Improved Catalytic Activity of Ruthenium–Arene Complexes in the Reduction of NAD
A series of neutral RuII half-sandwich complexes of the type [(η6-arene)Ru(N,N′)Cl] where the arene is para-cymene (p-cym), hexamethylbenzene (hmb), biphenyl (bip), or benzene (bn) and N,N′ is N-(2-aminoethyl)-4-(trifluoromethyl)benzenesulfonamide (TfEn), N-(2-aminoethyl)-4-toluenesulfonamide (TsEn)...
Saved in:
Published in | Organometallics Vol. 31; no. 16; pp. 5958 - 5967 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
27.08.2012
|
Online Access | Get full text |
Cover
Loading…
Abstract | A series of neutral RuII half-sandwich complexes of the type [(η6-arene)Ru(N,N′)Cl] where the arene is para-cymene (p-cym), hexamethylbenzene (hmb), biphenyl (bip), or benzene (bn) and N,N′ is N-(2-aminoethyl)-4-(trifluoromethyl)benzenesulfonamide (TfEn), N-(2-aminoethyl)-4-toluenesulfonamide (TsEn), or N-(2-aminoethyl)methylenesulfonamide (MsEn) were synthesized and characterized. X-ray crystal structures of [(p-cym)Ru(MsEn)Cl] (1), [(hmb)Ru(TsEn)Cl] (5), [(hmb)Ru(TfEn)Cl] (6), [(bip)Ru(MsEn)Cl] (7), and [(bip)Ru(TsEn)Cl] (8) have been determined. The complexes can regioselectively catalyze the transfer hydrogenation of NAD+ to give 1,4-NADH in the presence of formate. The turnover frequencies (TOF) when the arene is varied decrease in the order bn > bip > p-cym > hmb for complexes with the same N,N′ chelating ligand. The TOF decreased with variation in the N,N′ chelating ligand in the order TfEn > TsEn > MsEn for a given arene. [(bn)Ru(TfEn)Cl] (12) was the most active, with a TOF of 10.4 h–1. The effects of NAD+ and formate concentration on the reaction rates were determined for [(p-cym)Ru(TsEn)Cl] (2). Isotope studies implicated the formation of [(arene)Ru(N,N′)(H)] as the rate-limiting step. The coordination of formate and subsequent CO2 elimination to generate the hydride were modeled computationally by density functional theory (DFT). CO2 elimination occurs via a two-step process with the coordinated formate first twisting to present its hydrogen toward the metal center. The computed barriers for CO2 release for arene = benzene follow the order MsEn > TsEn > TfEn, and for the MsEn system the barrier followed bn < hmb, both consistent with the observed rates. The effect of methanol on transfer hydrogenation rates in aqueous solution was investigated. A study of pH dependence of the reaction in D2O gave the optimum pH* as 7.2 with a TOF of 1.58 h–1 for 2. The series of compounds reported here show an improvement in the catalytic activity by an order of magnitude compared to the ethylenediamine analogues. |
---|---|
AbstractList | A series of neutral RuII half-sandwich complexes of the type [(η6-arene)Ru(N,N′)Cl] where the arene is para-cymene (p-cym), hexamethylbenzene (hmb), biphenyl (bip), or benzene (bn) and N,N′ is N-(2-aminoethyl)-4-(trifluoromethyl)benzenesulfonamide (TfEn), N-(2-aminoethyl)-4-toluenesulfonamide (TsEn), or N-(2-aminoethyl)methylenesulfonamide (MsEn) were synthesized and characterized. X-ray crystal structures of [(p-cym)Ru(MsEn)Cl] (1), [(hmb)Ru(TsEn)Cl] (5), [(hmb)Ru(TfEn)Cl] (6), [(bip)Ru(MsEn)Cl] (7), and [(bip)Ru(TsEn)Cl] (8) have been determined. The complexes can regioselectively catalyze the transfer hydrogenation of NAD+ to give 1,4-NADH in the presence of formate. The turnover frequencies (TOF) when the arene is varied decrease in the order bn > bip > p-cym > hmb for complexes with the same N,N′ chelating ligand. The TOF decreased with variation in the N,N′ chelating ligand in the order TfEn > TsEn > MsEn for a given arene. [(bn)Ru(TfEn)Cl] (12) was the most active, with a TOF of 10.4 h–1. The effects of NAD+ and formate concentration on the reaction rates were determined for [(p-cym)Ru(TsEn)Cl] (2). Isotope studies implicated the formation of [(arene)Ru(N,N′)(H)] as the rate-limiting step. The coordination of formate and subsequent CO2 elimination to generate the hydride were modeled computationally by density functional theory (DFT). CO2 elimination occurs via a two-step process with the coordinated formate first twisting to present its hydrogen toward the metal center. The computed barriers for CO2 release for arene = benzene follow the order MsEn > TsEn > TfEn, and for the MsEn system the barrier followed bn < hmb, both consistent with the observed rates. The effect of methanol on transfer hydrogenation rates in aqueous solution was investigated. A study of pH dependence of the reaction in D2O gave the optimum pH* as 7.2 with a TOF of 1.58 h–1 for 2. The series of compounds reported here show an improvement in the catalytic activity by an order of magnitude compared to the ethylenediamine analogues. |
Author | Habtemariam, Abraha Deeth, Robert J Soldevila-Barreda, Joan J Clarkson, Guy J Sadler, Peter J Bruijnincx, Pieter C. A |
AuthorAffiliation | University of Warwick Utrecht University |
AuthorAffiliation_xml | – name: University of Warwick – name: Utrecht University |
Author_xml | – sequence: 1 givenname: Joan J surname: Soldevila-Barreda fullname: Soldevila-Barreda, Joan J – sequence: 2 givenname: Pieter C. A surname: Bruijnincx fullname: Bruijnincx, Pieter C. A – sequence: 3 givenname: Abraha surname: Habtemariam fullname: Habtemariam, Abraha – sequence: 4 givenname: Guy J surname: Clarkson fullname: Clarkson, Guy J – sequence: 5 givenname: Robert J surname: Deeth fullname: Deeth, Robert J – sequence: 6 givenname: Peter J surname: Sadler fullname: Sadler, Peter J email: p.j.sadler@warwick.ac.uk |
BookMark | eNptkL1OwzAURi1UJEph4A28MDCEXtup3YxR-KtUgVTBHDmOI1wldmU7Fd14B96QJyFVEQPqdId7ztV3v3M0ss5qhK4I3BKgZOo6BsAZiBM0JjMKCYeUjNAYqOCJYIydofMQ1jBAgtExWi26jXdbXeNCRtnuolE4V9FsTdxh1-BVH9-1NX33_fmVe201Lly3afWHDthYPCzxStf9YDi755_zuwt02sg26MvfOUFvD_evxVOyfHlcFPkykYxDTBogDVQZSznNBJOaE15rpkidphmvapUNyedKKFIxQVOtSCNJBXPgM0FncyHYBE0Pd5V3IXjdlMpEuQ8SvTRtSaDcV1L-VTIYN_-MjTed9Luj7PWBlSqUa9d7O_xyhPsBpI5uzg |
CitedBy_id | crossref_primary_10_1021_acscatal_7b02387 crossref_primary_10_1039_C8SC02371A crossref_primary_10_1016_j_ccr_2023_215228 crossref_primary_10_1039_C8DT00438B crossref_primary_10_1016_j_tetasy_2014_08_011 crossref_primary_10_1039_C6CC02002J crossref_primary_10_1039_D0CB00150C crossref_primary_10_1039_D2RA01890J crossref_primary_10_1002_chem_201701714 crossref_primary_10_1039_D1SC01939B crossref_primary_10_3390_molecules18066804 crossref_primary_10_1021_acs_jmedchem_8b00906 crossref_primary_10_1002_chem_201501875 crossref_primary_10_1016_j_cbpa_2015_01_024 crossref_primary_10_1016_j_jorganchem_2024_123168 crossref_primary_10_1039_c3cs35466k crossref_primary_10_1016_j_ccr_2023_215230 crossref_primary_10_1021_acs_inorgchem_2c00059 crossref_primary_10_1021_acs_organomet_6b00179 crossref_primary_10_1021_acs_organomet_5b00713 crossref_primary_10_1039_C8CY01190G crossref_primary_10_3762_bjoc_10_267 crossref_primary_10_1039_C9CE01290G crossref_primary_10_1016_j_jorganchem_2017_03_038 crossref_primary_10_1021_acscatal_5b02820 crossref_primary_10_1039_c3gc37129h crossref_primary_10_1021_acs_inorgchem_3c04040 crossref_primary_10_1016_j_renene_2020_04_022 crossref_primary_10_1021_acscatal_0c02261 crossref_primary_10_1016_j_jelechem_2020_113882 crossref_primary_10_1021_acscatal_3c02487 crossref_primary_10_1021_acs_inorgchem_8b00346 crossref_primary_10_1038_ncomms7582 crossref_primary_10_1039_C6DT01242F crossref_primary_10_1021_acs_inorgchem_8b00625 crossref_primary_10_1039_C6RA23663D crossref_primary_10_1021_acs_chemrev_8b00493 crossref_primary_10_1016_j_jcat_2023_115185 crossref_primary_10_1002_chem_201705899 crossref_primary_10_1039_C9DT02030F crossref_primary_10_1021_om400862n crossref_primary_10_1021_acs_inorgchem_0c02287 crossref_primary_10_1021_acs_organomet_6b00907 crossref_primary_10_1039_D1FD00075F crossref_primary_10_1016_j_jinorgbio_2015_10_008 crossref_primary_10_3390_molecules25194540 crossref_primary_10_1039_D0SC04082G crossref_primary_10_1039_D1DT03856G crossref_primary_10_1016_j_molcatb_2015_10_007 crossref_primary_10_1021_cs401224g crossref_primary_10_1021_acs_inorgchem_2c03100 crossref_primary_10_1021_acs_organomet_3c00286 crossref_primary_10_1021_acs_organomet_8b00132 crossref_primary_10_1039_D3CY01048A crossref_primary_10_1021_acs_chemrev_6b00168 crossref_primary_10_1021_acs_inorgchem_2c04079 crossref_primary_10_1021_om500356e crossref_primary_10_1039_D0DT01935F crossref_primary_10_1021_acs_inorgchem_6b01028 crossref_primary_10_1039_c3dt32733g crossref_primary_10_1007_s11244_013_0187_y crossref_primary_10_1021_acs_inorgchem_6b02474 |
Cites_doi | 10.1089/ars.2007.1672 10.1063/1.3382344 10.1039/c1ob05482a 10.1063/1.463096 10.1016/j.tetlet.2009.08.035 10.1016/j.jorganchem.2009.10.015 10.1002/anie.200602122 10.1016/j.tet.2011.06.067 10.1002/ejic.200700505 10.1021/ol802801p 10.1021/ja211684v 10.1002/cssc.201100484 10.1002/asia.200900461 10.1517/14728222.11.5.695 10.1021/jm010051m 10.1039/b508541a 10.1021/ic010562z 10.1021/jo100256t 10.1107/S0108767307043930 10.1039/b600496b 10.1039/c39880001150 10.1007/s00280-003-0726-5 10.1021/ja207785f 10.1002/ejic.201100800 10.1007/s00775-006-0098-5 10.1016/j.enzmictec.2008.10.019 10.1071/CH10239 10.1002/aoc.1623 10.1039/c1cc12326b 10.1021/ja809724s 10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4 10.1351/pac200072071337 10.1002/hc.20641 10.1073/pnas.0505798102 10.1016/j.jorganchem.2009.09.008 10.1021/ja055886r 10.1039/c1dt10544b 10.1002/wcms.81 10.1021/jp056016z 10.1021/om100127f 10.1021/om9001268 10.1021/jm060596m 10.1039/b606288a |
ContentType | Journal Article |
Copyright | Copyright © 2012 American
Chemical Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/om3006307 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-6041 |
EndPage | 5967 |
ExternalDocumentID | 10_1021_om3006307 b664242002 |
GroupedDBID | 123 4.4 55A 7~N AABXI ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AFFNX ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ LG6 P2P ROL TN5 TWZ UI2 VF5 VG9 VQA W1F X XFK XKZ YNT YZZ -DZ -~X 5VS 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK XSW |
ID | FETCH-LOGICAL-a360t-f01f0b93462973ae616de3c1d4496bdc96048c7c1b3724ec1fa1b080657258773 |
IEDL.DBID | ACS |
ISSN | 0276-7333 |
IngestDate | Thu Apr 24 23:09:18 EDT 2025 Tue Jul 01 00:53:29 EDT 2025 Thu Aug 27 13:42:24 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a360t-f01f0b93462973ae616de3c1d4496bdc96048c7c1b3724ec1fa1b080657258773 |
OpenAccessLink | https://dspace.library.uu.nl/handle/1874/272489 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1021_om3006307 crossref_primary_10_1021_om3006307 acs_journals_10_1021_om3006307 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-27 |
PublicationDateYYYYMMDD | 2012-08-27 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-27 day: 27 |
PublicationDecade | 2010 |
PublicationTitle | Organometallics |
PublicationTitleAlternate | Organometallics |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Dibenedetto A. (ref8/cit8) 2012; 5 Watanabe M. (ref20/cit20) 2012 Wang F. (ref47/cit47) 2005; 102 Lo H. C. (ref33/cit33) 2001; 40 Schäfer A. (ref38/cit38) 1992; 97 Morris R. E. (ref42/cit42) 2001; 6 Thai T. (ref23/cit23) 2009; 694 Ying W. (ref2/cit2) 2008; 10 Wu J. (ref29/cit29) 2006 Khan J. A. (ref3/cit3) 2007; 11 Yan Y. K. (ref31/cit31) 2006; 11 Clayden J. (ref48/cit48) 2001 Hileman E. O. (ref4/cit4) 2004; 53 Weckbecker A. (ref5/cit5) 2010; 120 Haquette P. (ref45/cit45) 2011; 9 Zhou Z. (ref30/cit30) 2010; 21 Sheldrick G. M. (ref36/cit36) 2007; 64 Wang C. (ref22/cit22) 2011; 47 Held M. (ref6/cit6) 2000; 72 Maenaka Y. (ref10/cit10) 2012; 134 Leiva C. (ref18/cit18) 2010; 695 Kim Y. H. (ref9/cit9) 2009; 44 Noyori R. (ref16/cit16) 2002; 41 Matharu D. S. (ref15/cit15) 2006 Creutz C. (ref25/cit25) 2009; 131 Romain C. (ref11/cit11) 2010; 29 Fish R. H. (ref17/cit17) 2010; 63 Carrión M. C. (ref12/cit12) 2009; 28 Zhou Z. (ref21/cit21) 2011 ref35/cit35 Martins J. E. D. (ref27/cit27) 2009; 11 Li X. (ref28/cit28) 2010; 75 Sinnecker S. (ref40/cit40) 2006; 110 Robertson A. (ref26/cit26) 2011; 40 Tan J. (ref19/cit19) 2011; 67 Matthew C. K. (ref1/cit1) 2002 Neese F. (ref37/cit37) 2012; 2 Peacock A. F. A. (ref43/cit43) 2006; 128 Wolfson A. (ref13/cit13) 2009; 50 Habtemariam A. (ref34/cit34) 2006; 49 Weigend F. (ref39/cit39) 2005; 7 Grimme S. (ref41/cit41) 2010; 132 Chen Q. (ref7/cit7) 2012; 134 Grau M. M. (ref14/cit14) 2010; 24 Sandoval C. A. (ref24/cit24) 2010; 5 Wu X. (ref46/cit46) 2006; 45 Canivet J. (ref44/cit44) 2007 Ruppert R. (ref32/cit32) 1988; 1 |
References_xml | – volume: 10 start-page: 179 year: 2008 ident: ref2/cit2 publication-title: Antioxid. Redox Signaling doi: 10.1089/ars.2007.1672 – volume: 132 start-page: 154104 year: 2010 ident: ref41/cit41 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 9 start-page: 5720 year: 2011 ident: ref45/cit45 publication-title: Org. Biomol. Chem. doi: 10.1039/c1ob05482a – volume: 97 start-page: 2571 year: 1992 ident: ref38/cit38 publication-title: J. Chem. Phys. doi: 10.1063/1.463096 – volume-title: Biochemistry year: 2002 ident: ref1/cit1 – volume: 50 start-page: 5951 year: 2009 ident: ref13/cit13 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2009.08.035 – volume: 695 start-page: 145 year: 2010 ident: ref18/cit18 publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2009.10.015 – volume: 45 start-page: 6718 year: 2006 ident: ref46/cit46 publication-title: Angew. Chem., Int. Ed doi: 10.1002/anie.200602122 – volume: 67 start-page: 6206 year: 2011 ident: ref19/cit19 publication-title: Tetrahedron doi: 10.1016/j.tet.2011.06.067 – start-page: 4736 year: 2007 ident: ref44/cit44 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200700505 – volume: 120 start-page: 195 year: 2010 ident: ref5/cit5 publication-title: Adv. Biochem. Eng./Biotechnol. – volume: 11 start-page: 847 year: 2009 ident: ref27/cit27 publication-title: Org. Lett. doi: 10.1021/ol802801p – volume: 134 start-page: 2442 year: 2012 ident: ref7/cit7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211684v – volume: 5 start-page: 373 year: 2012 ident: ref8/cit8 publication-title: ChemSusChem doi: 10.1002/cssc.201100484 – volume: 5 start-page: 806 year: 2010 ident: ref24/cit24 publication-title: Chem. Asian J. doi: 10.1002/asia.200900461 – volume: 11 start-page: 695 year: 2007 ident: ref3/cit3 publication-title: Expert Opin. Ther. Targets doi: 10.1517/14728222.11.5.695 – ident: ref35/cit35 – volume: 6 start-page: 3616 year: 2001 ident: ref42/cit42 publication-title: J. Med. Chem. doi: 10.1021/jm010051m – volume: 7 start-page: 3297 year: 2005 ident: ref39/cit39 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b508541a – volume: 40 start-page: 6705 year: 2001 ident: ref33/cit33 publication-title: Inorg. Chem. doi: 10.1021/ic010562z – volume: 75 start-page: 2981 year: 2010 ident: ref28/cit28 publication-title: J. Org. Chem. doi: 10.1021/jo100256t – volume: 64 start-page: 112 year: 2007 ident: ref36/cit36 publication-title: Acta Crystallogr. A doi: 10.1107/S0108767307043930 – start-page: 1766 year: 2006 ident: ref29/cit29 publication-title: Chem. Commun. doi: 10.1039/b600496b – volume: 1 start-page: 1150 year: 1988 ident: ref32/cit32 publication-title: Chem. Commun. doi: 10.1039/c39880001150 – volume: 53 start-page: 209 year: 2004 ident: ref4/cit4 publication-title: Cancer Chemother. Pharm. doi: 10.1007/s00280-003-0726-5 – volume: 134 start-page: 367 year: 2012 ident: ref10/cit10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207785f – start-page: 504 year: 2012 ident: ref20/cit20 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201100800 – volume: 11 start-page: 483 year: 2006 ident: ref31/cit31 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-006-0098-5 – volume: 44 start-page: 129 year: 2009 ident: ref9/cit9 publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2008.10.019 – volume: 63 start-page: 1505 year: 2010 ident: ref17/cit17 publication-title: Aust. J. Chem. doi: 10.1071/CH10239 – start-page: 556 year: 2011 ident: ref21/cit21 publication-title: Appl. Organomet. Chem. – volume: 24 start-page: 380 year: 2010 ident: ref14/cit14 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.1623 – volume: 47 start-page: 9773 year: 2011 ident: ref22/cit22 publication-title: Chem. Commun. doi: 10.1039/c1cc12326b – volume: 131 start-page: 2794 year: 2009 ident: ref25/cit25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809724s – volume: 41 start-page: 2008 year: 2002 ident: ref16/cit16 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4 – volume: 72 start-page: 1337 year: 2000 ident: ref6/cit6 publication-title: Pure Appl. Chem. doi: 10.1351/pac200072071337 – volume-title: Organic Chemistry year: 2001 ident: ref48/cit48 – volume: 21 start-page: 505 year: 2010 ident: ref30/cit30 publication-title: Heteroat. Chem. doi: 10.1002/hc.20641 – volume: 102 start-page: 18269 year: 2005 ident: ref47/cit47 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0505798102 – volume: 694 start-page: 3973 year: 2009 ident: ref23/cit23 publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2009.09.008 – volume: 128 start-page: 1739 year: 2006 ident: ref43/cit43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055886r – volume: 40 start-page: 10304 year: 2011 ident: ref26/cit26 publication-title: Dalton Trans. doi: 10.1039/c1dt10544b – volume: 2 start-page: 73 year: 2012 ident: ref37/cit37 publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.81 – volume: 110 start-page: 2235 year: 2006 ident: ref40/cit40 publication-title: J. Phys. Chem. A doi: 10.1021/jp056016z – volume: 29 start-page: 1992 year: 2010 ident: ref11/cit11 publication-title: Organometallics doi: 10.1021/om100127f – volume: 28 start-page: 3822 year: 2009 ident: ref12/cit12 publication-title: Organometallics doi: 10.1021/om9001268 – volume: 49 start-page: 6858 year: 2006 ident: ref34/cit34 publication-title: J. Med. Chem. doi: 10.1021/jm060596m – start-page: 3232 year: 2006 ident: ref15/cit15 publication-title: Chem. Commun. doi: 10.1039/b606288a |
SSID | ssj0006732 |
Score | 2.326727 |
Snippet | A series of neutral RuII half-sandwich complexes of the type [(η6-arene)Ru(N,N′)Cl] where the arene is para-cymene (p-cym), hexamethylbenzene (hmb), biphenyl... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 5958 |
Title | Improved Catalytic Activity of Ruthenium–Arene Complexes in the Reduction of NAD |
URI | http://dx.doi.org/10.1021/om3006307 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwELVKOcCFHVGWygIOXFzipXZ6jFKqikMPhUq9RbEzkSraFNFWAk78A3_IlxBnqSqV5ZwX2RpbnvHM-D2EriMTu67QirA41ERoKojWwAg3RkgQwGmcdfn2ZHcg7ofNYQVd_VLBZ_R2OuEZMZTaQJtMusresDz_YXncSpWpkKXXK0kU57ykD1r91boeM1txPSs-pLOL2uVLnLx15KmxmOuGeV8nZvxrentop4ghsZcv-j6qQHKAtvxSuu0Q9fNUAUTYt9mZtxSHPZPrROBpjLO29mS0mHx9fHqW0xLbY2EMrzDDowSnH3HfUrraRbP4ntc-QoPO3aPfJYV4Agm5dOYkdmjs6BYX0qpThSCpjIAbGgnRkjoylpTFNcpQzRUTYGgcUu3YMqtizdTK_BhVk2kCJwgrV4JyIulAk4s4DF2dCaVDCIIqo6CG6ql1g2Lzz4Ksrs1osDRNDd2Uhg9MQT1uFTDGP0Evl9DnnG9jHXT634BnaDsNbJjN_TJ1jqrzlwVcpMHDXNezzfMNt8i80w |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTttAEB6lcKCXlp-i0vKzQkXiYvD-ZNc5cLBMo1BoDkCk3FzveiyhglPVidr01HfgxqvwNjxJdzdOiNpKPSH17NF61zPemdmZ_T6Ad7kpokhoFbAi04HQVARaIwu4MUKiQE4L3-XblZ2e-NBv9htwN70LYydR2ZEqX8R_RBegh4Mb7vGhVN1AeYrjbzY9q45Ojq0u9xhrv79MOkHNIBBkXIbDoAhpEeoWF9JRNGUoqcyRG5oL0ZI6Nw6ZJDLKUM0VE2hokVEdulqjYs1IKW7HfQaLNuhhLrGLk4vZLi-VJz-zWZ0MFOd8ilo0P1Xn8Uw15_HmXFf7JdzPFu07Vj4fjIb6wPz4DQ_y__wqy_CijphJPDHxFWhguQpLyZSobg3OJwcjmJPEnUWNrRyJzYQVgwwK4pv4y6vRzcPP29gheBK3CV7jd6zIVUnsQ3LuAGydiTr5bnz8CnpPsqR1WCgHJb4GoiKJKsxliE0uiiyLtKeFxwwFVUbhBmxbTaT1r16lvorPaDpTxQbsT_Wdmhpo3fF9XP9NdHcm-mWCLvKn0Jt_vXAHljqXH8_Ss5Pu6Vt4bkM65k69mdqEheHXEW7ZsGmot739Evj01KbxC1KMHNg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbhMxEB6FVAIuUP5EKE0tBBKXLeuf2NsDh1XSKCUoQqWVelvW3rFU0W4qNlF_TrwD975K34Unqe1soohW6qkS5x157Z2xZ8Yz-30A7wtjk0RoFTGb60hoKiKtkUXcGCFRIKc2dPmO5GBffDnoHDTgcv4vjJtE5UaqQhHf7-qTwtYIA_TT-JgHjChVN1EO8fzUpWjV552e0-cHxvrbe91BVLMIRDmX8SSyMbWx3uJCepqmHCWVBXJDCyG2pC6MRydJjDJUc8UEGmpzqmNfb1SskyjF3bgPYMWXB31yl3a_L056qQIBmsvsZKQ453PkouWpeq9nqiWvt-S--k_harHw0LXyc3M60Zvm4h9MyP_3y6zCkzpyJunM1J9BA8vn8Kg7J6x7AbuzCxIsSNffSZ07OZKaGTsGGVsSmvnLw-nx399_Uo_kSfxheIRnWJHDkriHZNcD2XpT9fKjtPcS9u9lSa-gWY5LfA1EJRJVXMgYO1zYPE90oIfHHAVVRmEL2k4bWb3lqyxU8xnNFqpowce5zjNTA6573o-j20TfLURPZigjN4Xe3PXCDXj4rdfPvu6Mhmvw2EV2zF9-M_UWmpNfU1x30dNEt4MJE_hx35ZxDRgKH1s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Catalytic+Activity+of+Ruthenium%E2%80%93Arene+Complexes+in+the+Reduction+of+NAD&rft.jtitle=Organometallics&rft.au=Soldevila-Barreda%2C+Joan+J.&rft.au=Bruijnincx%2C+Pieter+C.+A.&rft.au=Habtemariam%2C+Abraha&rft.au=Clarkson%2C+Guy+J.&rft.date=2012-08-27&rft.issn=0276-7333&rft.eissn=1520-6041&rft.volume=31&rft.issue=16&rft.spage=5958&rft.epage=5967&rft_id=info:doi/10.1021%2Fom3006307&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_om3006307 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0276-7333&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0276-7333&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0276-7333&client=summon |