Wavelet packet analysis of blasting vibration signal of mountain tunnel

Using drilling and blasting method to construct the Mountain tunnel, it is important to monitoring and analysis of blasting seismic wave. The research of simple characteristics of blasting vibration wave such as amplitude, frequency, duration in the previous study, it is lack the detailed characteri...

Full description

Saved in:
Bibliographic Details
Published inSoil dynamics and earthquake engineering (1984) Vol. 117; pp. 72 - 80
Main Authors Huang, Dan, Cui, Shuo, Li, Xiaoqing
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.02.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using drilling and blasting method to construct the Mountain tunnel, it is important to monitoring and analysis of blasting seismic wave. The research of simple characteristics of blasting vibration wave such as amplitude, frequency, duration in the previous study, it is lack the detailed characteristics of blasting seismic waves such as frequency distribution characteristics of blasting seismic wave, blasting energy distribution. Thus, Fourier transform and wavelet packet transform are both used to analysis the time - frequency characteristics of measured vibration signal, and the characteristics of its multi-frequency band and energy distribution are discussed. The blasting vibration with the blasting charge of 79.2 kg are did, and the wave are received distance blast source 10 m, 25 m, 40 m. The maximum three vector resultant velocity at 10 m is 5.84 cm/s, which meets the specification safety requirement. Analysis of blasting vibration signals of vertical axis which distance blast source 10 m, the main frequency of this signal is 101.9 Hz, and the relative amplitude is 2382 use by Fourier transform. The Wavelet packet analysis show that, blasting vibration signal has obvious energy distribution characteristics of multi-frequency band. The dominant frequency band (31.25 Hz~125.00 Hz) contains more than 70% of the energy of vibration signal. •The blasting vibration test was carried out on the Xiaobei No.1 tunnel.•Fourier transform and wavelet packet analysis are performed on the same signal.•The highest frequency band was found in the first 10 bands.
AbstractList Using drilling and blasting method to construct the Mountain tunnel, it is important to monitoring and analysis of blasting seismic wave. The research of simple characteristics of blasting vibration wave such as amplitude, frequency, duration in the previous study, it is lack the detailed characteristics of blasting seismic waves such as frequency distribution characteristics of blasting seismic wave, blasting energy distribution. Thus, Fourier transform and wavelet packet transform are both used to analysis the time - frequency characteristics of measured vibration signal, and the characteristics of its multi-frequency band and energy distribution are discussed. The blasting vibration with the blasting charge of 79.2 kg are did, and the wave are received distance blast source 10 m, 25 m, 40 m. The maximum three vector resultant velocity at 10 m is 5.84 cm/s, which meets the specification safety requirement. Analysis of blasting vibration signals of vertical axis which distance blast source 10 m, the main frequency of this signal is 101.9 Hz, and the relative amplitude is 2382 use by Fourier transform. The Wavelet packet analysis show that, blasting vibration signal has obvious energy distribution characteristics of multi-frequency band. The dominant frequency band (31.25 Hz~125.00 Hz) contains more than 70% of the energy of vibration signal. •The blasting vibration test was carried out on the Xiaobei No.1 tunnel.•Fourier transform and wavelet packet analysis are performed on the same signal.•The highest frequency band was found in the first 10 bands.
Using drilling and blasting method to construct the Mountain tunnel, it is important to monitoring and analysis of blasting seismic wave. The research of simple characteristics of blasting vibration wave such as amplitude, frequency, duration in the previous study, it is lack the detailed characteristics of blasting seismic waves such as frequency distribution characteristics of blasting seismic wave, blasting energy distribution. Thus, Fourier transform and wavelet packet transform are both used to analysis the time - frequency characteristics of measured vibration signal, and the characteristics of its multi-frequency band and energy distribution are discussed. The blasting vibration with the blasting charge of 79.2 kg are did, and the wave are received distance blast source 10 m, 25 m, 40 m. The maximum three vector resultant velocity at 10 m is 5.84 cm/s, which meets the specification safety requirement. Analysis of blasting vibration signals of vertical axis which distance blast source 10 m, the main frequency of this signal is 101.9 Hz, and the relative amplitude is 2382 use by Fourier transform. The Wavelet packet analysis show that, blasting vibration signal has obvious energy distribution characteristics of multi-frequency band. The dominant frequency band (31.25 Hz~125.00 Hz) contains more than 70% of the energy of vibration signal.
Author Huang, Dan
Li, Xiaoqing
Cui, Shuo
Author_xml – sequence: 1
  givenname: Dan
  surname: Huang
  fullname: Huang, Dan
  email: 2017502016@hust.edu.cn
  organization: School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Shuo
  surname: Cui
  fullname: Cui, Shuo
  organization: CCCC Second Highway Consultants Co., Ltd, Wuhan 430052, China
– sequence: 3
  givenname: Xiaoqing
  surname: Li
  fullname: Li, Xiaoqing
  organization: School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
BookMark eNqFkMFKAzEQhoNUsFYfQVjwvGsmm002eBApWoWCF0VvIZtmS-o2qUm20Ld3a3vy0tMc5v9-Zr5LNHLeGYRuABeAgd2tiuhtt9i5gmCoC4ACk-oMjaHmIi8pfI3QGBPGc04YXKDLGFcYA4eajdHsU21NZ1K2Ufp7GMqpbhdtzHybNZ2KybpltrVNUMl6l0W7HAL75dr3LinrstQ7Z7ordN6qLprr45ygj-en9-lLPn-bvU4f57kqGU65aDTXVcUIN4SWmmKMdVkTUzLDBcVM1yAaVmlCaWMw4FYIXpOWlFopClVTTtDtoXcT_E9vYpIr34fhpigJcMZEzagYUtUhpYOPMZhWboJdq7CTgOXemVzJozO5dyYB5OBs4O7_cdqmv89TULY7ST8caDMI2FoTZNTWOG0WNhid5MLbEw2_sXSNiw
CitedBy_id crossref_primary_10_21595_jve_2021_22128
crossref_primary_10_1016_j_apm_2019_05_005
crossref_primary_10_1080_13632469_2023_2232031
crossref_primary_10_1155_2021_3318965
crossref_primary_10_1007_s11771_023_5466_6
crossref_primary_10_1016_j_apacoust_2022_109097
crossref_primary_10_1016_j_tust_2021_103871
crossref_primary_10_3390_app14052212
crossref_primary_10_1038_s41598_025_94411_5
crossref_primary_10_1155_2022_4501189
crossref_primary_10_1155_2022_7151294
crossref_primary_10_1007_s12205_023_1732_2
crossref_primary_10_1061_JLEED9_EYENG_5590
crossref_primary_10_1155_2020_4381480
crossref_primary_10_1155_2022_2800481
crossref_primary_10_1109_JSEN_2023_3336530
crossref_primary_10_1088_1755_1315_638_1_012075
crossref_primary_10_1109_ACCESS_2021_3065825
crossref_primary_10_1007_s10706_023_02573_8
crossref_primary_10_1007_s11356_023_29712_1
crossref_primary_10_2139_ssrn_3996743
crossref_primary_10_3390_min12020242
crossref_primary_10_1016_j_istruc_2023_105728
crossref_primary_10_1016_j_tust_2020_103564
crossref_primary_10_1007_s11709_022_0861_x
crossref_primary_10_1007_s12517_022_09899_2
crossref_primary_10_1016_j_jrmge_2021_07_002
crossref_primary_10_1016_j_tws_2022_109860
crossref_primary_10_1016_j_jrmge_2021_12_005
crossref_primary_10_1016_j_soildyn_2019_105813
crossref_primary_10_1080_00207721_2024_2409850
crossref_primary_10_1364_AO_446526
crossref_primary_10_1007_s00603_023_03272_9
crossref_primary_10_1016_j_simpat_2024_103043
crossref_primary_10_3390_chemosensors11020146
crossref_primary_10_1061__ASCE_GM_1943_5622_0002589
crossref_primary_10_1155_2021_8816755
crossref_primary_10_1631_jzus_A1900382
crossref_primary_10_3390_s19194084
crossref_primary_10_1016_j_tust_2024_105999
crossref_primary_10_3390_app14135940
crossref_primary_10_1016_j_jobe_2023_106892
crossref_primary_10_1142_S0219455422500031
crossref_primary_10_3390_s23125477
crossref_primary_10_1016_j_tust_2022_104700
crossref_primary_10_1038_s41598_023_47755_9
crossref_primary_10_1007_s12665_021_09506_9
crossref_primary_10_1016_j_energy_2023_128871
crossref_primary_10_1155_2020_8897441
crossref_primary_10_1038_s41598_025_92003_x
crossref_primary_10_1007_s10064_023_03199_z
crossref_primary_10_1007_s13349_020_00458_5
crossref_primary_10_1080_19475705_2023_2284653
crossref_primary_10_1109_JSEN_2022_3197941
crossref_primary_10_1007_s12205_021_1241_0
crossref_primary_10_1007_s10064_021_02442_9
crossref_primary_10_1007_s12613_022_2575_4
crossref_primary_10_1016_j_heliyon_2024_e37339
crossref_primary_10_1038_s41598_023_40728_y
crossref_primary_10_1016_j_enggeo_2025_108038
crossref_primary_10_1016_j_jappgeo_2023_105212
crossref_primary_10_1016_j_ijrmms_2021_104708
crossref_primary_10_1007_s00603_024_03957_9
crossref_primary_10_1038_s41598_024_73089_1
crossref_primary_10_3390_su14138200
crossref_primary_10_1016_j_geoen_2025_213791
crossref_primary_10_1007_s12665_020_09267_x
crossref_primary_10_1007_s11629_022_7414_6
crossref_primary_10_4018_IJWLTT_335079
crossref_primary_10_1155_2021_9939361
crossref_primary_10_3390_app15010260
crossref_primary_10_1007_s10064_020_01944_2
crossref_primary_10_1016_j_ijrmms_2023_105505
crossref_primary_10_1016_j_compstruc_2020_106422
crossref_primary_10_21595_jve_2023_23195
crossref_primary_10_3799_dqkx_2021_204
Cites_doi 10.1109/MACE.2011.5987423
10.1016/j.vibspec.2009.04.003
10.1109/34.192463
10.21236/ADA459970
10.1016/0148-9062(73)90055-7
10.1109/ICIST.2013.6747802
10.1006/acha.1995.1019
10.1017/S002185960001488X
10.1016/j.ijrmms.2012.05.001
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Feb 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 2019
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
FR3
KL.
KR7
SOI
DOI 10.1016/j.soildyn.2018.11.025
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-341X
EndPage 80
ExternalDocumentID 10_1016_j_soildyn_2018_11_025
S0267726118300137
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
WUQ
Y6R
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TG
7UA
8FD
C1K
EFKBS
FR3
KL.
KR7
SOI
ID FETCH-LOGICAL-a360t-9bc7c55627e243c4000c382e36e79406c819b65c244be010f99782f23caa415b3
IEDL.DBID .~1
ISSN 0267-7261
IngestDate Wed Aug 13 04:26:39 EDT 2025
Tue Jul 01 03:37:52 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
Fri Feb 23 02:22:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Blast energy
Blast vibration
Fourier analysis
Wavelet packet analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a360t-9bc7c55627e243c4000c382e36e79406c819b65c244be010f99782f23caa415b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2176698649
PQPubID 2045399
PageCount 9
ParticipantIDs proquest_journals_2176698649
crossref_primary_10_1016_j_soildyn_2018_11_025
crossref_citationtrail_10_1016_j_soildyn_2018_11_025
elsevier_sciencedirect_doi_10_1016_j_soildyn_2018_11_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Soil dynamics and earthquake engineering (1984)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Xiong Y, Yu J, Ma Y, et al. Wavelet analysis in power decomposition of blasting vibration wave signal. In: Proceedings of international conference on information science and technology. IEEE; 2013. p. 1414–6.
Cao, He-Lin, Wang (bib15) 2012
Zhong, Li-Ping, Zhao (bib16) 2009
Wen-hui, Shi-jie, Shi-long (bib5) 2010; 32
Jiang, Lin, Chen (bib19) 2009; 61
Yu, Yu (bib1) 2004; 24
Attewell (bib3) 1973; 10
Ling, Li (bib18) 2004; 19
Geng B. Time-domain analysis and research on blasting vibration signals based on Fourier transform. In: Proceedings of international conference on electronic and mechanical engineering and information technology. IEEE; 2011. p. 466–69.
Charles (bib20) 1992
Tang, Wang, Liang (bib8) 2010; 27
Rholl SA, Stagg MS. The use of fast Fourier transform techniques in blasting analysis; 1995.
Xiao-lin, Tai-sheng, Xin (bib11) 2001; 3
JIANG, LIN, CHEN (bib13) 2009; 61
Lu, Yang, Yan (bib4) 2012; 53
Learned RE. Wavelet packet based transient signal classification. Wavelet packet based transient signal classification; 1992. p. 109–12.
Banas, Banas, Bahou (bib6) 2009; 51
Devine, Larsen (bib2) 1968; 71
Lei, Wei (bib10) 2001; 18
Ling, Li (bib17) 2004
Learned, Willsky (bib23) 1993; 2
Mallat (bib21) 1989; 11
Xi-Bing, Zhang, Liu, LING, LI (bib12) 2005; 25
Ling, Li (bib25) 2004
Li, Cui, Song (bib24) 2012
Zhang C, Zhong G. Influence of explosion parameters on energy distribution of blast vibration signals with wavelet packet analysis. In: Proceedings of Second international conference on mechanic automation and control engineering. IEEE; 2011. p. 2234–7.
Charles (10.1016/j.soildyn.2018.11.025_bib20) 1992
Jiang (10.1016/j.soildyn.2018.11.025_bib19) 2009; 61
Yu (10.1016/j.soildyn.2018.11.025_bib1) 2004; 24
Xiao-lin (10.1016/j.soildyn.2018.11.025_bib11) 2001; 3
Li (10.1016/j.soildyn.2018.11.025_bib24) 2012
10.1016/j.soildyn.2018.11.025_bib9
10.1016/j.soildyn.2018.11.025_bib7
10.1016/j.soildyn.2018.11.025_bib22
Learned (10.1016/j.soildyn.2018.11.025_bib23) 1993; 2
Zhong (10.1016/j.soildyn.2018.11.025_bib16) 2009
Ling (10.1016/j.soildyn.2018.11.025_bib17) 2004
Banas (10.1016/j.soildyn.2018.11.025_bib6) 2009; 51
Tang (10.1016/j.soildyn.2018.11.025_bib8) 2010; 27
Devine (10.1016/j.soildyn.2018.11.025_bib2) 1968; 71
Cao (10.1016/j.soildyn.2018.11.025_bib15) 2012
Lu (10.1016/j.soildyn.2018.11.025_bib4) 2012; 53
10.1016/j.soildyn.2018.11.025_bib26
Ling (10.1016/j.soildyn.2018.11.025_bib25) 2004
Attewell (10.1016/j.soildyn.2018.11.025_bib3) 1973; 10
LING (10.1016/j.soildyn.2018.11.025_sbref11) 2004; 19
Xi-Bing (10.1016/j.soildyn.2018.11.025_sbref10) 2005; 25
Wen-hui (10.1016/j.soildyn.2018.11.025_bib5) 2010; 32
JIANG (10.1016/j.soildyn.2018.11.025_bib13) 2009; 61
Lei (10.1016/j.soildyn.2018.11.025_bib10) 2001; 18
Mallat (10.1016/j.soildyn.2018.11.025_bib21) 1989; 11
Ling (10.1016/j.soildyn.2018.11.025_bib18) 2004; 19
10.1016/j.soildyn.2018.11.025_bib14
References_xml – volume: 25
  start-page: 528
  year: 2005
  end-page: 535
  ident: bib12
  article-title: Wavelet analysis and Hilbert-Huang transform of blasting vibration signal
  publication-title: Explos Shock Waves
– start-page: 261
  year: 2012
  end-page: 266
  ident: bib24
  article-title: Energy bands based on wavelet packet analysis and application for pattern discovery cycle
  publication-title: Emerging computation and information technologies for education
– volume: 11
  start-page: 674
  year: 1989
  end-page: 693
  ident: bib21
  article-title: A theory for multi-dimension signal decomposition: the wavelet models
  publication-title: Pattern Anal Mach Intel
– volume: 53
  start-page: 129
  year: 2012
  end-page: 141
  ident: bib4
  article-title: Dynamic response of rock mass induced by the transient release of in-situ stress
  publication-title: Int J Rock Mech Min Sci
– volume: 24
  start-page: 122
  year: 2004
  end-page: 129
  ident: bib1
  article-title: Study on forecasting intensity of ground motion induced by engineering explosion
  publication-title: Earthq Eng Eng Vib
– volume: 61
  start-page: 43
  year: 2009
  end-page: 45
  ident: bib19
  article-title: Wavelet packet analysis of vibration caused by high rock slope blasting
  publication-title: Non-Ferr Metal (Mine Part)
– start-page: 297
  year: 1992
  end-page: 333
  ident: bib20
  article-title: An introduction to wavelets
– volume: 27
  start-page: 109
  year: 2010
  end-page: 111
  ident: bib8
  article-title: Characteristics analysis of blasting vibration signals of open pit
  publication-title: Blasting
– volume: 51
  start-page: 168
  year: 2009
  end-page: 176
  ident: bib6
  article-title: Post-blast detection of traces of explosives by means of Fourier transform infrared spectroscopy
  publication-title: Vib Spectrosc
– year: 2009
  ident: bib16
  article-title: Influence of explosion parameters on energy distribution of blasting vibration signal based on wavelet packet energy spectrum
  publication-title: Explos Shock Waves
– year: 2004
  ident: bib25
  article-title: The features of energy distribution for blast vibration signals in underground engineering by wavelet packet analysis
  publication-title: Explos Shock Waves
– volume: 61
  start-page: 43
  year: 2009
  end-page: 45
  ident: bib13
  article-title: Wavelet packet analysis of vibration caused by high rock slope blasting
  publication-title: Non-Ferr Metal (Mine Part)
– reference: Learned RE. Wavelet packet based transient signal classification. Wavelet packet based transient signal classification; 1992. p. 109–12.
– volume: 10
  start-page: 1
  year: 1973
  end-page: 9
  ident: bib3
  article-title: Fatigue behaviour of rock
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
– volume: 32
  start-page: 619
  year: 2010
  end-page: 623
  ident: bib5
  article-title: Altitude effect of blasting vibration in slopes
  publication-title: Chin J Geotech Eng
– reference: Zhang C, Zhong G. Influence of explosion parameters on energy distribution of blast vibration signals with wavelet packet analysis. In: Proceedings of Second international conference on mechanic automation and control engineering. IEEE; 2011. p. 2234–7.
– reference: Xiong Y, Yu J, Ma Y, et al. Wavelet analysis in power decomposition of blasting vibration wave signal. In: Proceedings of international conference on information science and technology. IEEE; 2013. p. 1414–6.
– volume: 19
  start-page: 21
  year: 2004
  end-page: 23
  ident: bib18
  article-title: Using wavelet transform to identify practical time of delay in millisecond blasting
  publication-title: J Huan Univ Sci Technol (Nat Sci Ed)
– volume: 2
  start-page: 265
  year: 1993
  end-page: 278
  ident: bib23
  article-title: A wavelet packet approach to transient signal classification
  publication-title: Appl Comput Harmon Anal
– volume: 3
  start-page: 15
  year: 2001
  end-page: 18
  ident: bib11
  article-title: Role of frequency in harm of blasting vibration and analysis on its influence factors
  publication-title: Eng Blasting
– reference: Rholl SA, Stagg MS. The use of fast Fourier transform techniques in blasting analysis; 1995.
– volume: 18
  start-page: 18
  year: 2001
  end-page: 20
  ident: bib10
  article-title: Experimental study on frequency spectrum characteristics of blast vibration wave
  publication-title: Blasting
– year: 2012
  ident: bib15
  article-title: Comparative analysis on wavelet packet and numerical simulation of tunnel blasting vibration velocity
  publication-title: J Railw Sci Eng
– reference: Geng B. Time-domain analysis and research on blasting vibration signals based on Fourier transform. In: Proceedings of international conference on electronic and mechanical engineering and information technology. IEEE; 2011. p. 466–69.
– year: 2004
  ident: bib17
  article-title: The features of energy distribution for blast vibration signals in underground engineering by wavelet packet analysis
  publication-title: Explos Shock Waves
– volume: 71
  start-page: 359
  year: 1968
  end-page: 364
  ident: bib2
  article-title: Availability of phosphate as affected by duration of fertilizer contact with soil
  publication-title: J Agric Sci
– start-page: 261
  year: 2012
  ident: 10.1016/j.soildyn.2018.11.025_bib24
  article-title: Energy bands based on wavelet packet analysis and application for pattern discovery cycle
– volume: 25
  start-page: 528
  issue: 6
  year: 2005
  ident: 10.1016/j.soildyn.2018.11.025_sbref10
  article-title: Wavelet analysis and Hilbert-Huang transform of blasting vibration signal
  publication-title: Explos Shock Waves
– year: 2009
  ident: 10.1016/j.soildyn.2018.11.025_bib16
  article-title: Influence of explosion parameters on energy distribution of blasting vibration signal based on wavelet packet energy spectrum
  publication-title: Explos Shock Waves
– ident: 10.1016/j.soildyn.2018.11.025_bib26
  doi: 10.1109/MACE.2011.5987423
– ident: 10.1016/j.soildyn.2018.11.025_bib9
– year: 2012
  ident: 10.1016/j.soildyn.2018.11.025_bib15
  article-title: Comparative analysis on wavelet packet and numerical simulation of tunnel blasting vibration velocity
  publication-title: J Railw Sci Eng
– ident: 10.1016/j.soildyn.2018.11.025_bib7
– volume: 61
  start-page: 43
  issue: 2
  year: 2009
  ident: 10.1016/j.soildyn.2018.11.025_bib19
  article-title: Wavelet packet analysis of vibration caused by high rock slope blasting
  publication-title: Non-Ferr Metal (Mine Part)
– year: 2004
  ident: 10.1016/j.soildyn.2018.11.025_bib17
  article-title: The features of energy distribution for blast vibration signals in underground engineering by wavelet packet analysis
  publication-title: Explos Shock Waves
– volume: 51
  start-page: 168
  issue: 2
  year: 2009
  ident: 10.1016/j.soildyn.2018.11.025_bib6
  article-title: Post-blast detection of traces of explosives by means of Fourier transform infrared spectroscopy
  publication-title: Vib Spectrosc
  doi: 10.1016/j.vibspec.2009.04.003
– volume: 19
  start-page: 21
  issue: 02
  year: 2004
  ident: 10.1016/j.soildyn.2018.11.025_bib18
  article-title: Using wavelet transform to identify practical time of delay in millisecond blasting
  publication-title: J Huan Univ Sci Technol (Nat Sci Ed)
– start-page: 297
  year: 1992
  ident: 10.1016/j.soildyn.2018.11.025_bib20
– volume: 27
  start-page: 109
  issue: 4
  year: 2010
  ident: 10.1016/j.soildyn.2018.11.025_bib8
  article-title: Characteristics analysis of blasting vibration signals of open pit
  publication-title: Blasting
– volume: 3
  start-page: 15
  year: 2001
  ident: 10.1016/j.soildyn.2018.11.025_bib11
  article-title: Role of frequency in harm of blasting vibration and analysis on its influence factors
  publication-title: Eng Blasting
– volume: 11
  start-page: 674
  year: 1989
  ident: 10.1016/j.soildyn.2018.11.025_bib21
  article-title: A theory for multi-dimension signal decomposition: the wavelet models
  publication-title: Pattern Anal Mach Intel
  doi: 10.1109/34.192463
– ident: 10.1016/j.soildyn.2018.11.025_bib22
  doi: 10.21236/ADA459970
– volume: 10
  start-page: 1
  issue: 1
  year: 1973
  ident: 10.1016/j.soildyn.2018.11.025_bib3
  article-title: Fatigue behaviour of rock
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
  doi: 10.1016/0148-9062(73)90055-7
– volume: 18
  start-page: 18
  issue: 4
  year: 2001
  ident: 10.1016/j.soildyn.2018.11.025_bib10
  article-title: Experimental study on frequency spectrum characteristics of blast vibration wave
  publication-title: Blasting
– volume: 61
  start-page: 43
  issue: 2
  year: 2009
  ident: 10.1016/j.soildyn.2018.11.025_bib13
  article-title: Wavelet packet analysis of vibration caused by high rock slope blasting
  publication-title: Non-Ferr Metal (Mine Part)
– year: 2004
  ident: 10.1016/j.soildyn.2018.11.025_bib25
  article-title: The features of energy distribution for blast vibration signals in underground engineering by wavelet packet analysis
  publication-title: Explos Shock Waves
– ident: 10.1016/j.soildyn.2018.11.025_bib14
  doi: 10.1109/ICIST.2013.6747802
– volume: 24
  start-page: 122
  issue: 1
  year: 2004
  ident: 10.1016/j.soildyn.2018.11.025_bib1
  article-title: Study on forecasting intensity of ground motion induced by engineering explosion
  publication-title: Earthq Eng Eng Vib
– volume: 2
  start-page: 265
  issue: 3
  year: 1993
  ident: 10.1016/j.soildyn.2018.11.025_bib23
  article-title: A wavelet packet approach to transient signal classification
  publication-title: Appl Comput Harmon Anal
  doi: 10.1006/acha.1995.1019
– volume: 32
  start-page: 619
  issue: 4
  year: 2010
  ident: 10.1016/j.soildyn.2018.11.025_bib5
  article-title: Altitude effect of blasting vibration in slopes
  publication-title: Chin J Geotech Eng
– volume: 71
  start-page: 359
  issue: 3
  year: 1968
  ident: 10.1016/j.soildyn.2018.11.025_bib2
  article-title: Availability of phosphate as affected by duration of fertilizer contact with soil
  publication-title: J Agric Sci
  doi: 10.1017/S002185960001488X
– volume: 19
  start-page: 21
  issue: 02
  year: 2004
  ident: 10.1016/j.soildyn.2018.11.025_sbref11
  article-title: Using wavelet transform to identify practical time of delay in millisecond blasting
  publication-title: J Huan Univ Sci Technol (Nat Sci Ed)
– volume: 53
  start-page: 129
  issue: 9
  year: 2012
  ident: 10.1016/j.soildyn.2018.11.025_bib4
  article-title: Dynamic response of rock mass induced by the transient release of in-situ stress
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2012.05.001
SSID ssj0017186
Score 2.506981
Snippet Using drilling and blasting method to construct the Mountain tunnel, it is important to monitoring and analysis of blasting seismic wave. The research of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 72
SubjectTerms Amplitudes
Blast energy
Blast vibration
Blasting
Drilling
Energy
Energy distribution
Fourier analysis
Fourier transforms
Frequencies
Frequency distribution
Mountain tunnels
Seismic analysis
Seismic waves
Tunnel construction
Vibration
Vibration analysis
Vibration measurement
Wavelet analysis
Wavelet packet analysis
Wavelet transforms
Title Wavelet packet analysis of blasting vibration signal of mountain tunnel
URI https://dx.doi.org/10.1016/j.soildyn.2018.11.025
https://www.proquest.com/docview/2176698649
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvehBXHGpZQ5e06STyTLHUqxVoRct9jbMTKfQWtOiqeDF3-57yaQuCAVPIcsM4eWt4XvfI-RSpQJkrxNPBZp7PNRgUooZT3Bjo3Fgo8AUaItB3B_y21E0qpFu1QuDsErn-0ufXnhrd8V30vSX06l_j7OTEigAQCkLdkzsYOcJannrYw3zaIPvjcv_LImHT3918fgz5Mudj9-RBrWdtpDMEydm_x2ffnnqIvz09siuyxtpp3y1fVKz2QHZ-cYmeEiuHxVOkcgplMFPcFCOb4QuJlRDkowAZ_qG5TF-DIrIDdgRbj7jvAg1zWi-QtTLERn2rh66fc_NSfBUGAe5J7RJTASJTGIZDw1YZWDClNkwtmBtQWwg6us4MhDJtYX6ayKgdGQTFhqlIH7r8JjUs0VmTxDolEbYVmnHXPNEM82VgQ2EMTxlQrdPCa-kI40jEcdZFnNZocVm0glVolChwJAg1FPSWi9bliwamxaklejlD3WQ4Ok3LW1Un0o6e3yVDHkwkYlenP1_53OyDWeixGw3SD1_WdkLSEly3Sx0rkm2Ojd3_cEnLK7gbQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGG4QD-rB-BlR1B28jo2t--jREHEqchEit6YtJQFxEB0mXvztvu_W4UdMSDwt2dZmedr3a3n6vIRciJgB9jKyhSupTX0JJiU8ZTOqdDB0deCqnG3RDZM-vR0EgwpplWdhkFZpfH_h03Nvbe44Bk1nPh47D9g7KYICADZlro65RtYpmC-2MWh8LHkeTXC-YfGjJbLx9a9jPM4EBXOnw3fUQW3GDVTzxJbZfweoX646jz_tHbJtEkfrsvi2XVLR6R7Z-iYnuE-uHwW2kcgsqIOf4CKM4Ig1G1kSsmRkOFtvWB_jalhI3YAZ4eEzNowQ49TKFkh7OSD99lWvldimUYIt_NDNbCZVpALIZCLtUV-BWboKgNB-qMHc3FBB2JdhoCCUSw0F2IhB7eiNPF8JAQFc-oekms5SfYRMpzjAc5V6SCWNpCepUDABU4rGHpPNGqElOlwZFXFsZjHlJV1swg2oHEGFCoMDqDXSWA6bFzIaqwbEJfT8x37g4OpXDa2XS8WNQb5yD4UwUYqeHf9_5nOykfTuO7xz0707IZvwhBUE7jqpZi8LfQr5SSbP8v33CWZM4fs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelet+packet+analysis+of+blasting+vibration+signal+of+mountain+tunnel&rft.jtitle=Soil+dynamics+and+earthquake+engineering+%281984%29&rft.au=Huang%2C+Dan&rft.au=Cui%2C+Shuo&rft.au=Li%2C+Xiaoqing&rft.date=2019-02-01&rft.pub=Elsevier+Ltd&rft.issn=0267-7261&rft.eissn=1879-341X&rft.volume=117&rft.spage=72&rft.epage=80&rft_id=info:doi/10.1016%2Fj.soildyn.2018.11.025&rft.externalDocID=S0267726118300137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-7261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-7261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-7261&client=summon