol.9b01308
– ident: ref37/cit37
  doi: 10.1039/C8MH01208C
– ident: ref43/cit43
  doi: 10.1039/C8MH01188E
– ident: ref41/cit41
  doi: 10.1021/acs.biomac.7b01693
– ident: ref42/cit42
  doi: 10.1016/j.compscitech.2016.01.009
– ident: ref29/cit29
  doi: 10.1016/j.coco.2021.100669
– ident: ref31/cit31
  doi: 10.1021/acs.biomac.8b00144
– ident: ref50/cit50
  doi: 10.1021/acs.chemmater.9b02039
– ident: ref52/cit52
  doi: 10.1002/mame.202000475
– ident: ref33/cit33
  doi: 10.1016/j.coco.2021.100677
– ident: ref9/cit9
  doi: 10.1002/adfm.201504755
– ident: ref21/cit21
  doi: 10.1002/adfm.201804416
SSID ssj0011028
Score 2.6315303
Snippet To meet various practical requirements and enhance human experience, hydrogels possessing multifunctionality are of great significance for flexible wearable...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 6146
Title Fast-Recoverable, Self-Healable, and Adhesive Nanocomposite Hydrogel Consisting of Hybrid Nanoparticles for Ultrasensitive Strain and Pressure Sensing
URI http://dx.doi.org/10.1021/acs.chemmater.1c01595
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qPagH3-KbPXgSE7tJk22OpViKoAi14C1ssrsK1rQk8aA_xN_rzCaRgih6zGbzYLKb-Yb5vhmAM20ClXKpHMF5SGlG5fRSn8TuWkgMN8JQUqB4cxuOJt3rh-ChBZc_ZPA9filTNP6TfkEAp3OXp-i_omAJlj2BG4Sw0GD8lTYgb2lhYyScrgjCRrLz023IJaXFgkta8C3DDbhrFDoVpeTZfS0TN33_XrDxr6-9Ces1zmT9amFsQUtn27AyaNq7bcPaQiXCHfgYyqJ0KBbFpU1qqgs21lPjkEqpOpSZYn31pInuzvCfPCMyOjG-NBu9qXz2qKfMdv8siEjNZgaHSQ1m584b_h1DjMwm0zJH55kVlrfExrZNhX1AJVbMcYzOZo-7MBle3Q9GTt2ywZF-yEsn7HWMMQElK0ViPAQjXYz3Ij_SaIFEdYTRwkiKglQiIu6lWiAATHWklUeFffw9aGezTO8DSyJhkshPZCdQXYnzQ4VYLPA7ikvP98UBnKON43rLFbHNpns8psEvw8e14Q_AbT5xPK_KePx-weF_7n4Eqx5RXWyl3GNol_mrPkGsUiandn1-AjG-6Lc
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYGHIADb8SbHDghOpZ2TehxmpjG8zImuFVpk4DE6FBbDvBD-L3Y2TomJJA41k3T1E3rz_JnG-DI2FCnXGlPci4ozKi9szSgZHcjFbobQihyFG9uRbffvHwIH2ogqlwYXESBMxUuiP9dXYCfkgwf4wVxnMnrPEUzFoUzMBdKNJoEidq9SfSAjKZDj5H0mjIUVebOb9OQZUqLKcs0ZWI6y3A_WZxjljzX38qknn78qNv4_9WvwNIYdbLWaJusQs1kazDfrpq9rcHiVF3CdfjsqKL0yDPFjU65VSesZwbWo5yl0aHKNGvpJ0Pkd4Z_6CFR04n_ZVj3XefDRzNgrhdoQbRqNrQoptwwN_a1YuMxRMysPyhzNKVZ4VhMrOeaVrgbjFIXc5TR2exxA_qd87t21xs3cPBUIHjpibOGtTak0KVMrI_QpIneXxREBjWQ6Ia0RlpFPpFOZMT91EiEg6mJjPapzE-wCbPZMDNbwJJI2iQKEtUIdVPheKERmYVBQ3PlB4HchmPUcTz-AIvYxdZ9HpNwovh4rPhtqFdvOn4dFfX4-4Kd_8x-CPPdu5vr-Pri9moXFnwiwbgaunswW-ZvZh9RTJkcuC37BWEB8Rw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4SDwOvBHjmQMnRMfSrg09osE0nkIak5A4VGmTgMToprY7wA_h92Jn3TQhgQTHummauEn9Wf7sABxq46uES-UIzgMKMyrnNPEo2V0Lie5GEEhyFG_vglanfvXoP5asSsqFwUHk2FNug_i0q_vKlBUG-AnJcSpviOV0VuUJmrLQn4ZZn15EsKjRHkcQyHBaBBkKpy78YJS981M3ZJ2SfMI6TZiZ5jI8jQdo2SWv1UERV5OPb7Ub_zeDFVgq0Sc7Gy6XVZjS6RrMN0aHvq3B4kR9wnX4bMq8cMhDxQVPOVbHrK27xqHcpeGlTBU7Uy-aSPAM_9Q9oqgTD0yz1rvKes-6y-yZoDnRq1nPoJhyxGzb_oiVxxA5s063yNCkprllM7G2PbzCvmCYwpihjO6mzxvQaV48NFpOeZCDI72AF05wWjPG-BTCFLFxEaLU0QsMvVCjBmJVE0YLI8k3UrEIuZtogbAw0aFWLpX78TZhJu2legtYHAoTh14sa76qS2wfKERovldTXLqeJypwhDqOyo2YRzbG7vKIhGPFR6XiK1Adfe2oPyzu8fsD23_p_QDm7s-b0c3l3fUOLLjEhbGldHdhpsgGeg_BTBHv21X7BQCW85Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast-Recoverable%2C+Self-Healable%2C+and+Adhesive+Nanocomposite+Hydrogel+Consisting+of+Hybrid+Nanoparticles+for+Ultrasensitive+Strain+and+Pressure+Sensing&rft.jtitle=Chemistry+of+materials&rft.au=Yu%2C+Xiaohui&rft.au=Zheng%2C+Yong&rft.au=Zhang%2C+Haopeng&rft.au=Wang%2C+Yufei&rft.date=2021-08-10&rft.pub=American+Chemical+Society&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=33&rft.issue=15&rft.spage=6146&rft.epage=6157&rft_id=info:doi/10.1021%2Facs.chemmater.1c01595&rft.externalDocID=d067206812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon