Response spectrum method for seismic analysis of monopile offshore wind turbine

Monopile offshore wind turbines (MOWT) are inserted into sea water and sea bed soil. As the piles are usually embedded into the soil as deep as about 40 m, dynamic pile-water and pile-soil interactions, as well as seismic excitation non-uniformity, often occur under earthquake. In this paper, the re...

Full description

Saved in:
Bibliographic Details
Published inSoil dynamics and earthquake engineering (1984) Vol. 136; p. 106212
Main Authors Zhao, Mi, Gao, Zhidong, Wang, Piguang, Du, Xiuli
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.09.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monopile offshore wind turbines (MOWT) are inserted into sea water and sea bed soil. As the piles are usually embedded into the soil as deep as about 40 m, dynamic pile-water and pile-soil interactions, as well as seismic excitation non-uniformity, often occur under earthquake. In this paper, the response spectrum method (RSM) is developed to calculate the maximum response of MOWT considering the pile-water and pile-soil interactions subjected to the non-uniform seismic excitation. The tower and pile are modeled by Timoshenko beam elements, with both nacelle and rotor including hub and blades integrated as a lumped mass at the top of the tower. The pile-water and pile-soil interactions are considered by added mass and soil spring at their interfaces, respectively. The non-uniform seismic excitation is obtained by the site transfer function from the horizontal earthquake motions or design response spectrum at the water-soil interface. The seismic analysis model is solved by using a multiple-support RSM under design response spectrum. Seismic responses of a case of 5-MW MOWT on two types of soil sites are analyzed. The results indicate that the pile-water and pile-soil interactions and seismic excitation non-uniformity should be considered in analyzing such seismic problems of MOWT, while the RSM can be an effective tool. •Seismic analysis model considering pile-water and pile-soil interactions is presented for monopile offshore wind turbine (MOWT).•Response spectrum method is developed to solve the MOWT model.
AbstractList Monopile offshore wind turbines (MOWT) are inserted into sea water and sea bed soil. As the piles are usually embedded into the soil as deep as about 40 m, dynamic pile-water and pile-soil interactions, as well as seismic excitation non-uniformity, often occur under earthquake. In this paper, the response spectrum method (RSM) is developed to calculate the maximum response of MOWT considering the pile-water and pile-soil interactions subjected to the non-uniform seismic excitation. The tower and pile are modeled by Timoshenko beam elements, with both nacelle and rotor including hub and blades integrated as a lumped mass at the top of the tower. The pile-water and pile-soil interactions are considered by added mass and soil spring at their interfaces, respectively. The non-uniform seismic excitation is obtained by the site transfer function from the horizontal earthquake motions or design response spectrum at the water-soil interface. The seismic analysis model is solved by using a multiple-support RSM under design response spectrum. Seismic responses of a case of 5-MW MOWT on two types of soil sites are analyzed. The results indicate that the pile-water and pile-soil interactions and seismic excitation non-uniformity should be considered in analyzing such seismic problems of MOWT, while the RSM can be an effective tool. •Seismic analysis model considering pile-water and pile-soil interactions is presented for monopile offshore wind turbine (MOWT).•Response spectrum method is developed to solve the MOWT model.
Monopile offshore wind turbines (MOWT) are inserted into sea water and sea bed soil. As the piles are usually embedded into the soil as deep as about 40 m, dynamic pile-water and pile-soil interactions, as well as seismic excitation non-uniformity, often occur under earthquake. In this paper, the response spectrum method (RSM) is developed to calculate the maximum response of MOWT considering the pile-water and pile-soil interactions subjected to the non-uniform seismic excitation. The tower and pile are modeled by Timoshenko beam elements, with both nacelle and rotor including hub and blades integrated as a lumped mass at the top of the tower. The pile-water and pile-soil interactions are considered by added mass and soil spring at their interfaces, respectively. The non-uniform seismic excitation is obtained by the site transfer function from the horizontal earthquake motions or design response spectrum at the water-soil interface. The seismic analysis model is solved by using a multiple-support RSM under design response spectrum. Seismic responses of a case of 5-MW MOWT on two types of soil sites are analyzed. The results indicate that the pile-water and pile-soil interactions and seismic excitation non-uniformity should be considered in analyzing such seismic problems of MOWT, while the RSM can be an effective tool.
ArticleNumber 106212
Author Du, Xiuli
Gao, Zhidong
Zhao, Mi
Wang, Piguang
Author_xml – sequence: 1
  givenname: Mi
  surname: Zhao
  fullname: Zhao, Mi
– sequence: 2
  givenname: Zhidong
  surname: Gao
  fullname: Gao, Zhidong
– sequence: 3
  givenname: Piguang
  surname: Wang
  fullname: Wang, Piguang
  email: wangpiguang1985@126.com
– sequence: 4
  givenname: Xiuli
  surname: Du
  fullname: Du, Xiuli
BookMark eNqFkF9LwzAUxYNMcJt-BCHgc2eStmn7JDL8B4OBKPgWsuSGZaxJzW2VfXs7tnef7uVyzuGe34xMQgxAyC1nC864vN8tMPq9PYSFYOJ4k4KLCzLlddVkecG_JmTKhKyySkh-RWaIO8Z4xWs5Jet3wC4GBIodmD4NLW2h30ZLXUwUwWPrDdVB7w_okUZH2xhi5_cw7g63MQH99cHSfkgbH-CaXDq9R7g5zzn5fH76WL5mq_XL2_Jxlelcsj7Ly4YVPAcJZZ2X0jZguJNSllCYWjTOypptal1VTmjbGFO4stponXNnhdZa5nNyd8rtUvweAHu1i0Ma30QlinLsLwpRjKrypDIpIiZwqku-1emgOFNHdmqnzuzUkZ06sRt9DycfjBV-PCSFxkMwYH0aKSkb_T8Jf3eIfXA
CitedBy_id crossref_primary_10_1016_j_soildyn_2021_106605
crossref_primary_10_1088_1755_1315_861_7_072005
crossref_primary_10_1016_j_rineng_2024_101750
crossref_primary_10_1177_13694332221115466
crossref_primary_10_1016_j_oceaneng_2023_115067
crossref_primary_10_1016_j_tust_2021_104089
crossref_primary_10_3390_en17071578
crossref_primary_10_1016_j_renene_2022_11_029
crossref_primary_10_1016_j_enganabound_2023_05_010
crossref_primary_10_1016_j_apor_2020_102493
crossref_primary_10_1016_j_soildyn_2023_108356
crossref_primary_10_1061_JGGEFK_GTENG_11121
crossref_primary_10_1177_10775463231177162
crossref_primary_10_1016_j_soildyn_2020_106451
crossref_primary_10_1016_j_soildyn_2023_108277
crossref_primary_10_1016_j_oceaneng_2021_109346
crossref_primary_10_1016_j_compgeo_2021_104342
crossref_primary_10_1016_j_compgeo_2022_104640
crossref_primary_10_1016_j_oceaneng_2022_113519
crossref_primary_10_1016_j_compgeo_2022_104919
crossref_primary_10_1016_j_oceaneng_2022_111136
crossref_primary_10_1016_j_soildyn_2023_107806
crossref_primary_10_1016_j_oceaneng_2023_115355
crossref_primary_10_1016_j_soildyn_2022_107568
crossref_primary_10_1038_s41598_024_60302_4
crossref_primary_10_1142_S0219455424500949
crossref_primary_10_1016_j_oceaneng_2024_118173
crossref_primary_10_1016_j_istruc_2022_04_078
crossref_primary_10_1016_j_soildyn_2021_106684
crossref_primary_10_1016_j_istruc_2021_07_080
crossref_primary_10_1016_j_soildyn_2023_108161
crossref_primary_10_1007_s11803_023_2207_7
crossref_primary_10_1007_s42107_021_00385_w
crossref_primary_10_1016_j_compgeo_2021_104479
Cites_doi 10.1016/j.renene.2013.09.023
10.12989/was.2011.14.2.085
10.1016/j.soildyn.2014.03.006
10.1016/j.soildyn.2018.04.028
10.1007/s10518-015-9818-y
10.1016/j.marstruc.2015.08.003
10.1016/j.soildyn.2012.12.014
10.1007/s10518-019-00673-6
10.1061/JMCEA3.0000489
10.1155/2012/408493
10.1007/s10518-007-9048-z
10.1002/eqe.4290210805
10.1016/j.soildyn.2011.01.004
10.1016/j.engstruct.2017.12.001
10.1061/(ASCE)0733-9399(1989)115:7(1393)
10.1016/j.apor.2006.03.004
10.1016/j.soildyn.2015.02.017
10.1002/we.1710
10.1007/s11803-006-0625-y
10.1016/j.jweia.2016.09.007
10.1061/(ASCE)GT.1943-5606.0000602
10.1007/s10518-017-0153-3
10.1016/j.compgeo.2016.11.010
10.1016/j.oceaneng.2019.106843
10.1016/j.engstruct.2016.06.007
10.1016/S0267-7261(01)00056-2
10.1016/j.soildyn.2018.03.015
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Sep 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 2020
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
FR3
KL.
KR7
SOI
DOI 10.1016/j.soildyn.2020.106212
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-341X
ExternalDocumentID 10_1016_j_soildyn_2020_106212
S0267726119312278
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
WUQ
Y6R
ZMT
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7ST
7TG
7UA
8FD
C1K
FR3
KL.
KR7
SOI
ID FETCH-LOGICAL-a360t-3590413e6e58356d9ec1f6665e4c829fd680b8a77f2ad9cc4f57baa31fd2aaa63
IEDL.DBID AIKHN
ISSN 0267-7261
IngestDate Thu Oct 10 17:33:15 EDT 2024
Thu Sep 26 15:50:24 EDT 2024
Fri Feb 23 02:47:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Response spectrum method
Non-uniform seismic excitation
Pile-soil interaction
Pile-water interaction
Monopile offshore wind turbine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a360t-3590413e6e58356d9ec1f6665e4c829fd680b8a77f2ad9cc4f57baa31fd2aaa63
PQID 2452122424
PQPubID 2045399
ParticipantIDs proquest_journals_2452122424
crossref_primary_10_1016_j_soildyn_2020_106212
elsevier_sciencedirect_doi_10_1016_j_soildyn_2020_106212
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Soil dynamics and earthquake engineering (1984)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Jonkman, Butterfield, Musial, Scott (bib40) 2009
Schnabel, Lysmer, Seed (bib33) 1972
Guideline (bib26) 2012
Afra, Pecker (bib35) 2002; 22
Zheng, Li, Rong, Li (bib1) 2015; 44
BSL (bib20) 2000
International (bib23) 2003
Der Kiureghian, Neumnhofer (bib39) 1992; 21
Zhao, Gao, Du, Wang, Zhong (bib24) 2019; 17
Clough, Penzien (bib31) 1993
Bhattacharya, Adhikari (bib8) 2011; 31
Yu, Zhou (bib37) 2008; 6
Liu, Lian, Liang, Zhao (bib32) 2017; 15
Adhikari, Bhattacharya (bib6) 2011; 14
Gasparini, Vanmarcke (bib34) 1976
(bib21) 2003
Bisoi, Haldar (bib13) 2015; 73
Wang, Zhao, Du, Liu, Xu (bib18) 2018; 113
Raffaele, Subhamoy, Katsuichiro (bib10) 2018; 109
Zuo, Bi, Hao (bib17) 2018; 157
Chopra (bib19) 2011
Feyzollahzadeh, Mahmoodi, Yadavar-Nikravesh, Jamali (bib9) 2016; 158
Penzien, Scneffey, Parmelee (bib29) 1964; 90
Adhikari, Bhattacharya (bib7) 2012; 19
Wystan, DeGroot1 Don, Lackner Matthew (bib15) 2015; 18
(bib25) 2009
Mo, Kang, Li, Zhao (bib11) 2017; 10
(bib22) 2014
Zhao, Zhang, Wang (bib41) 2020; 197
Bisoi, Haldar (bib12) 2014; 63
Liu, Lian, Liang, Li, Hu (bib36) 2016; 14
Goyal, Chopra (bib4) 1989; 115
Zhao, Zhang, Lv (bib42) 2006; 5
(bib30) 2007
Der Kiureghian, Neumnhofer (bib38) 1991
Corciulo, Zanoli, Pisanò (bib3) 2017; 83
Zaaijer (bib5) 2006; 28
Dong, Sang, Il (bib14) 2014; 65
DNV (bib27) 2013
Stamatopoulos (bib28) 2013; 46
Versteijlen, Metrikine, van Dalen (bib16) 2016; 124
Kuo, Achmus, Abdel-Rahman (bib2) 2012; 138
Feyzollahzadeh (10.1016/j.soildyn.2020.106212_bib9) 2016; 158
Zuo (10.1016/j.soildyn.2020.106212_bib17) 2018; 157
Bisoi (10.1016/j.soildyn.2020.106212_bib13) 2015; 73
Clough (10.1016/j.soildyn.2020.106212_bib31) 1993
Wystan (10.1016/j.soildyn.2020.106212_bib15) 2015; 18
Adhikari (10.1016/j.soildyn.2020.106212_bib6) 2011; 14
(10.1016/j.soildyn.2020.106212_bib22) 2014
Penzien (10.1016/j.soildyn.2020.106212_bib29) 1964; 90
Goyal (10.1016/j.soildyn.2020.106212_bib4) 1989; 115
(10.1016/j.soildyn.2020.106212_bib21) 2003
Adhikari (10.1016/j.soildyn.2020.106212_bib7) 2012; 19
Bhattacharya (10.1016/j.soildyn.2020.106212_bib8) 2011; 31
Schnabel (10.1016/j.soildyn.2020.106212_bib33) 1972
Der Kiureghian (10.1016/j.soildyn.2020.106212_bib38) 1991
Zhao (10.1016/j.soildyn.2020.106212_bib41) 2020; 197
BSL (10.1016/j.soildyn.2020.106212_bib20) 2000
Kuo (10.1016/j.soildyn.2020.106212_bib2) 2012; 138
International (10.1016/j.soildyn.2020.106212_bib23) 2003
Wang (10.1016/j.soildyn.2020.106212_bib18) 2018; 113
Der Kiureghian (10.1016/j.soildyn.2020.106212_bib39) 1992; 21
Jonkman (10.1016/j.soildyn.2020.106212_bib40) 2009
Chopra (10.1016/j.soildyn.2020.106212_bib19) 2011
(10.1016/j.soildyn.2020.106212_bib25) 2009
Zheng (10.1016/j.soildyn.2020.106212_bib1) 2015; 44
Stamatopoulos (10.1016/j.soildyn.2020.106212_bib28) 2013; 46
Dong (10.1016/j.soildyn.2020.106212_bib14) 2014; 65
Yu (10.1016/j.soildyn.2020.106212_bib37) 2008; 6
Zhao (10.1016/j.soildyn.2020.106212_bib42) 2006; 5
Zaaijer (10.1016/j.soildyn.2020.106212_bib5) 2006; 28
(10.1016/j.soildyn.2020.106212_bib30) 2007
Guideline (10.1016/j.soildyn.2020.106212_bib26) 2012
DNV (10.1016/j.soildyn.2020.106212_bib27) 2013
Liu (10.1016/j.soildyn.2020.106212_bib36) 2016; 14
Bisoi (10.1016/j.soildyn.2020.106212_bib12) 2014; 63
Corciulo (10.1016/j.soildyn.2020.106212_bib3) 2017; 83
Gasparini (10.1016/j.soildyn.2020.106212_bib34) 1976
Versteijlen (10.1016/j.soildyn.2020.106212_bib16) 2016; 124
Mo (10.1016/j.soildyn.2020.106212_bib11) 2017; 10
Raffaele (10.1016/j.soildyn.2020.106212_bib10) 2018; 109
Liu (10.1016/j.soildyn.2020.106212_bib32) 2017; 15
Zhao (10.1016/j.soildyn.2020.106212_bib24) 2019; 17
Afra (10.1016/j.soildyn.2020.106212_bib35) 2002; 22
References_xml – volume: 83
  start-page: 221
  year: 2017
  end-page: 238
  ident: bib3
  article-title: Transient response of offshore wind turbines on monopiles in sand: role of cyclic hydro-mechanical soil behavior
  publication-title: Comput Geotech
  contributor:
    fullname: Pisanò
– year: 2013
  ident: bib27
  article-title: Design of offshore wind turbine structures. DNV-OS-J101
  contributor:
    fullname: DNV
– year: 2000
  ident: bib20
  article-title: The building standard law of Japan
  contributor:
    fullname: BSL
– volume: 28
  start-page: 45
  year: 2006
  end-page: 57
  ident: bib5
  article-title: Foundation modelling to assess dynamic behavior of offshore wind turbine
  publication-title: Appl Ocean Res
  contributor:
    fullname: Zaaijer
– volume: 124
  start-page: 221
  year: 2016
  end-page: 236
  ident: bib16
  article-title: A method for identification of an effective Winkler foundation for largediameter offshore wind turbine support structures based on in-situ measured small-strain soil response and 3D modelling
  publication-title: Eng Struct
  contributor:
    fullname: van Dalen
– volume: 157
  start-page: 42
  year: 2018
  end-page: 62
  ident: bib17
  article-title: Dynamic analyses of operating offshore wind turbines including soil-structure interaction
  publication-title: Eng Struct
  contributor:
    fullname: Hao
– volume: 44
  start-page: 125
  year: 2015
  end-page: 141
  ident: bib1
  article-title: Joint earthquake and wave action on the monopile wind turbine foundation: an experimental study
  publication-title: Mar Struct
  contributor:
    fullname: Li
– volume: 31
  start-page: 805
  year: 2011
  end-page: 816
  ident: bib8
  article-title: Experimental validation of soil-structure interaction of offshore wind turbines
  publication-title: Soil Dynam Earthq Eng
  contributor:
    fullname: Adhikari
– volume: 158
  start-page: 122
  year: 2016
  end-page: 138
  ident: bib9
  article-title: Wind load response of offshore wind turbine towers with fixed monopile platform
  publication-title: J Wind Eng Ind Aerod
  contributor:
    fullname: Jamali
– year: 2009
  ident: bib40
  article-title: Definition of a 5-MW reference wind turbine for offshore system development
  contributor:
    fullname: Scott
– volume: 115
  start-page: 1393
  year: 1989
  end-page: 1412
  ident: bib4
  article-title: Simplified evaluation of added hydrodynamic mass for intake towers
  publication-title: J Eng Mech
  contributor:
    fullname: Chopra
– volume: 15
  start-page: 4635
  year: 2017
  end-page: 4659
  ident: bib32
  article-title: An effective approach for simulating multi-support earthquake underground motions
  publication-title: Bull Earthq Eng
  contributor:
    fullname: Zhao
– volume: 138
  start-page: 357
  year: 2012
  end-page: 363
  ident: bib2
  article-title: Minimum embedded length of cyclic horizontally loaded monopoles
  publication-title: J Geotech Geoenviron Eng-ASCE
  contributor:
    fullname: Abdel-Rahman
– volume: 65
  start-page: 250
  year: 2014
  end-page: 256
  ident: bib14
  article-title: Seismic fragility analysis of 5 MW offshore wind turbine
  publication-title: Renew Energy
  contributor:
    fullname: Il
– year: 2007
  ident: bib30
  article-title: Code for design of ground base and foundation of highway bridges and culverts
– year: 2003
  ident: bib23
  article-title: Building code (IBC)
  contributor:
    fullname: International
– year: 1972
  ident: bib33
  article-title: SHAKE: a computer program for earthquake response analysis of horizontally layered sites
  contributor:
    fullname: Seed
– start-page: 1
  year: 2009
  ident: bib25
  article-title: Part 3: design requirements for offshore wind turbines
– volume: 63
  start-page: 19
  year: 2014
  end-page: 35
  ident: bib12
  article-title: Dynamic analysis of offshore wind turbine in clay considering soil-monopile-tower interaction
  publication-title: Soil Dynam Earthq Eng
  contributor:
    fullname: Haldar
– volume: 14
  start-page: 85
  year: 2011
  end-page: 112
  ident: bib6
  article-title: Vibrations of wind-turbines considering soil-structure interaction
  publication-title: Wind Struct
  contributor:
    fullname: Bhattacharya
– year: 2003
  ident: bib21
  publication-title: Eurocode 8. Design of structures for earthquake resistance
– volume: 197
  start-page: 106943
  year: 2020
  ident: bib41
  article-title: An accurate frequency-domain model for seismic responses of breakwater-water-seabed-bedrock system
  publication-title: Ocean Eng
  contributor:
    fullname: Wang
– volume: 113
  start-page: 47
  year: 2018
  end-page: 57
  ident: bib18
  article-title: Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay
  publication-title: Soil Dynam Earthq Eng
  contributor:
    fullname: Xu
– volume: 19
  start-page: 37
  year: 2012
  end-page: 56
  ident: bib7
  article-title: Dynamic analysis of wind turbine towers on flexible foundations
  publication-title: Shock Vib
  contributor:
    fullname: Bhattacharya
– volume: 21
  start-page: 713
  year: 1992
  end-page: 740
  ident: bib39
  article-title: A response spectrum method for multiple-support seismic excitations
  publication-title: Earthq Eng Struct Dynam
  contributor:
    fullname: Neumnhofer
– volume: 5
  start-page: 41
  year: 2006
  end-page: 48
  ident: bib42
  article-title: Artifical gound motion compatible with specified ground shaking peaks and target response spectrum
  publication-title: Earthq Eng Eng Vib
  contributor:
    fullname: Lv
– year: 1993
  ident: bib31
  article-title: Dynamics of structures
  contributor:
    fullname: Penzien
– volume: 10
  year: 2017
  ident: bib11
  article-title: Seismic fragility analysis of monopile offshore wind turbines under different operational conditions
  publication-title: Wenergies
  contributor:
    fullname: Zhao
– year: 2014
  ident: bib22
  article-title: Code for seismic design of urban rail transit structures
– year: 2012
  ident: bib26
  article-title: For the certification of offshore wind turbines
  contributor:
    fullname: Guideline
– year: 1976
  ident: bib34
  article-title: Simulated earthquake motions compatible with prescribed response spectra. Department of Civil Engineering
  contributor:
    fullname: Vanmarcke
– volume: 22
  start-page: 157
  year: 2002
  end-page: 165
  ident: bib35
  article-title: Calculation of free field response spectrum of a non-homogeneous soil deposit from bed rock response spectrum
  publication-title: Soil Dynam Earthq Eng
  contributor:
    fullname: Pecker
– year: 1991
  ident: bib38
  article-title: A response spectrum method for multiple-support seismic excitation
  publication-title: Report No. USB/EERC-91/08
  contributor:
    fullname: Neumnhofer
– volume: 90
  start-page: 223
  year: 1964
  end-page: 254
  ident: bib29
  article-title: Seismic analysis of bridges on long piles
  publication-title: J Eng Mech Div
  contributor:
    fullname: Parmelee
– volume: 73
  start-page: 103
  year: 2015
  end-page: 117
  ident: bib13
  article-title: Design of monopile supported offshore wind turbine in clay considering dynamic soil-structure-interaction
  publication-title: Soil Dynam Earthq Eng
  contributor:
    fullname: Haldar
– year: 2011
  ident: bib19
  article-title: Dynamics of Structures: theory and applications to earthquake engineering
  contributor:
    fullname: Chopra
– volume: 14
  start-page: 161
  year: 2016
  end-page: 184
  ident: bib36
  article-title: An improved complex multiple-support response spectrum method for the non-classically damped linear system with coupled damping
  publication-title: Bull Earthq Eng
  contributor:
    fullname: Hu
– volume: 6
  start-page: 261
  year: 2008
  end-page: 284
  ident: bib37
  article-title: Response spectrum analysis for non-classically damped linear system with multiple-support excitations
  publication-title: Bull Earthq Eng
  contributor:
    fullname: Zhou
– volume: 109
  start-page: 154
  year: 2018
  end-page: 172
  ident: bib10
  article-title: Seismic performance assessment of monopile-supported offshore wind turbines using unscaled natural earthquake records
  publication-title: Soil Dynam Earthq Eng
  contributor:
    fullname: Katsuichiro
– volume: 18
  start-page: 483
  year: 2015
  end-page: 498
  ident: bib15
  article-title: Soil-structure reliability of offshore wind turbine monopile foundations
  publication-title: Wind Energy
  contributor:
    fullname: Lackner Matthew
– volume: 46
  start-page: 77
  year: 2013
  end-page: 84
  ident: bib28
  article-title: Response of a wind turbine subjected to near-fault excitation and comparison with Greek aseismic code provisions
  publication-title: Soil Dynam Earthq Eng
  contributor:
    fullname: Stamatopoulos
– volume: 17
  start-page: 5339
  year: 2019
  end-page: 5363
  ident: bib24
  article-title: Response spectrum method for seismic soil-structure interaction analysis of underground structure
  publication-title: Bull Earthq Eng
  contributor:
    fullname: Zhong
– volume: 65
  start-page: 250
  year: 2014
  ident: 10.1016/j.soildyn.2020.106212_bib14
  article-title: Seismic fragility analysis of 5 MW offshore wind turbine
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2013.09.023
  contributor:
    fullname: Dong
– year: 2014
  ident: 10.1016/j.soildyn.2020.106212_bib22
– volume: 14
  start-page: 85
  issue: 2
  year: 2011
  ident: 10.1016/j.soildyn.2020.106212_bib6
  article-title: Vibrations of wind-turbines considering soil-structure interaction
  publication-title: Wind Struct
  doi: 10.12989/was.2011.14.2.085
  contributor:
    fullname: Adhikari
– volume: 63
  start-page: 19
  year: 2014
  ident: 10.1016/j.soildyn.2020.106212_bib12
  article-title: Dynamic analysis of offshore wind turbine in clay considering soil-monopile-tower interaction
  publication-title: Soil Dynam Earthq Eng
  doi: 10.1016/j.soildyn.2014.03.006
  contributor:
    fullname: Bisoi
– volume: 113
  start-page: 47
  year: 2018
  ident: 10.1016/j.soildyn.2020.106212_bib18
  article-title: Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay
  publication-title: Soil Dynam Earthq Eng
  doi: 10.1016/j.soildyn.2018.04.028
  contributor:
    fullname: Wang
– volume: 14
  start-page: 161
  issue: 1
  year: 2016
  ident: 10.1016/j.soildyn.2020.106212_bib36
  article-title: An improved complex multiple-support response spectrum method for the non-classically damped linear system with coupled damping
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-015-9818-y
  contributor:
    fullname: Liu
– volume: 44
  start-page: 125
  year: 2015
  ident: 10.1016/j.soildyn.2020.106212_bib1
  article-title: Joint earthquake and wave action on the monopile wind turbine foundation: an experimental study
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2015.08.003
  contributor:
    fullname: Zheng
– year: 2013
  ident: 10.1016/j.soildyn.2020.106212_bib27
  contributor:
    fullname: DNV
– volume: 46
  start-page: 77
  year: 2013
  ident: 10.1016/j.soildyn.2020.106212_bib28
  article-title: Response of a wind turbine subjected to near-fault excitation and comparison with Greek aseismic code provisions
  publication-title: Soil Dynam Earthq Eng
  doi: 10.1016/j.soildyn.2012.12.014
  contributor:
    fullname: Stamatopoulos
– year: 2012
  ident: 10.1016/j.soildyn.2020.106212_bib26
  contributor:
    fullname: Guideline
– year: 2000
  ident: 10.1016/j.soildyn.2020.106212_bib20
  contributor:
    fullname: BSL
– year: 1972
  ident: 10.1016/j.soildyn.2020.106212_bib33
  contributor:
    fullname: Schnabel
– volume: 17
  start-page: 5339
  issue: 9
  year: 2019
  ident: 10.1016/j.soildyn.2020.106212_bib24
  article-title: Response spectrum method for seismic soil-structure interaction analysis of underground structure
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-019-00673-6
  contributor:
    fullname: Zhao
– volume: 90
  start-page: 223
  issue: 3
  year: 1964
  ident: 10.1016/j.soildyn.2020.106212_bib29
  article-title: Seismic analysis of bridges on long piles
  publication-title: J Eng Mech Div
  doi: 10.1061/JMCEA3.0000489
  contributor:
    fullname: Penzien
– volume: 19
  start-page: 37
  year: 2012
  ident: 10.1016/j.soildyn.2020.106212_bib7
  article-title: Dynamic analysis of wind turbine towers on flexible foundations
  publication-title: Shock Vib
  doi: 10.1155/2012/408493
  contributor:
    fullname: Adhikari
– volume: 6
  start-page: 261
  issue: 2
  year: 2008
  ident: 10.1016/j.soildyn.2020.106212_bib37
  article-title: Response spectrum analysis for non-classically damped linear system with multiple-support excitations
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-007-9048-z
  contributor:
    fullname: Yu
– volume: 21
  start-page: 713
  year: 1992
  ident: 10.1016/j.soildyn.2020.106212_bib39
  article-title: A response spectrum method for multiple-support seismic excitations
  publication-title: Earthq Eng Struct Dynam
  doi: 10.1002/eqe.4290210805
  contributor:
    fullname: Der Kiureghian
– volume: 31
  start-page: 805
  year: 2011
  ident: 10.1016/j.soildyn.2020.106212_bib8
  article-title: Experimental validation of soil-structure interaction of offshore wind turbines
  publication-title: Soil Dynam Earthq Eng
  doi: 10.1016/j.soildyn.2011.01.004
  contributor:
    fullname: Bhattacharya
– volume: 157
  start-page: 42
  year: 2018
  ident: 10.1016/j.soildyn.2020.106212_bib17
  article-title: Dynamic analyses of operating offshore wind turbines including soil-structure interaction
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.12.001
  contributor:
    fullname: Zuo
– year: 1991
  ident: 10.1016/j.soildyn.2020.106212_bib38
  article-title: A response spectrum method for multiple-support seismic excitation
  contributor:
    fullname: Der Kiureghian
– year: 2009
  ident: 10.1016/j.soildyn.2020.106212_bib40
  contributor:
    fullname: Jonkman
– volume: 115
  start-page: 1393
  issue: 7
  year: 1989
  ident: 10.1016/j.soildyn.2020.106212_bib4
  article-title: Simplified evaluation of added hydrodynamic mass for intake towers
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(1989)115:7(1393)
  contributor:
    fullname: Goyal
– year: 2003
  ident: 10.1016/j.soildyn.2020.106212_bib21
– volume: 28
  start-page: 45
  year: 2006
  ident: 10.1016/j.soildyn.2020.106212_bib5
  article-title: Foundation modelling to assess dynamic behavior of offshore wind turbine
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2006.03.004
  contributor:
    fullname: Zaaijer
– year: 2007
  ident: 10.1016/j.soildyn.2020.106212_bib30
– volume: 73
  start-page: 103
  year: 2015
  ident: 10.1016/j.soildyn.2020.106212_bib13
  article-title: Design of monopile supported offshore wind turbine in clay considering dynamic soil-structure-interaction
  publication-title: Soil Dynam Earthq Eng
  doi: 10.1016/j.soildyn.2015.02.017
  contributor:
    fullname: Bisoi
– year: 1976
  ident: 10.1016/j.soildyn.2020.106212_bib34
  contributor:
    fullname: Gasparini
– year: 2011
  ident: 10.1016/j.soildyn.2020.106212_bib19
  contributor:
    fullname: Chopra
– volume: 18
  start-page: 483
  year: 2015
  ident: 10.1016/j.soildyn.2020.106212_bib15
  article-title: Soil-structure reliability of offshore wind turbine monopile foundations
  publication-title: Wind Energy
  doi: 10.1002/we.1710
  contributor:
    fullname: Wystan
– volume: 5
  start-page: 41
  issue: 1
  year: 2006
  ident: 10.1016/j.soildyn.2020.106212_bib42
  article-title: Artifical gound motion compatible with specified ground shaking peaks and target response spectrum
  publication-title: Earthq Eng Eng Vib
  doi: 10.1007/s11803-006-0625-y
  contributor:
    fullname: Zhao
– volume: 158
  start-page: 122
  year: 2016
  ident: 10.1016/j.soildyn.2020.106212_bib9
  article-title: Wind load response of offshore wind turbine towers with fixed monopile platform
  publication-title: J Wind Eng Ind Aerod
  doi: 10.1016/j.jweia.2016.09.007
  contributor:
    fullname: Feyzollahzadeh
– start-page: 1
  year: 2009
  ident: 10.1016/j.soildyn.2020.106212_bib25
– volume: 138
  start-page: 357
  year: 2012
  ident: 10.1016/j.soildyn.2020.106212_bib2
  article-title: Minimum embedded length of cyclic horizontally loaded monopoles
  publication-title: J Geotech Geoenviron Eng-ASCE
  doi: 10.1061/(ASCE)GT.1943-5606.0000602
  contributor:
    fullname: Kuo
– volume: 15
  start-page: 4635
  issue: 11
  year: 2017
  ident: 10.1016/j.soildyn.2020.106212_bib32
  article-title: An effective approach for simulating multi-support earthquake underground motions
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-017-0153-3
  contributor:
    fullname: Liu
– year: 1993
  ident: 10.1016/j.soildyn.2020.106212_bib31
  contributor:
    fullname: Clough
– volume: 83
  start-page: 221
  year: 2017
  ident: 10.1016/j.soildyn.2020.106212_bib3
  article-title: Transient response of offshore wind turbines on monopiles in sand: role of cyclic hydro-mechanical soil behavior
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2016.11.010
  contributor:
    fullname: Corciulo
– volume: 197
  start-page: 106943
  year: 2020
  ident: 10.1016/j.soildyn.2020.106212_bib41
  article-title: An accurate frequency-domain model for seismic responses of breakwater-water-seabed-bedrock system
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2019.106843
  contributor:
    fullname: Zhao
– volume: 124
  start-page: 221
  year: 2016
  ident: 10.1016/j.soildyn.2020.106212_bib16
  article-title: A method for identification of an effective Winkler foundation for largediameter offshore wind turbine support structures based on in-situ measured small-strain soil response and 3D modelling
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.06.007
  contributor:
    fullname: Versteijlen
– volume: 22
  start-page: 157
  issue: 2
  year: 2002
  ident: 10.1016/j.soildyn.2020.106212_bib35
  article-title: Calculation of free field response spectrum of a non-homogeneous soil deposit from bed rock response spectrum
  publication-title: Soil Dynam Earthq Eng
  doi: 10.1016/S0267-7261(01)00056-2
  contributor:
    fullname: Afra
– year: 2003
  ident: 10.1016/j.soildyn.2020.106212_bib23
  contributor:
    fullname: International
– volume: 10
  year: 2017
  ident: 10.1016/j.soildyn.2020.106212_bib11
  article-title: Seismic fragility analysis of monopile offshore wind turbines under different operational conditions
  publication-title: Wenergies
  contributor:
    fullname: Mo
– volume: 109
  start-page: 154
  year: 2018
  ident: 10.1016/j.soildyn.2020.106212_bib10
  article-title: Seismic performance assessment of monopile-supported offshore wind turbines using unscaled natural earthquake records
  publication-title: Soil Dynam Earthq Eng
  doi: 10.1016/j.soildyn.2018.03.015
  contributor:
    fullname: Raffaele
SSID ssj0017186
Score 2.4819605
Snippet Monopile offshore wind turbines (MOWT) are inserted into sea water and sea bed soil. As the piles are usually embedded into the soil as deep as about 40 m,...
Monopile offshore wind turbines (MOWT) are inserted into sea water and sea bed soil. As the piles are usually embedded into the soil as deep as about 40 m,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 106212
SubjectTerms Chemical analysis
Earthquakes
Interfaces
Monopile offshore wind turbine
Non-uniform seismic excitation
Nonuniformity
Ocean floor
Offshore operations
Pile-soil interaction
Pile-water interaction
Response spectrum method
Seawater
Seismic activity
Seismic analysis
Seismic response
Soil analysis
Soil dynamics
Soil water
Soil-pile interaction
Soils
Timoshenko beams
Transfer functions
Turbines
Water analysis
Wind power
Wind turbines
Title Response spectrum method for seismic analysis of monopile offshore wind turbine
URI https://dx.doi.org/10.1016/j.soildyn.2020.106212
https://www.proquest.com/docview/2452122424
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5svehBfOKjlj14jU02m032WIpSFRV8QG_LNjvBFvvAVsSLv93ZZuMLRPCWLEwI326-mcm8AI4iYTMlBQakTrJA8CgPlLAYpEXs5pqHXFlXO3x5Jbv34ryX9JagU9XCuLRKz_0lpy_Y2q-0PJqt6WDQunWzk1JyAMgEiVxBZw2WSR0JUYfl9tlF9-ojmED0K8tfLWngBD4LeVpD1zL30b66TqjcrUke8d9U1A-yXmig03VY86Yja5dvtwFLON6E1S8NBbfg-qZMeUW2qKB8eh6xckQ0I9uUzXAwGw1yZnwjEjYpGJ3CyZSYga6L2cPkCdkLeemMFBG5zLgN96cnd51u4EcmBCaW4TyIExWSWkKJCZlW0irMo4I8lARFnnFVWJmF_cykacGNVXkuiiTtGxNHheXGGBnvQH08GeMuMJVbaXiSpagUCZNdYUPkiCEtq7Cf7sFxhZKelp0xdJUyNtQeVu1g1SWse5BVWOpvW6yJvf8SbVTYa_-NzbSLGbu4IBf7_3_yAay4uzJrrAF12hk8JDNj3m9C7fgtavrD9A5IZtJG
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPagH8YnVqnvwmibZJJvsUYqlaltBW-ht2WYnmGKb0lbEi7_d2SbxBSJ4C5sH4dvNN99k50HIhevrSHAfLDQnkeUzN7aEr8EKE8_0NXeY0CZ3uNvj7YF_MwyGFdIsc2FMWGXB_Tmnr9i6GLELNO1ZmtoPpndSiA4AShDXJHSukXWjBkxcV-PtI87DRfLl-Y-W0DKXf6bx2GNTMPdJv5o6qMyMceay3wzUD6pe2Z_WDtkuhCO9zN9tl1Rguke2vpQT3Cd393nAK9BV_uT8eULzBtEUlSldQLqYpDFVRRkSmiUU12A2Q17A42TxmM2BvqCPTtEMocMMB2TQuuo321bRMMFSHneWlhcIB40ScAhQWHEtIHYT9E8C8OOIiUTzyBlFKgwTprSIYz8JwpFSnptoppTi3iGpTrMpHBEqYs0VC6IQhMCbUVVoBxiAg8PCGYU10ihRkrO8LoYsA8bGsoBVGlhlDmuNRCWW8tsES-Tuv26tl9jL4gtbSLNjbHYFmX_8_yefk412v9uRneve7QnZNGfy-LE6qeIswSkKjuXobLWg3gElO9Mb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+spectrum+method+for+seismic+analysis+of+monopile+offshore+wind+turbine&rft.jtitle=Soil+dynamics+and+earthquake+engineering+%281984%29&rft.au=Zhao%2C+Mi&rft.au=Gao%2C+Zhidong&rft.au=Wang%2C+Piguang&rft.au=Du%2C+Xiuli&rft.date=2020-09-01&rft.pub=Elsevier+BV&rft.issn=0267-7261&rft.eissn=1879-341X&rft.volume=136&rft.spage=1&rft_id=info:doi/10.1016%2Fj.soildyn.2020.106212&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-7261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-7261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-7261&client=summon