Highly Efficient Utilization of Ferrate(VI) Oxidation Capacity Initiated by Mn(II) for Contaminant Oxidation: Role of Manganese Species

Manganese ion [Mn­(II)] is a background constituent existing in natural waters. Herein, it was found that only 59% of bisphenol A (BPA), 47% of bisphenol F (BPF), 65% of acetaminophen (AAP), and 49% of 4-tert-butylphenol (4-tBP) were oxidized by 20 μM of Fe­(VI), while 97% of BPA, 95% of BPF, 96% of...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 57; no. 6; pp. 2527 - 2537
Main Authors Zhao, Xiao-Na, Huang, Zhuang-Song, Wang, Gui-Jing, Liu, Yu-Lei, Song, Wei-Wei, Ma, Jun, Wang, Lu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Manganese ion [Mn­(II)] is a background constituent existing in natural waters. Herein, it was found that only 59% of bisphenol A (BPA), 47% of bisphenol F (BPF), 65% of acetaminophen (AAP), and 49% of 4-tert-butylphenol (4-tBP) were oxidized by 20 μM of Fe­(VI), while 97% of BPA, 95% of BPF, 96% of AAP, and 94% of 4-tBP could be oxidized by the Fe­(VI)/Mn­(II) system [20 μM Fe­(VI)/20 μM Mn­(II)] at pH 7.0. Further investigations showed that bisphenol S (BPS) was highly reactive with reactive iron species (RFeS) but was sluggish with reactive manganese species (RMnS). By using BPS and methyl phenyl sulfoxide (PMSO) as the probe compounds, it was found that reactive iron species contributed primarily for BPA oxidation at low Mn­(II)/Fe­(VI) molar ratios (below 0.1), while reactive manganese species [Mn­(VII)/Mn­(III)] contributed increasingly for BPA oxidation with the elevation of the Mn­(II)/Fe­(VI) molar ratio (from 0.1 to 3.0). In the interaction of Mn­(II) and Fe­(VI), the transfer of oxidation capacity from Fe­(VI) to Mn­(III), including the formation of Mn­(VII) and the inhibition of Fe­(VI) self-decay, improved the amount of electron equivalents per Fe­(VI) for BPA oxidation. UV–vis spectra and dominant transformation product analysis further revealed the evolution of iron and manganese species at different Mn­(II)/Fe­(VI) molar ratios.
AbstractList Manganese ion [Mn­(II)] is a background constituent existing in natural waters. Herein, it was found that only 59% of bisphenol A (BPA), 47% of bisphenol F (BPF), 65% of acetaminophen (AAP), and 49% of 4-tert-butylphenol (4-tBP) were oxidized by 20 μM of Fe­(VI), while 97% of BPA, 95% of BPF, 96% of AAP, and 94% of 4-tBP could be oxidized by the Fe­(VI)/Mn­(II) system [20 μM Fe­(VI)/20 μM Mn­(II)] at pH 7.0. Further investigations showed that bisphenol S (BPS) was highly reactive with reactive iron species (RFeS) but was sluggish with reactive manganese species (RMnS). By using BPS and methyl phenyl sulfoxide (PMSO) as the probe compounds, it was found that reactive iron species contributed primarily for BPA oxidation at low Mn­(II)/Fe­(VI) molar ratios (below 0.1), while reactive manganese species [Mn­(VII)/Mn­(III)] contributed increasingly for BPA oxidation with the elevation of the Mn­(II)/Fe­(VI) molar ratio (from 0.1 to 3.0). In the interaction of Mn­(II) and Fe­(VI), the transfer of oxidation capacity from Fe­(VI) to Mn­(III), including the formation of Mn­(VII) and the inhibition of Fe­(VI) self-decay, improved the amount of electron equivalents per Fe­(VI) for BPA oxidation. UV–vis spectra and dominant transformation product analysis further revealed the evolution of iron and manganese species at different Mn­(II)/Fe­(VI) molar ratios.
Manganese ion [Mn(II)] is a background constituent existing in natural waters. Herein, it was found that only 59% of bisphenol A (BPA), 47% of bisphenol F (BPF), 65% of acetaminophen (AAP), and 49% of 4-tert-butylphenol (4-tBP) were oxidized by 20 μM of Fe(VI), while 97% of BPA, 95% of BPF, 96% of AAP, and 94% of 4-tBP could be oxidized by the Fe(VI)/Mn(II) system [20 μM Fe(VI)/20 μM Mn(II)] at pH 7.0. Further investigations showed that bisphenol S (BPS) was highly reactive with reactive iron species (RFeS) but was sluggish with reactive manganese species (RMnS). By using BPS and methyl phenyl sulfoxide (PMSO) as the probe compounds, it was found that reactive iron species contributed primarily for BPA oxidation at low Mn(II)/Fe(VI) molar ratios (below 0.1), while reactive manganese species [Mn(VII)/Mn(III)] contributed increasingly for BPA oxidation with the elevation of the Mn(II)/Fe(VI) molar ratio (from 0.1 to 3.0). In the interaction of Mn(II) and Fe(VI), the transfer of oxidation capacity from Fe(VI) to Mn(III), including the formation of Mn(VII) and the inhibition of Fe(VI) self-decay, improved the amount of electron equivalents per Fe(VI) for BPA oxidation. UV–vis spectra and dominant transformation product analysis further revealed the evolution of iron and manganese species at different Mn(II)/Fe(VI) molar ratios.
Manganese ion [Mn(II)] is a background constituent existing in natural waters. Herein, it was found that only 59% of bisphenol A (BPA), 47% of bisphenol F (BPF), 65% of acetaminophen (AAP), and 49% of 4- -butylphenol (4- BP) were oxidized by 20 μM of Fe(VI), while 97% of BPA, 95% of BPF, 96% of AAP, and 94% of 4- BP could be oxidized by the Fe(VI)/Mn(II) system [20 μM Fe(VI)/20 μM Mn(II)] at pH 7.0. Further investigations showed that bisphenol S (BPS) was highly reactive with reactive iron species (RFeS) but was sluggish with reactive manganese species (RMnS). By using BPS and methyl phenyl sulfoxide (PMSO) as the probe compounds, it was found that reactive iron species contributed primarily for BPA oxidation at low Mn(II)/Fe(VI) molar ratios (below 0.1), while reactive manganese species [Mn(VII)/Mn(III)] contributed increasingly for BPA oxidation with the elevation of the Mn(II)/Fe(VI) molar ratio (from 0.1 to 3.0). In the interaction of Mn(II) and Fe(VI), the transfer of oxidation capacity from Fe(VI) to Mn(III), including the formation of Mn(VII) and the inhibition of Fe(VI) self-decay, improved the amount of electron equivalents per Fe(VI) for BPA oxidation. UV-vis spectra and dominant transformation product analysis further revealed the evolution of iron and manganese species at different Mn(II)/Fe(VI) molar ratios.
Author Liu, Yu-Lei
Song, Wei-Wei
Wang, Gui-Jing
Wang, Lu
Huang, Zhuang-Song
Ma, Jun
Zhao, Xiao-Na
AuthorAffiliation State Key Laboratory of Urban Water Resource and Environment, School of Environment
AuthorAffiliation_xml – name: State Key Laboratory of Urban Water Resource and Environment, School of Environment
Author_xml – sequence: 1
  givenname: Xiao-Na
  surname: Zhao
  fullname: Zhao, Xiao-Na
– sequence: 2
  givenname: Zhuang-Song
  surname: Huang
  fullname: Huang, Zhuang-Song
– sequence: 3
  givenname: Gui-Jing
  surname: Wang
  fullname: Wang, Gui-Jing
– sequence: 4
  givenname: Yu-Lei
  surname: Liu
  fullname: Liu, Yu-Lei
– sequence: 5
  givenname: Wei-Wei
  orcidid: 0000-0001-9265-2062
  surname: Song
  fullname: Song, Wei-Wei
– sequence: 6
  givenname: Jun
  orcidid: 0000-0002-0903-5547
  surname: Ma
  fullname: Ma, Jun
– sequence: 7
  givenname: Lu
  orcidid: 0000-0003-4979-4895
  surname: Wang
  fullname: Wang, Lu
  email: wanglu9195@163.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36725089$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1qGzEURkVJaZy06-6KoBuXMs6V5BlJ3RWTH0NCIG1Kd4NGI6UKY8mRZKj7An3taLDrRSErLe75zr3oO0FHPniD0HsCMwKUnCmdZiblGdXQSEZeoQmpKVS1qMkRmgAQVknW_DxGJyk9AgBlIN6gY9ZwWoOQE_T3yj38Grb43FqnnfEZ32c3uD8qu-BxsPjCxKiymf5YfsK3v12_GyzUWmmXt3jpXXZl3uNui2_8dFkwGyJeBJ_VynlVjIfYF3wXBjNab5R_UN4kg7-tTdmb3qLXVg3JvNu_p-j-4vz74qq6vr1cLr5eV4o1JFfzrpOENIxqC5KwmlrWic7UgnLRq0ZITpTthQQ6p3rea6lIbXrK-8bWApRlp2i6865jeNqUr2tXLmkzDOWasEkt5ZzIORRfQT_-hz6GTfTlupHivOHAoVBnO0rHkFI0tl1Ht1Jx2xJox47a0lE7pvcdlcSHvXfTrUx_4P-VUoDPO2BMHna-pHsGrdad_Q
CitedBy_id crossref_primary_10_1016_j_cej_2023_146109
crossref_primary_10_1016_j_colsurfa_2023_132820
crossref_primary_10_1016_j_watres_2023_120311
crossref_primary_10_1021_acs_est_3c03698
crossref_primary_10_1021_acs_est_3c04589
crossref_primary_10_1016_j_watres_2023_120827
crossref_primary_10_1016_j_jece_2024_112884
crossref_primary_10_1016_j_watres_2023_120506
crossref_primary_10_1016_j_seppur_2024_127023
crossref_primary_10_1016_j_seppur_2024_127121
crossref_primary_10_1016_j_jhazmat_2024_133982
crossref_primary_10_1016_j_envres_2023_117849
crossref_primary_10_1016_j_jhazmat_2023_132009
crossref_primary_10_1016_j_seppur_2024_127679
crossref_primary_10_3390_ijerph20054317
crossref_primary_10_1021_acsestengg_4c00086
Cites_doi 10.1021/acs.est.8b03770
10.1016/j.watres.2009.11.045
10.1021/ar5004219
10.1016/j.watres.2021.117094
10.1016/j.watres.2019.115093
10.1021/es970820k
10.1021/acs.est.0c03212
10.1016/j.cej.2018.06.133
10.1016/j.watres.2021.117548
10.1016/j.chemosphere.2016.06.014
10.1021/es7032668
10.1016/j.watres.2022.118765
10.1016/j.chemosphere.2019.125490
10.1021/acs.est.0c00921
10.1021/es500804g
10.1021/acs.est.8b04655
10.1021/acs.est.8b05306
10.1016/j.watres.2016.07.041
10.1021/acsestengg.0c00229
10.1016/j.cej.2015.11.037
10.1016/j.watres.2018.06.029
10.1073/pnas.0409119102
10.1021/acs.est.8b01718
10.1016/j.chemosphere.2018.11.011
10.1021/es4003247
10.1002/aic.15878
10.1016/j.cej.2019.123167
10.1021/acs.est.0c07792
10.1021/ja00334a079
10.1021/es5030355
10.1021/ic00320a004
10.1063/1.555805
10.1016/j.ccr.2012.04.014
10.1016/j.jhazmat.2022.128827
10.1021/es100038d
10.1021/acs.est.8b00586
10.1021/es2035587
10.1016/j.cej.2021.132384
10.1016/j.watres.2005.03.005
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright American Chemical Society Feb 14, 2023
Copyright_xml – notice: 2023 American Chemical Society
– notice: Copyright American Chemical Society Feb 14, 2023
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
DOI 10.1021/acs.est.2c06931
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Biotechnology Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 2537
ExternalDocumentID 10_1021_acs_est_2c06931
36725089
a970623539
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
55A
5GY
5VS
63O
6TJ
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABOGM
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
XZL
YZZ
ZCA
53G
AAHBH
ABJNI
ADUKH
AGXLV
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
ID FETCH-LOGICAL-a361t-4bb911632cf091352f3b8be58278da68971afd890242c4dc9a15ed27d6f580af3
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Fri Aug 16 21:00:49 EDT 2024
Thu Oct 10 20:46:01 EDT 2024
Fri Aug 23 01:07:49 EDT 2024
Sat Sep 28 08:15:13 EDT 2024
Thu Feb 16 05:45:48 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords oxidation efficiency
reactive manganese species
ferrate
Mn(II)
micropollutants
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a361t-4bb911632cf091352f3b8be58278da68971afd890242c4dc9a15ed27d6f580af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9265-2062
0000-0003-4979-4895
0000-0002-0903-5547
PMID 36725089
PQID 2777767070
PQPubID 45412
PageCount 11
ParticipantIDs proquest_miscellaneous_2771940827
proquest_journals_2777767070
crossref_primary_10_1021_acs_est_2c06931
pubmed_primary_36725089
acs_journals_10_1021_acs_est_2c06931
PublicationCentury 2000
PublicationDate 2023-02-14
PublicationDateYYYYMMDD 2023-02-14
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref19/cit19
  doi: 10.1021/acs.est.8b03770
– ident: ref4/cit4
  doi: 10.1016/j.watres.2009.11.045
– ident: ref9/cit9
  doi: 10.1021/ar5004219
– ident: ref15/cit15
  doi: 10.1016/j.watres.2021.117094
– ident: ref2/cit2
  doi: 10.1016/j.watres.2019.115093
– ident: ref16/cit16
  doi: 10.1021/es970820k
– ident: ref13/cit13
  doi: 10.1021/acs.est.0c03212
– ident: ref22/cit22
  doi: 10.1016/j.cej.2018.06.133
– ident: ref23/cit23
  doi: 10.1016/j.watres.2021.117548
– ident: ref28/cit28
  doi: 10.1016/j.chemosphere.2016.06.014
– ident: ref35/cit35
  doi: 10.1021/es7032668
– ident: ref3/cit3
  doi: 10.1016/j.watres.2022.118765
– ident: ref21/cit21
  doi: 10.1016/j.chemosphere.2019.125490
– ident: ref25/cit25
  doi: 10.1021/acs.est.0c00921
– ident: ref12/cit12
  doi: 10.1021/es500804g
– ident: ref30/cit30
  doi: 10.1021/acs.est.8b04655
– ident: ref33/cit33
  doi: 10.1021/acs.est.8b05306
– ident: ref7/cit7
  doi: 10.1016/j.watres.2016.07.041
– ident: ref10/cit10
  doi: 10.1021/acsestengg.0c00229
– ident: ref11/cit11
  doi: 10.1016/j.cej.2015.11.037
– ident: ref32/cit32
  doi: 10.1016/j.watres.2018.06.029
– ident: ref37/cit37
  doi: 10.1073/pnas.0409119102
– ident: ref5/cit5
  doi: 10.1021/acs.est.8b01718
– ident: ref31/cit31
  doi: 10.1016/j.chemosphere.2018.11.011
– ident: ref34/cit34
  doi: 10.1021/es4003247
– ident: ref18/cit18
  doi: 10.1002/aic.15878
– ident: ref6/cit6
  doi: 10.1016/j.cej.2019.123167
– ident: ref14/cit14
  doi: 10.1021/acs.est.0c07792
– ident: ref36/cit36
  doi: 10.1021/ja00334a079
– ident: ref8/cit8
  doi: 10.1021/es5030355
– ident: ref39/cit39
  doi: 10.1021/ic00320a004
– ident: ref29/cit29
  doi: 10.1063/1.555805
– ident: ref17/cit17
  doi: 10.1016/j.ccr.2012.04.014
– ident: ref20/cit20
  doi: 10.1016/j.jhazmat.2022.128827
– ident: ref38/cit38
  doi: 10.1021/es100038d
– ident: ref1/cit1
  doi: 10.1021/acs.est.8b00586
– ident: ref27/cit27
  doi: 10.1021/es2035587
– ident: ref24/cit24
  doi: 10.1016/j.cej.2021.132384
– ident: ref26/cit26
  doi: 10.1016/j.watres.2005.03.005
SSID ssj0002308
Score 2.5501275
Snippet Manganese ion [Mn­(II)] is a background constituent existing in natural waters. Herein, it was found that only 59% of bisphenol A (BPA), 47% of bisphenol F...
Manganese ion [Mn(II)] is a background constituent existing in natural waters. Herein, it was found that only 59% of bisphenol A (BPA), 47% of bisphenol F...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 2527
SubjectTerms Acetaminophen
Bisphenol A
Contaminants
Iron
Iron - chemistry
Iron constituents
Manganese
Manganese - chemistry
Manganese ions
Natural waters
Oxidation
Oxidation-Reduction
Species
Treatment and Resource Recovery
Water Pollutants, Chemical - chemistry
Title Highly Efficient Utilization of Ferrate(VI) Oxidation Capacity Initiated by Mn(II) for Contaminant Oxidation: Role of Manganese Species
URI http://dx.doi.org/10.1021/acs.est.2c06931
https://www.ncbi.nlm.nih.gov/pubmed/36725089
https://www.proquest.com/docview/2777767070
https://search.proquest.com/docview/2771940827
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQeIEHPgaDsoGMtIfykBI7ju3sbaparUgFiVHUt8hfmSaqdFpSads_sH97d0naAtMEr_HlbF3Od-fc-XeEHKrMGXCzPBIs1pEwXkYQ5fuo0F5wDy6TNb-yp1_lyUx8mafzLVj03xl8zj4bVw3AQA64i2WGN6Yfc2CA56zj4enG6EIkrdfNCrJEzjcoPvcYoBty1Z9u6IHYsvEx4-dtdVbVQBNiacmvwaq2A3dzH7jx38t_QZ51kSY9blXjJXkUyl3y9Df8wV2yN9pecwPSbp9Xr8gtln8srumoAZiAUTqrzxfdlU26LOg4XCLGRP_n5BP9dnXeNmaiQ_C8DsJ6OsGSJBj31F7TadmfABlExxSxsExbfLN97Yh-Xy4Ccp2a8sxgS0x6ehFg3uo1mY1HP4YnUdeyITKJZHUkrAXrKRPuCgQcTXmRWG1DqrnS3kidKWYKj7lNwZ3wLjMsDZ4rL4tUx6ZI9shOuSzDW0JDoY3nVsRwhhbaM6tUojRz1isVG2F75BBkm3dbrsqbbDpnOT4EgeedwHukv_7Q-UUL4PEw6cFaEbZsuVIIeASWsUc-boZhD2JiBUSyXDU0LMPO3apH3rQKtJkrkQqiTJ29-7_l7pMn2NAe68KZOCA79eUqvIewp7YfGoW_A3T2--w
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5N4wF4GDAYFAYYaQ_lISV2HNvhDVWtWliHYCvqW2THDppWpdOSSox_gH-bc5Km_NAkeLWdi3Px3X2Jz98BHMkk0xhmWcBpqAKurQgQ5dsgV5YziyGT1r-yZydiMufvF_FiB8LNWRicRImSynoTf8suQN_4NvSTA5aFIvEHp2_FEmOdB0PD0873IqBWm5oFSSQWHZnPXwJ8NMrK36PRDRCzDjXje_Cpm2SdYXIxWFdmkH3_g7_xf57iPuy1uJO8axbKA9hxxT7c_YWNcB8ORttDbzi0tfryIfzwySDLazKq6Sawl8yr82V7gJOscjJ2V55xov9l-pp8_HbelGkiQ4zDGYJ8MvUJSthvibkms6I_xWGIlYlnxtJNKs72srfk82rpvNSZLr5qXyCTnF46vG_5CObj0dlwErQFHAIdCVoF3Bj0pSJiWe7pR2OWR0YZFysmldVCJZLq3PqdTs4ybrNE09hZJq3IYxXqPDqA3WJVuCdAXK60ZYaH-EXNlaVGykgqmhkrZai56cER6jZtDbBM6711RlPfiApPW4X3oL953-llQ-dx89DDzXrYimVSevoj9JM9eNV1o0X6bRZUyWpdj6GJr-Mte_C4WUfdvSIhEXOq5Om_Tfcl3J6czY7T4-nJh2dwx5e69xnjlB_CbnW1ds8REFXmRW0DPwEjJwRm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQkBA88DEYdAww0h7KQ7rYcWyHt6m0WoEOxCjqW-SPBE2r0mpJJcY_wL_NXZKmfGgSvNqXi3PxfSS--x0hhypxBtwsDwQLdSCMlwFE-T7ItRfcg8tk9a_s6ak8mYm383jeFoVhLQwsogROZX2Ij1q98nmLMMCOcBxs5YC7UCZYPH0zVkygOh4Pzzr7C0G13vQtSCI57wB9_mKAHsmVv3uka8LM2t2M75FZt9A6y-RisK7swH3_A8Pxf5_kPrnbxp_0uNkwD8iNrNgld35BJdwle6Nt8RuQttpfPiQ_MClkcUVHNewEzNJZdb5oCznpMqfj7BKRJ_pfJq_oh2_nTbsmOgR_7CDYpxNMVIJ5T-0VnRb9CZBBzEwRIcs0KTnby17TT8tFhlynpvhqsFEmPVtlcN_yEZmNR5-HJ0HbyCEwkWRVIKwFmyoj7nKEIY15Hllts1hzpb2ROlHM5B5PPAV3wrvEsDjzXHmZxzo0ebRHdoplkT0hNMu18dyKEL6shfbMKhUpzZz1SoVG2B45BNmmrSKWaX3GzlmKgyDwtBV4j_Q37zxdNbAe15MebPbEli1XCmGQwF72yMtuGjQTj1tAJMt1TcMS7OeteuRxs5e6e0VSQeypk_1_W-4Lcuvjm3H6fnL67im5jR3vMXGciQOyU12us2cQF1X2ea0GPwF5Twbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient+Utilization+of+Ferrate%28VI%29+Oxidation+Capacity+Initiated+by+Mn%28II%29+for+Contaminant+Oxidation%3A+Role+of+Manganese+Species&rft.jtitle=Environmental+science+%26+technology&rft.au=Zhao%2C+Xiao-Na&rft.au=Huang%2C+Zhuang-Song&rft.au=Wang%2C+Gui-Jing&rft.au=Liu%2C+Yu-Lei&rft.date=2023-02-14&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=57&rft.issue=6&rft.spage=2527&rft_id=info:doi/10.1021%2Facs.est.2c06931&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon