Robust Anisotropic Cellulose Hydrogels Fabricated via Strong Self-aggregation Forces for Cardiomyocytes Unidirectional Growth
The development of a facile and fast method to construct anisotropic hydrogels with the ability to induce unidirectional growth of cells remains challenging. In this work, we demonstrated anisotropic cellulose hydrogels (ACHs) that are composed of nanoscale aligned nanofibers by dissolving cotton li...
Saved in:
Published in | Chemistry of materials Vol. 30; no. 15; pp. 5175 - 5183 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
14.08.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | The development of a facile and fast method to construct anisotropic hydrogels with the ability to induce unidirectional growth of cells remains challenging. In this work, we demonstrated anisotropic cellulose hydrogels (ACHs) that are composed of nanoscale aligned nanofibers by dissolving cotton liner pulp in alkali/urea aqueous solution. On the basis of directionally controlling the architecture of cellulose chains with a facial prestretching strategy in chemical gel state and locking the highly ordered nanostructure through the formation of close physical networks via strong self-aggregation forces among neighboring cellulose nanofibers, ACHs, combing with a long-range aligned structure, entirely differential mechanical performances along the parallel and perpendicular directions of the hydrogel orientation and optical birefringence, were constructed. The aggregation of hydrogen bonds in anisotropic and isotropic hydrogels are of significant difference, confirmed by nuclear magnetic resonance technology. Importantly, ACHs with microgroove-like structure promote the adhesion and orientation of cardiomyocytes. Our work demonstrated the bottom-up fabrication of polysaccharide-based hydrogels with anisotropic structure and properties, paving the way to potentially apply them in cardiomyocytes in vitro culture system. |
---|---|
AbstractList | The development of a facile and fast method to construct anisotropic hydrogels with the ability to induce unidirectional growth of cells remains challenging. In this work, we demonstrated anisotropic cellulose hydrogels (ACHs) that are composed of nanoscale aligned nanofibers by dissolving cotton liner pulp in alkali/urea aqueous solution. On the basis of directionally controlling the architecture of cellulose chains with a facial prestretching strategy in chemical gel state and locking the highly ordered nanostructure through the formation of close physical networks via strong self-aggregation forces among neighboring cellulose nanofibers, ACHs, combing with a long-range aligned structure, entirely differential mechanical performances along the parallel and perpendicular directions of the hydrogel orientation and optical birefringence, were constructed. The aggregation of hydrogen bonds in anisotropic and isotropic hydrogels are of significant difference, confirmed by nuclear magnetic resonance technology. Importantly, ACHs with microgroove-like structure promote the adhesion and orientation of cardiomyocytes. Our work demonstrated the bottom-up fabrication of polysaccharide-based hydrogels with anisotropic structure and properties, paving the way to potentially apply them in cardiomyocytes in vitro culture system. |
Author | Yang, Pengcheng Sun, Pingchuan Ye, Dongdong Zhang, Donghui Chang, Chunyu Li, Liangbin Zhang, Lina Lei, Xiaojuan |
AuthorAffiliation | College of Life Science College of Chemistry and Molecular Sciences Nankai University Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry National Synchrotron Radiation Lab and College of Nuclear Science and Technology |
AuthorAffiliation_xml | – name: Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry – name: College of Chemistry and Molecular Sciences – name: College of Life Science – name: National Synchrotron Radiation Lab and College of Nuclear Science and Technology – name: Nankai University |
Author_xml | – sequence: 1 givenname: Dongdong surname: Ye fullname: Ye, Dongdong organization: College of Chemistry and Molecular Sciences – sequence: 2 givenname: Pengcheng surname: Yang fullname: Yang, Pengcheng organization: College of Life Science – sequence: 3 givenname: Xiaojuan surname: Lei fullname: Lei, Xiaojuan organization: College of Chemistry and Molecular Sciences – sequence: 4 givenname: Donghui surname: Zhang fullname: Zhang, Donghui organization: College of Life Science – sequence: 5 givenname: Liangbin orcidid: 0000-0002-1887-9856 surname: Li fullname: Li, Liangbin organization: National Synchrotron Radiation Lab and College of Nuclear Science and Technology – sequence: 6 givenname: Chunyu surname: Chang fullname: Chang, Chunyu email: changcy@whu.edu.cn organization: College of Chemistry and Molecular Sciences – sequence: 7 givenname: Pingchuan orcidid: 0000-0002-5603-6462 surname: Sun fullname: Sun, Pingchuan organization: Nankai University – sequence: 8 givenname: Lina orcidid: 0000-0003-3890-8690 surname: Zhang fullname: Zhang, Lina email: zhangln@whu.edu.cn organization: College of Chemistry and Molecular Sciences |
BookMark | eNqFkNtqAjEQhkOxULV9hEJeYG2yxyy9EqlaEAq1Xi-zOayR3Y0kscWLvntjlV70xqsZZv5vDv8IDXrTS4QeKZlQEtMn4G7Ct7LrwEs7YTWhRVneoCHNYhJlhMQDNCSsLKK0yPI7NHJuRwgNKBui73dTH5zH0147463Za45nsm0PrXESL4_Cmka2Ds-htpqHBQJ_asDrIO0bvJatiqBprGzAa9PjubFcOqyMxTOwQpvuaPjRh9Km10JbyU8yaPHCmi-_vUe3ClonHy5xjDbzl4_ZMlq9LV5n01UESU59FKs6S4pEqZxBJkEC4yEViWAhpUUqCU3jHJgQcRkrSAtViAw48FykDFidjNHzeS63xjkrVcW1_73YW9BtRUl1crIKTlZ_TlYXJwOd_aP3Vndgj1c5euZO7Z052PC4u8L8ANGplWk |
CitedBy_id | crossref_primary_10_1002_adfm_202214317 crossref_primary_10_1002_adma_202300487 crossref_primary_10_1021_acsanm_3c05231 crossref_primary_10_1021_acsnano_9b02081 crossref_primary_10_1039_D1NR00867F crossref_primary_10_1039_D1GC01392K crossref_primary_10_1039_D0TA04221H crossref_primary_10_1021_acssynbio_4c00336 crossref_primary_10_1002_adfm_201908556 crossref_primary_10_1016_j_carbpol_2019_115609 crossref_primary_10_1016_j_carbpol_2022_119549 crossref_primary_10_1002_pat_6621 crossref_primary_10_3390_jcs5020055 crossref_primary_10_1021_acssuschemeng_8b06691 crossref_primary_10_1126_sciadv_abd2520 crossref_primary_10_1016_j_compositesb_2022_109627 crossref_primary_10_1002_adfm_202200267 crossref_primary_10_1002_smll_201804805 crossref_primary_10_1016_j_apmt_2025_102594 crossref_primary_10_1080_1539445X_2022_2081580 crossref_primary_10_34133_2022_9854063 crossref_primary_10_1016_j_colsurfa_2023_131985 crossref_primary_10_1016_j_cej_2023_142387 crossref_primary_10_1016_j_carbpol_2019_115565 crossref_primary_10_1016_j_cej_2024_150105 crossref_primary_10_1016_j_trechm_2021_09_009 crossref_primary_10_1002_anie_201902578 crossref_primary_10_1016_j_pmatsci_2023_101152 crossref_primary_10_1039_D0TB02288H crossref_primary_10_1002_ange_201902578 crossref_primary_10_1039_C9MH00320G crossref_primary_10_1021_acs_chemmater_8b05183 crossref_primary_10_1039_D3MH00326D crossref_primary_10_1021_acsami_0c18242 crossref_primary_10_1080_20550324_2019_1710974 crossref_primary_10_1016_j_carbpol_2020_117010 crossref_primary_10_1021_acsbiomaterials_9b01812 crossref_primary_10_1021_acs_langmuir_0c02905 crossref_primary_10_1021_acsami_0c01537 crossref_primary_10_1016_j_carbpol_2021_118207 crossref_primary_10_1016_j_compositesb_2022_109616 crossref_primary_10_1039_D4BM01109K crossref_primary_10_1016_j_compositesb_2020_108046 crossref_primary_10_1002_adma_202001135 crossref_primary_10_1016_j_cej_2023_142099 crossref_primary_10_1016_j_ijbiomac_2024_130966 crossref_primary_10_1021_acsnano_0c07613 crossref_primary_10_1021_acs_nanolett_5c00520 crossref_primary_10_1002_admt_201900665 crossref_primary_10_1016_j_ijbiomac_2023_125973 crossref_primary_10_1002_anie_201907670 crossref_primary_10_1002_adma_202000682 crossref_primary_10_1016_j_ijbiomac_2024_134124 crossref_primary_10_1021_acs_chemmater_9b02812 crossref_primary_10_1039_C8CS01007B crossref_primary_10_1021_acs_biomac_2c01370 crossref_primary_10_1016_j_pmatsci_2021_100870 crossref_primary_10_1016_j_cej_2022_135404 crossref_primary_10_1016_j_cej_2022_138876 crossref_primary_10_1016_j_carbpol_2019_115623 crossref_primary_10_1021_acs_nanolett_1c03943 crossref_primary_10_1088_1758_5090_ad6375 crossref_primary_10_1016_j_carbpol_2021_118315 crossref_primary_10_1021_acsnano_0c04298 crossref_primary_10_1002_adfm_202213699 crossref_primary_10_1002_adma_201904762 crossref_primary_10_1016_j_cej_2023_142882 crossref_primary_10_1016_j_polymer_2023_125786 crossref_primary_10_1016_j_cej_2022_138085 crossref_primary_10_1039_D0CP00235F crossref_primary_10_1016_j_biomaterials_2023_122240 crossref_primary_10_1021_acs_biomac_9b00204 crossref_primary_10_1088_2053_1591_abf284 crossref_primary_10_1016_j_mtnano_2022_100290 crossref_primary_10_1021_acs_biomac_8b01278 crossref_primary_10_3390_gels10030212 crossref_primary_10_1007_s10570_020_03249_9 crossref_primary_10_1039_D3BM00744H crossref_primary_10_1007_s40843_019_1236_8 crossref_primary_10_1016_j_ijbiomac_2020_01_034 crossref_primary_10_1016_j_carbpol_2021_117694 crossref_primary_10_2139_ssrn_3983696 crossref_primary_10_1021_acssuschemeng_4c07758 crossref_primary_10_1016_j_envres_2024_120042 crossref_primary_10_1021_acsomega_0c00440 crossref_primary_10_1016_j_nanoen_2024_109974 crossref_primary_10_1039_D1BM00695A crossref_primary_10_3390_molecules26082191 crossref_primary_10_1002_adma_202416916 crossref_primary_10_1002_admt_202000358 crossref_primary_10_1021_acsabm_0c00828 crossref_primary_10_1021_acssuschemeng_0c06411 crossref_primary_10_1007_s10570_020_03068_y crossref_primary_10_1002_adfm_202208074 crossref_primary_10_1007_s11814_023_1578_9 crossref_primary_10_1021_acs_biomac_3c00503 crossref_primary_10_1016_j_bioactmat_2023_06_007 crossref_primary_10_1016_j_carbpol_2024_122523 crossref_primary_10_1021_acs_chemmater_3c02098 crossref_primary_10_1002_adfm_202112685 crossref_primary_10_1021_acs_chemmater_0c03342 crossref_primary_10_1021_acsnano_3c11845 crossref_primary_10_1039_D2QI01050J crossref_primary_10_1016_j_ijbiomac_2024_136804 crossref_primary_10_1016_j_indcrop_2024_118026 crossref_primary_10_1021_acsapm_0c00290 crossref_primary_10_1016_j_cej_2023_142193 crossref_primary_10_1016_j_carbpol_2018_11_056 crossref_primary_10_1021_acs_jafc_9b07671 crossref_primary_10_1021_acsanm_4c04687 crossref_primary_10_1016_j_mseb_2024_117951 crossref_primary_10_1021_acsami_0c09212 crossref_primary_10_1039_D1TB00339A crossref_primary_10_1002_ange_201907670 crossref_primary_10_1021_acs_chemmater_3c00368 crossref_primary_10_1016_j_jmps_2020_103893 crossref_primary_10_1021_acsami_2c01597 crossref_primary_10_1016_j_matpr_2021_09_201 crossref_primary_10_1039_D1TA00143D crossref_primary_10_1021_acs_nanolett_4c01513 crossref_primary_10_1002_mame_202100871 crossref_primary_10_1246_bcsj_20210209 crossref_primary_10_1002_app_53612 crossref_primary_10_1016_j_msec_2022_112654 crossref_primary_10_1002_adma_202305583 crossref_primary_10_1021_acssuschemeng_0c04890 crossref_primary_10_1002_mame_202000285 crossref_primary_10_1016_j_carbpol_2019_03_075 crossref_primary_10_1007_s10529_024_03477_0 crossref_primary_10_1002_adma_201906870 crossref_primary_10_1007_s40097_022_00481_6 crossref_primary_10_1080_87559129_2020_1858313 crossref_primary_10_1016_j_ijsolstr_2023_112325 crossref_primary_10_1002_bab_2162 crossref_primary_10_1021_acssuschemeng_9b02576 crossref_primary_10_1002_adhm_201901396 crossref_primary_10_1039_C8TB02331J crossref_primary_10_1021_acssuschemeng_0c08981 crossref_primary_10_1002_adma_202307772 crossref_primary_10_1039_D2TA09973J crossref_primary_10_1002_pol_20220154 crossref_primary_10_1016_j_ijbiomac_2021_10_034 crossref_primary_10_1002_smll_202201597 crossref_primary_10_1016_j_ijbiomac_2024_130357 crossref_primary_10_1002_slct_202302724 crossref_primary_10_1016_j_molstruc_2023_136305 crossref_primary_10_1016_j_actbio_2024_10_038 crossref_primary_10_1002_cssc_202300518 crossref_primary_10_1016_j_cej_2025_160728 crossref_primary_10_1039_D0LC00517G crossref_primary_10_1016_j_carbpol_2023_120735 crossref_primary_10_1016_j_foodhyd_2024_110079 crossref_primary_10_3390_polym13111841 crossref_primary_10_1016_j_indcrop_2022_114690 crossref_primary_10_1016_j_progpolymsci_2025_101929 crossref_primary_10_1016_j_carbpol_2021_117936 crossref_primary_10_1021_acsapm_4c04199 crossref_primary_10_1016_j_carbpol_2022_119333 crossref_primary_10_1002_sus2_17 |
Cites_doi | 10.1152/ajpheart.00481.2009 10.1126/science.1214804 10.1002/adma.201405757 10.1002/smll.201601893 10.1021/cm4025827 10.1002/mabi.200700007 10.1161/01.RES.0000121101.32286.C8 10.1016/j.biomaterials.2018.01.002 10.1126/scirobotics.aar8580 10.1002/adma.201501099 10.1002/adma.201301300 10.1002/adfm.201000034 10.1002/smll.201702207 10.1002/adma.201700339 10.1016/j.progpolymsci.2015.07.003 10.1038/nmat2778 10.1021/ja4127399 10.1002/adma.201704937 10.1016/j.polymer.2016.06.053 10.1021/ja101969k 10.1039/C4TB01852D 10.1021/ma801110g 10.1038/srep04271 10.1021/ma2001228 10.1002/adma.201703045 10.1085/jgp.201311118 10.1021/ma501699d 10.1021/am507726t 10.1021/nn5064634 10.1038/ncomms5490 10.1002/anie.201708196 10.1039/b707570g 10.1021/acs.chemmater.7b03953 10.1002/anie.201412129 10.1021/acsami.7b14900 10.1038/nature14060 10.1038/nature25476 10.1021/ma200123u |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.chemmater.8b01799 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5002 |
EndPage | 5183 |
ExternalDocumentID | 10_1021_acs_chemmater_8b01799 a822038998 |
GroupedDBID | 29B 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P ROL TN5 TWZ UI2 UPT VF5 VG9 W1F X YZZ -~X .K2 4.4 5VS AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a361t-2fb5373ff68a5eaea8cf68d3d8ea8174e01426a8dd292fa47f7d5acac6d48a8b3 |
IEDL.DBID | ACS |
ISSN | 0897-4756 |
IngestDate | Tue Jul 01 01:13:37 EDT 2025 Thu Apr 24 22:51:18 EDT 2025 Thu Aug 27 13:42:39 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a361t-2fb5373ff68a5eaea8cf68d3d8ea8174e01426a8dd292fa47f7d5acac6d48a8b3 |
ORCID | 0000-0002-1887-9856 0000-0002-5603-6462 0000-0003-3890-8690 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1021_acs_chemmater_8b01799 crossref_primary_10_1021_acs_chemmater_8b01799 acs_journals_10_1021_acs_chemmater_8b01799 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-14 |
PublicationDateYYYYMMDD | 2018-08-14 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-14 day: 14 |
PublicationDecade | 2010 |
PublicationTitle | Chemistry of materials |
PublicationTitleAlternate | Chem. Mater |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Claridge T. D. W. (ref34/cit34) 2016 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref38/cit38 doi: 10.1152/ajpheart.00481.2009 – ident: ref1/cit1 doi: 10.1126/science.1214804 – ident: ref8/cit8 doi: 10.1002/adma.201405757 – ident: ref13/cit13 doi: 10.1002/smll.201601893 – ident: ref16/cit16 doi: 10.1021/cm4025827 – ident: ref33/cit33 doi: 10.1002/mabi.200700007 – ident: ref36/cit36 doi: 10.1161/01.RES.0000121101.32286.C8 – ident: ref26/cit26 doi: 10.1016/j.biomaterials.2018.01.002 – ident: ref27/cit27 doi: 10.1126/scirobotics.aar8580 – ident: ref2/cit2 doi: 10.1002/adma.201501099 – ident: ref6/cit6 doi: 10.1002/adma.201301300 – ident: ref35/cit35 doi: 10.1002/adfm.201000034 – ident: ref10/cit10 doi: 10.1002/smll.201702207 – ident: ref15/cit15 doi: 10.1002/adma.201700339 – ident: ref28/cit28 doi: 10.1016/j.progpolymsci.2015.07.003 – ident: ref19/cit19 doi: 10.1038/nmat2778 – ident: ref21/cit21 doi: 10.1021/ja4127399 – ident: ref22/cit22 doi: 10.1002/adma.201704937 – ident: ref24/cit24 doi: 10.1016/j.polymer.2016.06.053 – ident: ref20/cit20 doi: 10.1021/ja101969k – ident: ref23/cit23 doi: 10.1039/C4TB01852D – ident: ref31/cit31 doi: 10.1021/ma801110g – ident: ref7/cit7 doi: 10.1038/srep04271 – ident: ref18/cit18 doi: 10.1021/ma2001228 – ident: ref3/cit3 doi: 10.1002/adma.201703045 – ident: ref37/cit37 doi: 10.1085/jgp.201311118 – ident: ref17/cit17 doi: 10.1021/ma501699d – ident: ref14/cit14 doi: 10.1021/am507726t – ident: ref25/cit25 doi: 10.1021/nn5064634 – ident: ref30/cit30 doi: 10.1038/ncomms5490 – ident: ref4/cit4 doi: 10.1002/anie.201708196 – ident: ref11/cit11 doi: 10.1039/b707570g – ident: ref5/cit5 doi: 10.1021/acs.chemmater.7b03953 – ident: ref39/cit39 doi: 10.1002/anie.201412129 – ident: ref32/cit32 doi: 10.1021/acsami.7b14900 – volume-title: High-resolution NMR techniques in organic chemistry year: 2016 ident: ref34/cit34 – ident: ref9/cit9 doi: 10.1038/nature14060 – ident: ref29/cit29 doi: 10.1038/nature25476 – ident: ref12/cit12 doi: 10.1021/ma200123u |
SSID | ssj0011028 |
Score | 2.6153781 |
Snippet | The development of a facile and fast method to construct anisotropic hydrogels with the ability to induce unidirectional growth of cells remains challenging.... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 5175 |
Title | Robust Anisotropic Cellulose Hydrogels Fabricated via Strong Self-aggregation Forces for Cardiomyocytes Unidirectional Growth |
URI | http://dx.doi.org/10.1021/acs.chemmater.8b01799 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdd-7D1oVu7jbXdhh72NFAay7IsPwbTLAxWxtJC34w-01A3KrbTkkL_954cJwRG9_EmDCeL09m_3-lOdwh9AQ8jZtLGJEv7jLDUWiJ035G-ZLRvlMlo22PpxxkfXbDvl8nlFjp5JoJPoxOpQflX9gYInK16QgUTyl6gHcpFGrytQT5ehw0CWra0MUvhvQlfXdl5bpoASbregKQNbBm-Rj9XN3SWKSXXvXmjevrh94KN_7rsN2iv45l4sDSMfbRlZwfoZb5q73aAdjcqEb5Fj7-8mtcNHsymtW8qfzvVOLdlOS99bfFoYSo_ARTFQ6navkLW4LupxONwkD7BY1s6Iifguk_ajcZDX8H_BwMhxnmb8Hqz8HoBrBYDx12iaHsEib9V_r65eocuhqfn-Yh0nRmIjHnUEOpUEqexc1zIxEorhYahiY2AIfg4FhwvyqUwhmbUSZa61CRSS80NE1Ko-D3anvmZ_YCwk1zzSCVUcMlUIhRzWRQSyxgQnUilh-grqLLovqy6aIPmNCrCw7V-i06_h4itdrLQXY3z0Gqj_JtYby12uyzy8WeBo_9Z1DF6BSwr1AEnEfuItptqbj8Bk2nU59Z6nwBB__U- |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGeBg88DFAjE8_8ITk0jiO4zxWEaXAtge6ib1F_iwVWT0lKahI_O-c3bRUSID2Zlk653K-5H7nO98h9Ao8jJRJm5IiHzLCcmuJ0ENHhpLRoVGmoLHH0skpn5yzDxfZxR7im7swwEQLK7UxiP-7ukDyJszBa1wCjrPNQKigScUNdBMACQ1O16icbqMHwWhG9Fjk8PiMb27u_G2ZYJl0u2OZdkzM-C76vGUuZpZ8HSw7NdA__qjbeH3u76E7PerEo7Wa3Ed7dnGIDspNs7dDdHunLuED9POTV8u2w6PFvPVd46_mGpe2rpe1by2erEzjZ2BT8Viq2GXIGvxtLvE0HKvP8NTWjsgZOPKzuO147Bv4G2GAx7iM6a-XK69XgHExIN61TY0Hkvhd4793Xx6i8_Hbs3JC-j4NRKY86Qh1Kkvz1DkuZGallULD0KRGwBA8HgtuGOVSGEML6iTLXW4yqaXmhgkpVPoI7S_8wj5G2EmueaIyKrhkKhOKuSIJaWYMYE-i8iP0GkRZ9d9ZW8UQOk2qMLmVb9XL9wixzYZWuq94Hhpv1P8jG2zJrtYlP_5N8OQ6TL1EB5Ozk-Pq-P3px6foFuCvUCGcJOwZ2u-apX0OGKdTL6JC_wKeWf2f |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dixMxEA96gh8Pp54nnudHHnwSUru72Wz2sey51q9DrAcHPiz5rMW9puxulQr-7zdJt6UIKvoWAgmTySTzm8xkBqFnYGEkVJiE5NmQEpoZQ7gaWjIUNB5qqfM41Fh6f8rGZ_TNeXreR1X6vzBARAsztcGJ70_1Qts-w0D0wvfDUi4Ay5lmwKWXpvwquuZdd97wGhWTrQfBK86AIPMMSEjZ5vfO76bx2km1O9ppR82Ut9HnLYEhuuTrYNnJgfrxS-7G_1vBHbTfo088WovLXXTFzA_QjWJT9O0A3drJT3gP_fzo5LLt8Gg-a13XuMVM4cLU9bJ2rcHjlW7cFHQrLoUM1YaMxt9mAk_88_oUT0xtiZiCQT8N249L18CthAEm4yKEwV6snFoB1sWAfNe6NTxM4leN-959OURn5ctPxZj09RqISFjUkdjKNMkSaxkXqRFGcAVNnWgOTbB8DJhjMRNc6ziPraCZzXQqlFBMUy64TO6jvbmbmwcIW8EUi2QacyaoTLmkNo98uBkF-BPJ7Ag9B1ZW_Xlrq-BKj6PKd275W_X8PUJ0s6mV6jOf-wIc9d-GDbbDFuvUH38e8PBfiHqKrn84Kat3r0_fHqObAMN8onAS0Udor2uW5jFAnU4-CTJ9CZ8oADE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Anisotropic+Cellulose+Hydrogels+Fabricated+via+Strong+Self-aggregation+Forces+for+Cardiomyocytes+Unidirectional+Growth&rft.jtitle=Chemistry+of+materials&rft.au=Ye%2C+Dongdong&rft.au=Yang%2C+Pengcheng&rft.au=Lei%2C+Xiaojuan&rft.au=Zhang%2C+Donghui&rft.date=2018-08-14&rft.pub=American+Chemical+Society&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=30&rft.issue=15&rft.spage=5175&rft.epage=5183&rft_id=info:doi/10.1021%2Facs.chemmater.8b01799&rft.externalDocID=a822038998 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon |