Fast-Recoverable, Self-Healable, and Adhesive Nanocomposite Hydrogel Consisting of Hybrid Nanoparticles for Ultrasensitive Strain and Pressure Sensing
To meet various practical requirements and enhance human experience, hydrogels possessing multifunctionality are of great significance for flexible wearable sensors. Herein, a novel strategy has been developed to fabricate nanocomposite hydrogels with a combination of excellent stretchability, rapid...
Saved in:
Published in | Chemistry of materials Vol. 33; no. 15; pp. 6146 - 6157 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
10.08.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | To meet various practical requirements and enhance human experience, hydrogels possessing multifunctionality are of great significance for flexible wearable sensors. Herein, a novel strategy has been developed to fabricate nanocomposite hydrogels with a combination of excellent stretchability, rapid recoverability, self-healing, and outstanding adhesiveness. The PAAc/SiO2-g-PAAm nanocomposite hydrogels were facilely prepared through the polymerization of acrylic acid (AAc) using SiO2-g-polyacrylamide core–shell hybrid nanoparticles (SiO2-g-PAAm) as the dynamic cross-linking center. The densely dynamic hydrogen bonds between PAAc matrices and grafted PAAm chains could reversibly be destructed and reconstructed to dissipate a large amount of energy. Due to this unique feature, the formulated hydrogels showed a wide spectrum of desirable properties, including skin-mimetic modulus, excellent stretchability (1600%), exceptional self-healing properties (96.5% at ambient temperature), and fast recoverability. The sensors fabricated with the prepared hydrogels exhibited a high detection sensitivity in the strain range from 50% to 500% with a gauge factor value of 5.86, rapid response time, and good antifatigue performance. Depending on the outstanding adhesiveness, this sensor could attach to different substrates to release the real-time motion monitoring. In the practical wearable sensing test, various human motions, including tiny-scaled swallowing, laughing, and speaking, as well as large-scaled wrist, elbow, and knee movements during basketball shooting, could be sensed. These demonstrations heralded the potential application of our sensor in accurate and long-term human motion monitoring. |
---|---|
AbstractList | To meet various practical requirements and enhance human experience, hydrogels possessing multifunctionality are of great significance for flexible wearable sensors. Herein, a novel strategy has been developed to fabricate nanocomposite hydrogels with a combination of excellent stretchability, rapid recoverability, self-healing, and outstanding adhesiveness. The PAAc/SiO2-g-PAAm nanocomposite hydrogels were facilely prepared through the polymerization of acrylic acid (AAc) using SiO2-g-polyacrylamide core–shell hybrid nanoparticles (SiO2-g-PAAm) as the dynamic cross-linking center. The densely dynamic hydrogen bonds between PAAc matrices and grafted PAAm chains could reversibly be destructed and reconstructed to dissipate a large amount of energy. Due to this unique feature, the formulated hydrogels showed a wide spectrum of desirable properties, including skin-mimetic modulus, excellent stretchability (1600%), exceptional self-healing properties (96.5% at ambient temperature), and fast recoverability. The sensors fabricated with the prepared hydrogels exhibited a high detection sensitivity in the strain range from 50% to 500% with a gauge factor value of 5.86, rapid response time, and good antifatigue performance. Depending on the outstanding adhesiveness, this sensor could attach to different substrates to release the real-time motion monitoring. In the practical wearable sensing test, various human motions, including tiny-scaled swallowing, laughing, and speaking, as well as large-scaled wrist, elbow, and knee movements during basketball shooting, could be sensed. These demonstrations heralded the potential application of our sensor in accurate and long-term human motion monitoring. |
Author | Zhang, Haopeng Wang, Yufei Zheng, Yong Yu, Xiaohui Fan, Xiaoshan Liu, Tianxi |
AuthorAffiliation | Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology Jiangnan University |
AuthorAffiliation_xml | – name: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology – name: Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering – name: Jiangnan University |
Author_xml | – sequence: 1 givenname: Xiaohui surname: Yu fullname: Yu, Xiaohui organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology – sequence: 2 givenname: Yong surname: Zheng fullname: Zheng, Yong organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology – sequence: 3 givenname: Haopeng surname: Zhang fullname: Zhang, Haopeng organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology – sequence: 4 givenname: Yufei surname: Wang fullname: Wang, Yufei organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology – sequence: 5 givenname: Xiaoshan orcidid: 0000-0002-0617-7400 surname: Fan fullname: Fan, Xiaoshan email: xsfan@dhu.edu.cn organization: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology – sequence: 6 givenname: Tianxi orcidid: 0000-0002-5592-7386 surname: Liu fullname: Liu, Tianxi email: txliu@fudan.edu.cn organization: Jiangnan University |
BookMark | eNqFkN9OwjAUxhuDiYA-gkkfwGG7rZRdEiJiQtSIXC9ddwolW0vaQsKL-Lx2QLz15pycP993Tn4D1DPWAEKPlIwoSemzkH4kt9C2IoAbUUkoK9gN6lOWkoQRkvZQn0wKnuScje_QwPsdITRKJ330Mxc-JF8g7RGcqBp4witoVLIA0VxKYWo8rbfg9RHwuzBW2nZvvQ6AF6fa2Q00eGaN1z5os8FWxXbldH3e3QsXtGzAY2UdXjfBCQ9xN3Rmq1hpcz7w6cD7g4u9bmo29-hWicbDwzUP0Xr-8j1bJMuP17fZdJmIbExDMp4QpRRjhOa8UikpaE5JXmQFRApVTbgCrgTleVZXvKCpBM7SGAuoU8oJy4aIXXyls947UOXe6Va4U0lJ2cEtI9zyD255hRt19KLrxjt7cCZ--Y_mFwO7hw0 |
CitedBy_id | crossref_primary_10_1016_j_eurpolymj_2022_111099 crossref_primary_10_1016_j_cej_2023_145701 crossref_primary_10_1039_D3MH00192J crossref_primary_10_1007_s11705_022_2232_5 crossref_primary_10_1002_pol_20210935 crossref_primary_10_1016_j_coco_2024_101970 crossref_primary_10_1039_D3NR05049A crossref_primary_10_1021_acs_chemmater_2c00188 crossref_primary_10_3390_gels10060371 crossref_primary_10_1016_j_carbpol_2024_122048 crossref_primary_10_1016_j_mtcomm_2021_102757 crossref_primary_10_1021_acs_chemmater_3c02570 crossref_primary_10_1021_acsami_3c03234 crossref_primary_10_3390_bios12050301 crossref_primary_10_1002_pol_20220266 crossref_primary_10_1021_acs_macromol_3c02006 crossref_primary_10_1080_00914037_2024_2316191 crossref_primary_10_1016_j_carbpol_2023_121515 crossref_primary_10_1039_D3CS00387F crossref_primary_10_1039_D3TB01413D crossref_primary_10_1021_acsami_1c21325 crossref_primary_10_1080_25740881_2022_2126784 crossref_primary_10_1021_acsapm_3c00017 crossref_primary_10_1002_adfm_202214917 crossref_primary_10_1016_j_ijbiomac_2021_10_060 crossref_primary_10_1002_adhm_202101808 crossref_primary_10_1016_j_supmat_2023_100047 crossref_primary_10_1021_acsami_1c22099 crossref_primary_10_1002_elan_202200228 crossref_primary_10_2174_1573413719666230217141149 crossref_primary_10_1016_j_mtphys_2024_101448 crossref_primary_10_1002_advs_202301713 crossref_primary_10_1016_j_cherd_2023_07_026 crossref_primary_10_1021_acsami_2c00101 crossref_primary_10_1039_D2CE00925K crossref_primary_10_1016_j_cej_2024_151231 crossref_primary_10_1021_acs_chemmater_2c00934 crossref_primary_10_1021_acs_chemmater_1c03547 crossref_primary_10_1016_j_giant_2023_100234 crossref_primary_10_3390_polym15010180 crossref_primary_10_3390_ma16124310 crossref_primary_10_1039_D2MA00527A crossref_primary_10_1016_j_jphotochem_2023_115193 crossref_primary_10_1002_marc_202300737 crossref_primary_10_1016_j_supmat_2023_100032 crossref_primary_10_1016_j_cej_2021_134406 crossref_primary_10_1155_2022_4676968 crossref_primary_10_1016_j_jcis_2021_11_048 crossref_primary_10_1016_j_coco_2022_101116 crossref_primary_10_1016_j_colsurfa_2021_127793 crossref_primary_10_1021_acsami_3c04346 crossref_primary_10_1016_j_carbpol_2023_121092 crossref_primary_10_1016_j_carbpol_2023_121093 crossref_primary_10_1016_j_cej_2022_137021 crossref_primary_10_1021_acsmaterialslett_3c00320 crossref_primary_10_1021_acs_chemmater_3c02075 crossref_primary_10_1039_D1RA05896G crossref_primary_10_1016_j_jmrt_2023_04_005 crossref_primary_10_1002_adfm_202204366 crossref_primary_10_1016_j_jcis_2022_11_086 crossref_primary_10_1016_j_sna_2023_114510 crossref_primary_10_1021_acs_chemmater_2c01001 crossref_primary_10_1016_j_ccr_2024_215790 crossref_primary_10_3390_polym14122365 crossref_primary_10_1021_acsami_3c04870 crossref_primary_10_1021_acsami_2c13223 crossref_primary_10_1021_acs_macromol_2c00563 crossref_primary_10_1021_acsami_2c11124 crossref_primary_10_1016_j_nanoen_2022_107359 crossref_primary_10_1016_j_indcrop_2024_118695 crossref_primary_10_1039_D2TA03399B |
Cites_doi | 10.1002/marc.202000602 10.1002/adma.201700321 10.1016/j.eml.2020.100891 10.1021/acs.chemmater.9b03919 10.1002/adma.201601422 10.1039/D0TA09735G 10.1016/j.progpolymsci.2020.101279 10.1002/marc.202000185 10.1021/acsami.1c01348 10.1021/acsami.0c18250 10.1002/adma.201905527 10.1016/j.nanoen.2020.105064 10.1126/science.abe7366 10.1021/acs.macromol.9b01044 10.1021/acsami.9b21659 10.1039/C9CS90019E 10.1002/aelm.201900285 10.1016/j.coco.2021.100733 10.1021/acsami.9b19721 10.1002/adma.201800671 10.1002/adma.201804435 10.1021/acs.macromol.7b02653 10.1021/acs.macromol.9b00053 10.1016/j.carbpol.2019.115022 10.1002/adfm.202004407 10.1002/adfm.202003430 10.1126/science.aaf3627 10.1021/jacs.7b00528 10.1021/ma1022555 10.1021/acsami.7b17118 10.1002/adfm.201909954 10.1016/j.mattod.2019.12.026 10.1021/acs.chemmater.8b05262 10.1021/acsnano.9b10230 10.1021/acs.macromol.6b00156 10.1002/adma.201601613 10.1002/adfm.202008355 10.1021/acs.accounts.8b00500 10.1021/acs.macromol.0c00238 10.1021/acs.biomac.7b01249 10.1002/smll.202004342 10.1021/acsnano.0c05932 10.1021/acs.macromol.9b01308 10.1039/C8MH01208C 10.1039/C8MH01188E 10.1021/acs.biomac.7b01693 10.1016/j.compscitech.2016.01.009 10.1016/j.coco.2021.100669 10.1021/acs.biomac.8b00144 10.1021/acs.chemmater.9b02039 10.1002/mame.202000475 10.1016/j.coco.2021.100677 10.1002/adfm.201504755 10.1002/adfm.201804416 |
ContentType | Journal Article |
Copyright | 2021 American Chemical
Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.chemmater.1c01595 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5002 |
EndPage | 6157 |
ExternalDocumentID | 10_1021_acs_chemmater_1c01595 d067206812 |
GroupedDBID | .K2 29B 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GGK GNL IH9 JG JG~ K2 LG6 P2P ROL TN5 TWZ UI2 UPT VF5 VG9 W1F X YZZ -~X AAHBH AAYXX ABJNI ABQRX ADHLV AGXLV BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a361t-680fff550147bf20914104939e1c0bd07fe7fa1743db7912ce7522ce9ed217053 |
IEDL.DBID | ACS |
ISSN | 0897-4756 |
IngestDate | Fri Aug 23 02:07:42 EDT 2024 Thu Aug 12 03:15:17 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a361t-680fff550147bf20914104939e1c0bd07fe7fa1743db7912ce7522ce9ed217053 |
ORCID | 0000-0002-0617-7400 0000-0002-5592-7386 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1021_acs_chemmater_1c01595 acs_journals_10_1021_acs_chemmater_1c01595 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-10 |
PublicationDateYYYYMMDD | 2021-08-10 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Chemistry of materials |
PublicationTitleAlternate | Chem. Mater |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref53/cit53 doi: 10.1002/marc.202000602 – ident: ref7/cit7 doi: 10.1002/adma.201700321 – ident: ref26/cit26 doi: 10.1016/j.eml.2020.100891 – ident: ref40/cit40 doi: 10.1021/acs.chemmater.9b03919 – ident: ref5/cit5 doi: 10.1002/adma.201601422 – ident: ref51/cit51 doi: 10.1039/D0TA09735G – ident: ref1/cit1 doi: 10.1016/j.progpolymsci.2020.101279 – ident: ref54/cit54 doi: 10.1002/marc.202000185 – ident: ref16/cit16 doi: 10.1021/acsami.1c01348 – ident: ref25/cit25 doi: 10.1021/acsami.0c18250 – ident: ref11/cit11 doi: 10.1002/adma.201905527 – ident: ref10/cit10 doi: 10.1016/j.nanoen.2020.105064 – ident: ref3/cit3 doi: 10.1126/science.abe7366 – ident: ref35/cit35 doi: 10.1021/acs.macromol.9b01044 – ident: ref46/cit46 doi: 10.1021/acsami.9b21659 – ident: ref2/cit2 doi: 10.1039/C9CS90019E – ident: ref8/cit8 doi: 10.1002/aelm.201900285 – ident: ref28/cit28 doi: 10.1016/j.coco.2021.100733 – ident: ref45/cit45 doi: 10.1021/acsami.9b19721 – ident: ref24/cit24 doi: 10.1002/adma.201800671 – ident: ref30/cit30 doi: 10.1002/adma.201804435 – ident: ref13/cit13 doi: 10.1021/acs.macromol.7b02653 – ident: ref20/cit20 doi: 10.1021/acs.macromol.9b00053 – ident: ref39/cit39 doi: 10.1016/j.carbpol.2019.115022 – ident: ref23/cit23 doi: 10.1002/adfm.202004407 – ident: ref49/cit49 doi: 10.1002/adfm.202003430 – ident: ref14/cit14 doi: 10.1126/science.aaf3627 – ident: ref38/cit38 doi: 10.1021/jacs.7b00528 – ident: ref36/cit36 doi: 10.1021/ma1022555 – ident: ref22/cit22 doi: 10.1021/acsami.7b17118 – ident: ref27/cit27 doi: 10.1002/adfm.201909954 – ident: ref17/cit17 doi: 10.1016/j.mattod.2019.12.026 – ident: ref44/cit44 doi: 10.1021/acs.chemmater.8b05262 – ident: ref6/cit6 doi: 10.1021/acsnano.9b10230 – ident: ref19/cit19 doi: 10.1021/acs.macromol.6b00156 – ident: ref18/cit18 doi: 10.1002/adma.201601613 – ident: ref48/cit48 doi: 10.1002/adfm.202008355 – ident: ref4/cit4 doi: 10.1021/acs.accounts.8b00500 – ident: ref12/cit12 doi: 10.1021/acs.macromol.0c00238 – ident: ref32/cit32 doi: 10.1021/acs.biomac.7b01249 – ident: ref15/cit15 doi: 10.1002/smll.202004342 – ident: ref47/cit47 doi: 10.1021/acsnano.0c05932 – ident: ref34/cit34 doi: 10.1021/acs.macromol.9b01308 – ident: ref37/cit37 doi: 10.1039/C8MH01208C – ident: ref43/cit43 doi: 10.1039/C8MH01188E – ident: ref41/cit41 doi: 10.1021/acs.biomac.7b01693 – ident: ref42/cit42 doi: 10.1016/j.compscitech.2016.01.009 – ident: ref29/cit29 doi: 10.1016/j.coco.2021.100669 – ident: ref31/cit31 doi: 10.1021/acs.biomac.8b00144 – ident: ref50/cit50 doi: 10.1021/acs.chemmater.9b02039 – ident: ref52/cit52 doi: 10.1002/mame.202000475 – ident: ref33/cit33 doi: 10.1016/j.coco.2021.100677 – ident: ref9/cit9 doi: 10.1002/adfm.201504755 – ident: ref21/cit21 doi: 10.1002/adfm.201804416 |
SSID | ssj0011028 |
Score | 2.6315303 |
Snippet | To meet various practical requirements and enhance human experience, hydrogels possessing multifunctionality are of great significance for flexible wearable... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 6146 |
Title | Fast-Recoverable, Self-Healable, and Adhesive Nanocomposite Hydrogel Consisting of Hybrid Nanoparticles for Ultrasensitive Strain and Pressure Sensing |
URI | http://dx.doi.org/10.1021/acs.chemmater.1c01595 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qPagH3-KbPXgSE7tJk22OpViKoAi14C1ssrsK1rQk8aA_xN_rzCaRgih6zGbzYLKb-Yb5vhmAM20ClXKpHMF5SGlG5fRSn8TuWkgMN8JQUqB4cxuOJt3rh-ChBZc_ZPA9filTNP6TfkEAp3OXp-i_omAJlj2BG4Sw0GD8lTYgb2lhYyScrgjCRrLz023IJaXFgkta8C3DDbhrFDoVpeTZfS0TN33_XrDxr6-9Ces1zmT9amFsQUtn27AyaNq7bcPaQiXCHfgYyqJ0KBbFpU1qqgs21lPjkEqpOpSZYn31pInuzvCfPCMyOjG-NBu9qXz2qKfMdv8siEjNZgaHSQ1m584b_h1DjMwm0zJH55kVlrfExrZNhX1AJVbMcYzOZo-7MBle3Q9GTt2ywZF-yEsn7HWMMQElK0ViPAQjXYz3Ij_SaIFEdYTRwkiKglQiIu6lWiAATHWklUeFffw9aGezTO8DSyJhkshPZCdQXYnzQ4VYLPA7ikvP98UBnKON43rLFbHNpns8psEvw8e14Q_AbT5xPK_KePx-weF_7n4Eqx5RXWyl3GNol_mrPkGsUiandn1-AjG-6Lc |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYGHIADb8SbHDghOpZ2TehxmpjG8zImuFVpk4DE6FBbDvBD-L3Y2TomJJA41k3T1E3rz_JnG-DI2FCnXGlPci4ozKi9szSgZHcjFbobQihyFG9uRbffvHwIH2ogqlwYXESBMxUuiP9dXYCfkgwf4wVxnMnrPEUzFoUzMBdKNJoEidq9SfSAjKZDj5H0mjIUVebOb9OQZUqLKcs0ZWI6y3A_WZxjljzX38qknn78qNv4_9WvwNIYdbLWaJusQs1kazDfrpq9rcHiVF3CdfjsqKL0yDPFjU65VSesZwbWo5yl0aHKNGvpJ0Pkd4Z_6CFR04n_ZVj3XefDRzNgrhdoQbRqNrQoptwwN_a1YuMxRMysPyhzNKVZ4VhMrOeaVrgbjFIXc5TR2exxA_qd87t21xs3cPBUIHjpibOGtTak0KVMrI_QpIneXxREBjWQ6Ia0RlpFPpFOZMT91EiEg6mJjPapzE-wCbPZMDNbwJJI2iQKEtUIdVPheKERmYVBQ3PlB4HchmPUcTz-AIvYxdZ9HpNwovh4rPhtqFdvOn4dFfX4-4Kd_8x-CPPdu5vr-Pri9moXFnwiwbgaunswW-ZvZh9RTJkcuC37BWEB8Rw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4SDwOvBHjmQMnRMfSrg09osE0nkIak5A4VGmTgMToprY7wA_h92Jn3TQhgQTHummauEn9Wf7sABxq46uES-UIzgMKMyrnNPEo2V0Lie5GEEhyFG_vglanfvXoP5asSsqFwUHk2FNug_i0q_vKlBUG-AnJcSpviOV0VuUJmrLQn4ZZn15EsKjRHkcQyHBaBBkKpy78YJS981M3ZJ2SfMI6TZiZ5jI8jQdo2SWv1UERV5OPb7Ub_zeDFVgq0Sc7Gy6XVZjS6RrMN0aHvq3B4kR9wnX4bMq8cMhDxQVPOVbHrK27xqHcpeGlTBU7Uy-aSPAM_9Q9oqgTD0yz1rvKes-6y-yZoDnRq1nPoJhyxGzb_oiVxxA5s063yNCkprllM7G2PbzCvmCYwpihjO6mzxvQaV48NFpOeZCDI72AF05wWjPG-BTCFLFxEaLU0QsMvVCjBmJVE0YLI8k3UrEIuZtogbAw0aFWLpX78TZhJu2legtYHAoTh14sa76qS2wfKERovldTXLqeJypwhDqOyo2YRzbG7vKIhGPFR6XiK1Adfe2oPyzu8fsD23_p_QDm7s-b0c3l3fUOLLjEhbGldHdhpsgGeg_BTBHv21X7BQCW85Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast-Recoverable%2C+Self-Healable%2C+and+Adhesive+Nanocomposite+Hydrogel+Consisting+of+Hybrid+Nanoparticles+for+Ultrasensitive+Strain+and+Pressure+Sensing&rft.jtitle=Chemistry+of+materials&rft.au=Yu%2C+Xiaohui&rft.au=Zheng%2C+Yong&rft.au=Zhang%2C+Haopeng&rft.au=Wang%2C+Yufei&rft.date=2021-08-10&rft.pub=American+Chemical+Society&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=33&rft.issue=15&rft.spage=6146&rft.epage=6157&rft_id=info:doi/10.1021%2Facs.chemmater.1c01595&rft.externalDocID=d067206812 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon |