Robust Anisotropic Cellulose Hydrogels Fabricated via Strong Self-aggregation Forces for Cardiomyocytes Unidirectional Growth

The development of a facile and fast method to construct anisotropic hydrogels with the ability to induce unidirectional growth of cells remains challenging. In this work, we demonstrated anisotropic cellulose hydrogels (ACHs) that are composed of nanoscale aligned nanofibers by dissolving cotton li...

Full description

Saved in:
Bibliographic Details
Published inChemistry of materials Vol. 30; no. 15; pp. 5175 - 5183
Main Authors Ye, Dongdong, Yang, Pengcheng, Lei, Xiaojuan, Zhang, Donghui, Li, Liangbin, Chang, Chunyu, Sun, Pingchuan, Zhang, Lina
Format Journal Article
LanguageEnglish
Published American Chemical Society 14.08.2018
Online AccessGet full text

Cover

Loading…
Abstract The development of a facile and fast method to construct anisotropic hydrogels with the ability to induce unidirectional growth of cells remains challenging. In this work, we demonstrated anisotropic cellulose hydrogels (ACHs) that are composed of nanoscale aligned nanofibers by dissolving cotton liner pulp in alkali/urea aqueous solution. On the basis of directionally controlling the architecture of cellulose chains with a facial prestretching strategy in chemical gel state and locking the highly ordered nanostructure through the formation of close physical networks via strong self-aggregation forces among neighboring cellulose nanofibers, ACHs, combing with a long-range aligned structure, entirely differential mechanical performances along the parallel and perpendicular directions of the hydrogel orientation and optical birefringence, were constructed. The aggregation of hydrogen bonds in anisotropic and isotropic hydrogels are of significant difference, confirmed by nuclear magnetic resonance technology. Importantly, ACHs with microgroove-like structure promote the adhesion and orientation of cardiomyocytes. Our work demonstrated the bottom-up fabrication of polysaccharide-based hydrogels with anisotropic structure and properties, paving the way to potentially apply them in cardiomyocytes in vitro culture system.
AbstractList The development of a facile and fast method to construct anisotropic hydrogels with the ability to induce unidirectional growth of cells remains challenging. In this work, we demonstrated anisotropic cellulose hydrogels (ACHs) that are composed of nanoscale aligned nanofibers by dissolving cotton liner pulp in alkali/urea aqueous solution. On the basis of directionally controlling the architecture of cellulose chains with a facial prestretching strategy in chemical gel state and locking the highly ordered nanostructure through the formation of close physical networks via strong self-aggregation forces among neighboring cellulose nanofibers, ACHs, combing with a long-range aligned structure, entirely differential mechanical performances along the parallel and perpendicular directions of the hydrogel orientation and optical birefringence, were constructed. The aggregation of hydrogen bonds in anisotropic and isotropic hydrogels are of significant difference, confirmed by nuclear magnetic resonance technology. Importantly, ACHs with microgroove-like structure promote the adhesion and orientation of cardiomyocytes. Our work demonstrated the bottom-up fabrication of polysaccharide-based hydrogels with anisotropic structure and properties, paving the way to potentially apply them in cardiomyocytes in vitro culture system.
Author Yang, Pengcheng
Sun, Pingchuan
Ye, Dongdong
Zhang, Donghui
Chang, Chunyu
Li, Liangbin
Zhang, Lina
Lei, Xiaojuan
AuthorAffiliation College of Life Science
College of Chemistry and Molecular Sciences
Nankai University
Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry
National Synchrotron Radiation Lab and College of Nuclear Science and Technology
AuthorAffiliation_xml – name: Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry
– name: College of Chemistry and Molecular Sciences
– name: College of Life Science
– name: National Synchrotron Radiation Lab and College of Nuclear Science and Technology
– name: Nankai University
Author_xml – sequence: 1
  givenname: Dongdong
  surname: Ye
  fullname: Ye, Dongdong
  organization: College of Chemistry and Molecular Sciences
– sequence: 2
  givenname: Pengcheng
  surname: Yang
  fullname: Yang, Pengcheng
  organization: College of Life Science
– sequence: 3
  givenname: Xiaojuan
  surname: Lei
  fullname: Lei, Xiaojuan
  organization: College of Chemistry and Molecular Sciences
– sequence: 4
  givenname: Donghui
  surname: Zhang
  fullname: Zhang, Donghui
  organization: College of Life Science
– sequence: 5
  givenname: Liangbin
  orcidid: 0000-0002-1887-9856
  surname: Li
  fullname: Li, Liangbin
  organization: National Synchrotron Radiation Lab and College of Nuclear Science and Technology
– sequence: 6
  givenname: Chunyu
  surname: Chang
  fullname: Chang, Chunyu
  email: changcy@whu.edu.cn
  organization: College of Chemistry and Molecular Sciences
– sequence: 7
  givenname: Pingchuan
  orcidid: 0000-0002-5603-6462
  surname: Sun
  fullname: Sun, Pingchuan
  organization: Nankai University
– sequence: 8
  givenname: Lina
  orcidid: 0000-0003-3890-8690
  surname: Zhang
  fullname: Zhang, Lina
  email: zhangln@whu.edu.cn
  organization: College of Chemistry and Molecular Sciences
BookMark eNqFkNtqAjEQhkOxULV9hEJeYG2yxyy9EqlaEAq1Xi-zOayR3Y0kscWLvntjlV70xqsZZv5vDv8IDXrTS4QeKZlQEtMn4G7Ct7LrwEs7YTWhRVneoCHNYhJlhMQDNCSsLKK0yPI7NHJuRwgNKBui73dTH5zH0147463Za45nsm0PrXESL4_Cmka2Ds-htpqHBQJ_asDrIO0bvJatiqBprGzAa9PjubFcOqyMxTOwQpvuaPjRh9Km10JbyU8yaPHCmi-_vUe3ClonHy5xjDbzl4_ZMlq9LV5n01UESU59FKs6S4pEqZxBJkEC4yEViWAhpUUqCU3jHJgQcRkrSAtViAw48FykDFidjNHzeS63xjkrVcW1_73YW9BtRUl1crIKTlZ_TlYXJwOd_aP3Vndgj1c5euZO7Z052PC4u8L8ANGplWk
CitedBy_id crossref_primary_10_1002_adfm_202214317
crossref_primary_10_1002_adma_202300487
crossref_primary_10_1021_acsanm_3c05231
crossref_primary_10_1021_acsnano_9b02081
crossref_primary_10_1039_D1NR00867F
crossref_primary_10_1039_D1GC01392K
crossref_primary_10_1039_D0TA04221H
crossref_primary_10_1021_acssynbio_4c00336
crossref_primary_10_1002_adfm_201908556
crossref_primary_10_1016_j_carbpol_2019_115609
crossref_primary_10_1016_j_carbpol_2022_119549
crossref_primary_10_1002_pat_6621
crossref_primary_10_3390_jcs5020055
crossref_primary_10_1021_acssuschemeng_8b06691
crossref_primary_10_1126_sciadv_abd2520
crossref_primary_10_1016_j_compositesb_2022_109627
crossref_primary_10_1002_adfm_202200267
crossref_primary_10_1002_smll_201804805
crossref_primary_10_1016_j_apmt_2025_102594
crossref_primary_10_1080_1539445X_2022_2081580
crossref_primary_10_34133_2022_9854063
crossref_primary_10_1016_j_colsurfa_2023_131985
crossref_primary_10_1016_j_cej_2023_142387
crossref_primary_10_1016_j_carbpol_2019_115565
crossref_primary_10_1016_j_cej_2024_150105
crossref_primary_10_1016_j_trechm_2021_09_009
crossref_primary_10_1002_anie_201902578
crossref_primary_10_1016_j_pmatsci_2023_101152
crossref_primary_10_1039_D0TB02288H
crossref_primary_10_1002_ange_201902578
crossref_primary_10_1039_C9MH00320G
crossref_primary_10_1021_acs_chemmater_8b05183
crossref_primary_10_1039_D3MH00326D
crossref_primary_10_1021_acsami_0c18242
crossref_primary_10_1080_20550324_2019_1710974
crossref_primary_10_1016_j_carbpol_2020_117010
crossref_primary_10_1021_acsbiomaterials_9b01812
crossref_primary_10_1021_acs_langmuir_0c02905
crossref_primary_10_1021_acsami_0c01537
crossref_primary_10_1016_j_carbpol_2021_118207
crossref_primary_10_1016_j_compositesb_2022_109616
crossref_primary_10_1039_D4BM01109K
crossref_primary_10_1016_j_compositesb_2020_108046
crossref_primary_10_1002_adma_202001135
crossref_primary_10_1016_j_cej_2023_142099
crossref_primary_10_1016_j_ijbiomac_2024_130966
crossref_primary_10_1021_acsnano_0c07613
crossref_primary_10_1021_acs_nanolett_5c00520
crossref_primary_10_1002_admt_201900665
crossref_primary_10_1016_j_ijbiomac_2023_125973
crossref_primary_10_1002_anie_201907670
crossref_primary_10_1002_adma_202000682
crossref_primary_10_1016_j_ijbiomac_2024_134124
crossref_primary_10_1021_acs_chemmater_9b02812
crossref_primary_10_1039_C8CS01007B
crossref_primary_10_1021_acs_biomac_2c01370
crossref_primary_10_1016_j_pmatsci_2021_100870
crossref_primary_10_1016_j_cej_2022_135404
crossref_primary_10_1016_j_cej_2022_138876
crossref_primary_10_1016_j_carbpol_2019_115623
crossref_primary_10_1021_acs_nanolett_1c03943
crossref_primary_10_1088_1758_5090_ad6375
crossref_primary_10_1016_j_carbpol_2021_118315
crossref_primary_10_1021_acsnano_0c04298
crossref_primary_10_1002_adfm_202213699
crossref_primary_10_1002_adma_201904762
crossref_primary_10_1016_j_cej_2023_142882
crossref_primary_10_1016_j_polymer_2023_125786
crossref_primary_10_1016_j_cej_2022_138085
crossref_primary_10_1039_D0CP00235F
crossref_primary_10_1016_j_biomaterials_2023_122240
crossref_primary_10_1021_acs_biomac_9b00204
crossref_primary_10_1088_2053_1591_abf284
crossref_primary_10_1016_j_mtnano_2022_100290
crossref_primary_10_1021_acs_biomac_8b01278
crossref_primary_10_3390_gels10030212
crossref_primary_10_1007_s10570_020_03249_9
crossref_primary_10_1039_D3BM00744H
crossref_primary_10_1007_s40843_019_1236_8
crossref_primary_10_1016_j_ijbiomac_2020_01_034
crossref_primary_10_1016_j_carbpol_2021_117694
crossref_primary_10_2139_ssrn_3983696
crossref_primary_10_1021_acssuschemeng_4c07758
crossref_primary_10_1016_j_envres_2024_120042
crossref_primary_10_1021_acsomega_0c00440
crossref_primary_10_1016_j_nanoen_2024_109974
crossref_primary_10_1039_D1BM00695A
crossref_primary_10_3390_molecules26082191
crossref_primary_10_1002_adma_202416916
crossref_primary_10_1002_admt_202000358
crossref_primary_10_1021_acsabm_0c00828
crossref_primary_10_1021_acssuschemeng_0c06411
crossref_primary_10_1007_s10570_020_03068_y
crossref_primary_10_1002_adfm_202208074
crossref_primary_10_1007_s11814_023_1578_9
crossref_primary_10_1021_acs_biomac_3c00503
crossref_primary_10_1016_j_bioactmat_2023_06_007
crossref_primary_10_1016_j_carbpol_2024_122523
crossref_primary_10_1021_acs_chemmater_3c02098
crossref_primary_10_1002_adfm_202112685
crossref_primary_10_1021_acs_chemmater_0c03342
crossref_primary_10_1021_acsnano_3c11845
crossref_primary_10_1039_D2QI01050J
crossref_primary_10_1016_j_ijbiomac_2024_136804
crossref_primary_10_1016_j_indcrop_2024_118026
crossref_primary_10_1021_acsapm_0c00290
crossref_primary_10_1016_j_cej_2023_142193
crossref_primary_10_1016_j_carbpol_2018_11_056
crossref_primary_10_1021_acs_jafc_9b07671
crossref_primary_10_1021_acsanm_4c04687
crossref_primary_10_1016_j_mseb_2024_117951
crossref_primary_10_1021_acsami_0c09212
crossref_primary_10_1039_D1TB00339A
crossref_primary_10_1002_ange_201907670
crossref_primary_10_1021_acs_chemmater_3c00368
crossref_primary_10_1016_j_jmps_2020_103893
crossref_primary_10_1021_acsami_2c01597
crossref_primary_10_1016_j_matpr_2021_09_201
crossref_primary_10_1039_D1TA00143D
crossref_primary_10_1021_acs_nanolett_4c01513
crossref_primary_10_1002_mame_202100871
crossref_primary_10_1246_bcsj_20210209
crossref_primary_10_1002_app_53612
crossref_primary_10_1016_j_msec_2022_112654
crossref_primary_10_1002_adma_202305583
crossref_primary_10_1021_acssuschemeng_0c04890
crossref_primary_10_1002_mame_202000285
crossref_primary_10_1016_j_carbpol_2019_03_075
crossref_primary_10_1007_s10529_024_03477_0
crossref_primary_10_1002_adma_201906870
crossref_primary_10_1007_s40097_022_00481_6
crossref_primary_10_1080_87559129_2020_1858313
crossref_primary_10_1016_j_ijsolstr_2023_112325
crossref_primary_10_1002_bab_2162
crossref_primary_10_1021_acssuschemeng_9b02576
crossref_primary_10_1002_adhm_201901396
crossref_primary_10_1039_C8TB02331J
crossref_primary_10_1021_acssuschemeng_0c08981
crossref_primary_10_1002_adma_202307772
crossref_primary_10_1039_D2TA09973J
crossref_primary_10_1002_pol_20220154
crossref_primary_10_1016_j_ijbiomac_2021_10_034
crossref_primary_10_1002_smll_202201597
crossref_primary_10_1016_j_ijbiomac_2024_130357
crossref_primary_10_1002_slct_202302724
crossref_primary_10_1016_j_molstruc_2023_136305
crossref_primary_10_1016_j_actbio_2024_10_038
crossref_primary_10_1002_cssc_202300518
crossref_primary_10_1016_j_cej_2025_160728
crossref_primary_10_1039_D0LC00517G
crossref_primary_10_1016_j_carbpol_2023_120735
crossref_primary_10_1016_j_foodhyd_2024_110079
crossref_primary_10_3390_polym13111841
crossref_primary_10_1016_j_indcrop_2022_114690
crossref_primary_10_1016_j_progpolymsci_2025_101929
crossref_primary_10_1016_j_carbpol_2021_117936
crossref_primary_10_1021_acsapm_4c04199
crossref_primary_10_1016_j_carbpol_2022_119333
crossref_primary_10_1002_sus2_17
Cites_doi 10.1152/ajpheart.00481.2009
10.1126/science.1214804
10.1002/adma.201405757
10.1002/smll.201601893
10.1021/cm4025827
10.1002/mabi.200700007
10.1161/01.RES.0000121101.32286.C8
10.1016/j.biomaterials.2018.01.002
10.1126/scirobotics.aar8580
10.1002/adma.201501099
10.1002/adma.201301300
10.1002/adfm.201000034
10.1002/smll.201702207
10.1002/adma.201700339
10.1016/j.progpolymsci.2015.07.003
10.1038/nmat2778
10.1021/ja4127399
10.1002/adma.201704937
10.1016/j.polymer.2016.06.053
10.1021/ja101969k
10.1039/C4TB01852D
10.1021/ma801110g
10.1038/srep04271
10.1021/ma2001228
10.1002/adma.201703045
10.1085/jgp.201311118
10.1021/ma501699d
10.1021/am507726t
10.1021/nn5064634
10.1038/ncomms5490
10.1002/anie.201708196
10.1039/b707570g
10.1021/acs.chemmater.7b03953
10.1002/anie.201412129
10.1021/acsami.7b14900
10.1038/nature14060
10.1038/nature25476
10.1021/ma200123u
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acs.chemmater.8b01799
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5002
EndPage 5183
ExternalDocumentID 10_1021_acs_chemmater_8b01799
a822038998
GroupedDBID 29B
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TN5
TWZ
UI2
UPT
VF5
VG9
W1F
X
YZZ
-~X
.K2
4.4
5VS
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a361t-2fb5373ff68a5eaea8cf68d3d8ea8174e01426a8dd292fa47f7d5acac6d48a8b3
IEDL.DBID ACS
ISSN 0897-4756
IngestDate Tue Jul 01 01:13:37 EDT 2025
Thu Apr 24 22:51:18 EDT 2025
Thu Aug 27 13:42:39 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a361t-2fb5373ff68a5eaea8cf68d3d8ea8174e01426a8dd292fa47f7d5acac6d48a8b3
ORCID 0000-0002-1887-9856
0000-0002-5603-6462
0000-0003-3890-8690
PageCount 9
ParticipantIDs crossref_citationtrail_10_1021_acs_chemmater_8b01799
crossref_primary_10_1021_acs_chemmater_8b01799
acs_journals_10_1021_acs_chemmater_8b01799
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-14
PublicationDateYYYYMMDD 2018-08-14
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-14
  day: 14
PublicationDecade 2010
PublicationTitle Chemistry of materials
PublicationTitleAlternate Chem. Mater
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Claridge T. D. W. (ref34/cit34) 2016
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref38/cit38
  doi: 10.1152/ajpheart.00481.2009
– ident: ref1/cit1
  doi: 10.1126/science.1214804
– ident: ref8/cit8
  doi: 10.1002/adma.201405757
– ident: ref13/cit13
  doi: 10.1002/smll.201601893
– ident: ref16/cit16
  doi: 10.1021/cm4025827
– ident: ref33/cit33
  doi: 10.1002/mabi.200700007
– ident: ref36/cit36
  doi: 10.1161/01.RES.0000121101.32286.C8
– ident: ref26/cit26
  doi: 10.1016/j.biomaterials.2018.01.002
– ident: ref27/cit27
  doi: 10.1126/scirobotics.aar8580
– ident: ref2/cit2
  doi: 10.1002/adma.201501099
– ident: ref6/cit6
  doi: 10.1002/adma.201301300
– ident: ref35/cit35
  doi: 10.1002/adfm.201000034
– ident: ref10/cit10
  doi: 10.1002/smll.201702207
– ident: ref15/cit15
  doi: 10.1002/adma.201700339
– ident: ref28/cit28
  doi: 10.1016/j.progpolymsci.2015.07.003
– ident: ref19/cit19
  doi: 10.1038/nmat2778
– ident: ref21/cit21
  doi: 10.1021/ja4127399
– ident: ref22/cit22
  doi: 10.1002/adma.201704937
– ident: ref24/cit24
  doi: 10.1016/j.polymer.2016.06.053
– ident: ref20/cit20
  doi: 10.1021/ja101969k
– ident: ref23/cit23
  doi: 10.1039/C4TB01852D
– ident: ref31/cit31
  doi: 10.1021/ma801110g
– ident: ref7/cit7
  doi: 10.1038/srep04271
– ident: ref18/cit18
  doi: 10.1021/ma2001228
– ident: ref3/cit3
  doi: 10.1002/adma.201703045
– ident: ref37/cit37
  doi: 10.1085/jgp.201311118
– ident: ref17/cit17
  doi: 10.1021/ma501699d
– ident: ref14/cit14
  doi: 10.1021/am507726t
– ident: ref25/cit25
  doi: 10.1021/nn5064634
– ident: ref30/cit30
  doi: 10.1038/ncomms5490
– ident: ref4/cit4
  doi: 10.1002/anie.201708196
– ident: ref11/cit11
  doi: 10.1039/b707570g
– ident: ref5/cit5
  doi: 10.1021/acs.chemmater.7b03953
– ident: ref39/cit39
  doi: 10.1002/anie.201412129
– ident: ref32/cit32
  doi: 10.1021/acsami.7b14900
– volume-title: High-resolution NMR techniques in organic chemistry
  year: 2016
  ident: ref34/cit34
– ident: ref9/cit9
  doi: 10.1038/nature14060
– ident: ref29/cit29
  doi: 10.1038/nature25476
– ident: ref12/cit12
  doi: 10.1021/ma200123u
SSID ssj0011028
Score 2.6153781
Snippet The development of a facile and fast method to construct anisotropic hydrogels with the ability to induce unidirectional growth of cells remains challenging....
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 5175
Title Robust Anisotropic Cellulose Hydrogels Fabricated via Strong Self-aggregation Forces for Cardiomyocytes Unidirectional Growth
URI http://dx.doi.org/10.1021/acs.chemmater.8b01799
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdd-7D1oVu7jbXdhh72NFAay7IsPwbTLAxWxtJC34w-01A3KrbTkkL_954cJwRG9_EmDCeL09m_3-lOdwh9AQ8jZtLGJEv7jLDUWiJ035G-ZLRvlMlo22PpxxkfXbDvl8nlFjp5JoJPoxOpQflX9gYInK16QgUTyl6gHcpFGrytQT5ehw0CWra0MUvhvQlfXdl5bpoASbregKQNbBm-Rj9XN3SWKSXXvXmjevrh94KN_7rsN2iv45l4sDSMfbRlZwfoZb5q73aAdjcqEb5Fj7-8mtcNHsymtW8qfzvVOLdlOS99bfFoYSo_ARTFQ6navkLW4LupxONwkD7BY1s6Iifguk_ajcZDX8H_BwMhxnmb8Hqz8HoBrBYDx12iaHsEib9V_r65eocuhqfn-Yh0nRmIjHnUEOpUEqexc1zIxEorhYahiY2AIfg4FhwvyqUwhmbUSZa61CRSS80NE1Ko-D3anvmZ_YCwk1zzSCVUcMlUIhRzWRQSyxgQnUilh-grqLLovqy6aIPmNCrCw7V-i06_h4itdrLQXY3z0Gqj_JtYby12uyzy8WeBo_9Z1DF6BSwr1AEnEfuItptqbj8Bk2nU59Z6nwBB__U-
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGeBg88DFAjE8_8ITk0jiO4zxWEaXAtge6ib1F_iwVWT0lKahI_O-c3bRUSID2Zlk653K-5H7nO98h9Ao8jJRJm5IiHzLCcmuJ0ENHhpLRoVGmoLHH0skpn5yzDxfZxR7im7swwEQLK7UxiP-7ukDyJszBa1wCjrPNQKigScUNdBMACQ1O16icbqMHwWhG9Fjk8PiMb27u_G2ZYJl0u2OZdkzM-C76vGUuZpZ8HSw7NdA__qjbeH3u76E7PerEo7Wa3Ed7dnGIDspNs7dDdHunLuED9POTV8u2w6PFvPVd46_mGpe2rpe1by2erEzjZ2BT8Viq2GXIGvxtLvE0HKvP8NTWjsgZOPKzuO147Bv4G2GAx7iM6a-XK69XgHExIN61TY0Hkvhd4793Xx6i8_Hbs3JC-j4NRKY86Qh1Kkvz1DkuZGallULD0KRGwBA8HgtuGOVSGEML6iTLXW4yqaXmhgkpVPoI7S_8wj5G2EmueaIyKrhkKhOKuSIJaWYMYE-i8iP0GkRZ9d9ZW8UQOk2qMLmVb9XL9wixzYZWuq94Hhpv1P8jG2zJrtYlP_5N8OQ6TL1EB5Ozk-Pq-P3px6foFuCvUCGcJOwZ2u-apX0OGKdTL6JC_wKeWf2f
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dixMxEA96gh8Pp54nnudHHnwSUru72Wz2sey51q9DrAcHPiz5rMW9puxulQr-7zdJt6UIKvoWAgmTySTzm8xkBqFnYGEkVJiE5NmQEpoZQ7gaWjIUNB5qqfM41Fh6f8rGZ_TNeXreR1X6vzBARAsztcGJ70_1Qts-w0D0wvfDUi4Ay5lmwKWXpvwquuZdd97wGhWTrQfBK86AIPMMSEjZ5vfO76bx2km1O9ppR82Ut9HnLYEhuuTrYNnJgfrxS-7G_1vBHbTfo088WovLXXTFzA_QjWJT9O0A3drJT3gP_fzo5LLt8Gg-a13XuMVM4cLU9bJ2rcHjlW7cFHQrLoUM1YaMxt9mAk_88_oUT0xtiZiCQT8N249L18CthAEm4yKEwV6snFoB1sWAfNe6NTxM4leN-959OURn5ctPxZj09RqISFjUkdjKNMkSaxkXqRFGcAVNnWgOTbB8DJhjMRNc6ziPraCZzXQqlFBMUy64TO6jvbmbmwcIW8EUi2QacyaoTLmkNo98uBkF-BPJ7Ag9B1ZW_Xlrq-BKj6PKd275W_X8PUJ0s6mV6jOf-wIc9d-GDbbDFuvUH38e8PBfiHqKrn84Kat3r0_fHqObAMN8onAS0Udor2uW5jFAnU4-CTJ9CZ8oADE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Anisotropic+Cellulose+Hydrogels+Fabricated+via+Strong+Self-aggregation+Forces+for+Cardiomyocytes+Unidirectional+Growth&rft.jtitle=Chemistry+of+materials&rft.au=Ye%2C+Dongdong&rft.au=Yang%2C+Pengcheng&rft.au=Lei%2C+Xiaojuan&rft.au=Zhang%2C+Donghui&rft.date=2018-08-14&rft.pub=American+Chemical+Society&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=30&rft.issue=15&rft.spage=5175&rft.epage=5183&rft_id=info:doi/10.1021%2Facs.chemmater.8b01799&rft.externalDocID=a822038998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon