Performance of X-shaped and circular pile-improved ground subject to liquefaction-induced lateral spreading

Liquefaction-induced lateral spreading has caused severe damage and significant financial losses in major earthquakes distributed globally. Groups of piling installed in liquefaction- and lateral spreading-susceptible ground has been proven to be effective in reducing lateral displacements, but furt...

Full description

Saved in:
Bibliographic Details
Published inSoil dynamics and earthquake engineering (1984) Vol. 109; pp. 273 - 281
Main Authors Li, Wenwen, Chen, Yumin, Stuedlein, Armin W., Liu, Hanlong, Zhang, Xinlei, Yang, Yaohui
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.06.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liquefaction-induced lateral spreading has caused severe damage and significant financial losses in major earthquakes distributed globally. Groups of piling installed in liquefaction- and lateral spreading-susceptible ground has been proven to be effective in reducing lateral displacements, but further investigation into the soil-structure interactions is required to elucidate the mechanisms for mitigation of displacement. Further, it is hypothesized that cross-, or X-shaped, piling may provide improved restraint on lateral flow deformations due the destructive interference of flow imposed by their cross-section. In this paper, the effectiveness of groups of X-shaped and circular piles to mitigate lateral spreading ground was investigated to improve the understanding of the mechanisms for improvement. Shake table tests were carried out to examine and compare the efficacy and efficiency of X-shaped and circular pile groups. Design parameters including the pile arrangement (square vs. triangular spacing) and orientation (X vs. +) of the X-shaped piling were also taken into consideration. The results demonstrate that the X-shaped pile groups can significantly reduce the lateral displacement and the areal extent of liquefied sand flow as compared to the unimproved and circular pile-improved ground, and that the spacing and orientation play a critical role in the deformation response. These findings will help inform the design of pile-improved ground as well as the design of structural piling adjacent to submerged, liquefiable slopes. •The efficacy and efficiency of X-shaped pile group to mitigate liquefaction-induced lateral spreading were investigated.•Instrumented shake table tests enabled comparisons between X-shaped and circular pile group.•Design variables including the pile arrangement and X-shaped pile orientation were considered.•Image processing techniques were used to quantify the areal extent of lateral flow.•X-shaped pile groups can significantly reduce the extent of lateral displacement.
AbstractList Liquefaction-induced lateral spreading has caused severe damage and significant financial losses in major earthquakes distributed globally. Groups of piling installed in liquefaction- and lateral spreading-susceptible ground has been proven to be effective in reducing lateral displacements, but further investigation into the soil-structure interactions is required to elucidate the mechanisms for mitigation of displacement. Further, it is hypothesized that cross-, or X-shaped, piling may provide improved restraint on lateral flow deformations due the destructive interference of flow imposed by their cross-section. In this paper, the effectiveness of groups of X-shaped and circular piles to mitigate lateral spreading ground was investigated to improve the understanding of the mechanisms for improvement. Shake table tests were carried out to examine and compare the efficacy and efficiency of X-shaped and circular pile groups. Design parameters including the pile arrangement (square vs. triangular spacing) and orientation (X vs. +) of the X-shaped piling were also taken into consideration. The results demonstrate that the X-shaped pile groups can significantly reduce the lateral displacement and the areal extent of liquefied sand flow as compared to the unimproved and circular pile-improved ground, and that the spacing and orientation play a critical role in the deformation response. These findings will help inform the design of pile-improved ground as well as the design of structural piling adjacent to submerged, liquefiable slopes.
Liquefaction-induced lateral spreading has caused severe damage and significant financial losses in major earthquakes distributed globally. Groups of piling installed in liquefaction- and lateral spreading-susceptible ground has been proven to be effective in reducing lateral displacements, but further investigation into the soil-structure interactions is required to elucidate the mechanisms for mitigation of displacement. Further, it is hypothesized that cross-, or X-shaped, piling may provide improved restraint on lateral flow deformations due the destructive interference of flow imposed by their cross-section. In this paper, the effectiveness of groups of X-shaped and circular piles to mitigate lateral spreading ground was investigated to improve the understanding of the mechanisms for improvement. Shake table tests were carried out to examine and compare the efficacy and efficiency of X-shaped and circular pile groups. Design parameters including the pile arrangement (square vs. triangular spacing) and orientation (X vs. +) of the X-shaped piling were also taken into consideration. The results demonstrate that the X-shaped pile groups can significantly reduce the lateral displacement and the areal extent of liquefied sand flow as compared to the unimproved and circular pile-improved ground, and that the spacing and orientation play a critical role in the deformation response. These findings will help inform the design of pile-improved ground as well as the design of structural piling adjacent to submerged, liquefiable slopes. •The efficacy and efficiency of X-shaped pile group to mitigate liquefaction-induced lateral spreading were investigated.•Instrumented shake table tests enabled comparisons between X-shaped and circular pile group.•Design variables including the pile arrangement and X-shaped pile orientation were considered.•Image processing techniques were used to quantify the areal extent of lateral flow.•X-shaped pile groups can significantly reduce the extent of lateral displacement.
Author Stuedlein, Armin W.
Chen, Yumin
Zhang, Xinlei
Li, Wenwen
Yang, Yaohui
Liu, Hanlong
Author_xml – sequence: 1
  givenname: Wenwen
  orcidid: 0000-0003-0482-646X
  surname: Li
  fullname: Li, Wenwen
  organization: Ph.D candidate, College of Civil and Transportation Engineering, Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China
– sequence: 2
  givenname: Yumin
  surname: Chen
  fullname: Chen, Yumin
  organization: Professor, College of Civil and Transportation Engineering, Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China
– sequence: 3
  givenname: Armin W.
  surname: Stuedlein
  fullname: Stuedlein, Armin W.
  organization: Associate Professor, School of Civil and Construction Engineering, Oregon State Univ., 101 Kearney Hall, Corvallis, OR 97331 USA
– sequence: 4
  givenname: Hanlong
  surname: Liu
  fullname: Liu, Hanlong
  organization: Professor, College of Civil Engineering, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China
– sequence: 5
  givenname: Xinlei
  surname: Zhang
  fullname: Zhang, Xinlei
  organization: Ph.D candidate, College of Civil and Transportation Engineering, Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China
– sequence: 6
  givenname: Yaohui
  surname: Yang
  fullname: Yang, Yaohui
  organization: Ph.D candidate, College of Civil and Transportation Engineering, Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China
BookMark eNqFkEFr3DAQhUVJoZu0P6Fg6NnuSNqVbXoIISRNIJAeWshNjKVRKtcrOZIdyL-vls0pl5xmYN6befOdspMQAzH2lUPDgavvY5Ojn-xLaATwrgHZgBAf2IZ3bV_LLX84YRsQqq1bofgndprzCMBb3qkN-_eLkotpj8FQFV31UOe_OJOtMNjK-GTWCVM1-4lqv59TfC6jxxTXMs3rMJJZqiVWk39ayaFZfAy1D3Y1RTbhQgmnKs-J0Prw-Jl9dDhl-vJaz9if66vflzf13f3P28uLuxqlgqUWZtjtyA6dIgdcIPHStgb4IJQTlrjjEq3qekuIvdo6ZbaScOtIDG0nQZ6xb8e9JW_JlRc9xjWFclILaKEXUkJfVD-OKpNizomcNn7BwwdLQj9pDvpAV4_6la4-0NUgdaFb3Ls37jn5PaaXd33nRx8VAM-eks7GU4FvfSowtY3-nQ3_AciunMQ
CitedBy_id crossref_primary_10_1155_2022_5074513
crossref_primary_10_1080_13632469_2023_2173491
crossref_primary_10_1155_2019_4587929
crossref_primary_10_1007_s11440_023_02113_x
crossref_primary_10_1016_j_soildyn_2023_107915
crossref_primary_10_1016_j_oceaneng_2021_109808
crossref_primary_10_1016_j_soildyn_2024_108757
crossref_primary_10_1016_j_soildyn_2019_105774
crossref_primary_10_1016_j_cscm_2024_e02926
crossref_primary_10_1061_IJGNAI_GMENG_9223
crossref_primary_10_3390_ma16175868
crossref_primary_10_1007_s11629_020_6546_9
crossref_primary_10_1155_2022_5915356
crossref_primary_10_3390_app13021009
crossref_primary_10_1155_2023_4489478
crossref_primary_10_1007_s11440_021_01404_5
crossref_primary_10_1139_cgj_2020_0505
crossref_primary_10_1680_jgeen_22_00147
crossref_primary_10_1016_j_trgeo_2019_100310
crossref_primary_10_1680_jgeen_23_00196
Cites_doi 10.1016/S0267-7261(02)00134-3
10.1007/s10518-013-9484-x
10.1061/(ASCE)1090-0241(2005)131:11(1378)
10.1016/S0267-7261(99)00008-1
10.1016/j.soildyn.2005.02.018
10.1061/(ASCE)GT.1943-5606.0001554
10.1061/(ASCE)1090-0241(2003)129:10(869)
10.3208/sandf1972.29.105
10.1016/j.soildyn.2012.02.002
10.1016/j.soildyn.2005.02.021
10.1680/jgeot.14.P.238
10.1061/(ASCE)GT.1943-5606.0000921
10.1016/j.compgeo.2013.09.019
10.1080/13632460509350580
10.1061/(ASCE)GT.1943-5606.0000970
10.1016/j.soildyn.2010.04.016
10.3208/sandf.36.Special_81
10.1061/(ASCE)GT.1943-5606.0000759
10.1016/j.compgeo.2015.03.006
10.1061/(ASCE)0733-9410(1995)121:4(316)
10.1061/(ASCE)GT.1943-5606.0001731
10.1061/(ASCE)CF.1943-5509.0000247
10.1016/S0267-7261(02)00094-5
10.1061/(ASCE)0733-9410(1984)110:11(1559)
10.1061/(ASCE)0733-9410(1995)121:12(844)
10.1016/j.soildyn.2013.04.007
10.1680/jphmg.15.00037
10.3208/sandf.49.459
10.1016/j.compgeo.2014.07.007
10.1016/j.soildyn.2016.09.045
10.1061/(ASCE)GT.1943-5606.0000115
10.1007/s11440-013-0280-1
10.1016/0266-352X(87)90001-2
10.1061/(ASCE)GT.1943-5606.0001480
10.3208/sandf.44.6_101
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Jun 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 2018
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
FR3
KL.
KR7
SOI
DOI 10.1016/j.soildyn.2018.03.022
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-341X
EndPage 281
ExternalDocumentID 10_1016_j_soildyn_2018_03_022
S0267726117309661
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
WUQ
Y6R
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TG
7UA
8FD
C1K
EFKBS
FR3
KL.
KR7
SOI
ID FETCH-LOGICAL-a360t-2cb55edb86ef012ae1b867c01b26f2de1f13ad689deaa964f6c43ea4fe2b78303
IEDL.DBID .~1
ISSN 0267-7261
IngestDate Wed Aug 13 06:37:05 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
Tue Jul 01 03:37:50 EDT 2025
Fri Feb 23 02:49:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ground improvement
X-shaped pile
Liquefaction
Shake table test
Lateral spreading
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a360t-2cb55edb86ef012ae1b867c01b26f2de1f13ad689deaa964f6c43ea4fe2b78303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0482-646X
PQID 2070923309
PQPubID 2045399
PageCount 9
ParticipantIDs proquest_journals_2070923309
crossref_citationtrail_10_1016_j_soildyn_2018_03_022
crossref_primary_10_1016_j_soildyn_2018_03_022
elsevier_sciencedirect_doi_10_1016_j_soildyn_2018_03_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Soil dynamics and earthquake engineering (1984)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Iai (bib42) 1989; 29
Boulanger, Hayden (bib9) 1995; 121
Dungca, Kuwano, Takahashi, Saruwatari, Izawa, Suzuki (bib37) 2006; 26
Towhata, Vargas-Monge, Orense, Yao (bib24) 1999; 18
Zhang, Lv, Liu, Wang (bib35) 2015; 67
Cubrinovski, Kokusho, Ishihara (bib36) 2006; 26
Seed, Idriss (bib7) 1982
Haeri, Kavand, Rahmani, Torabi (bib38) 2012; 38
Brandenberg, Boulanger, Kutter, Chang (bib27) 2005; 131
Mitchell, Solymar (bib11) 1984; 110
Nguyen, Rayamajhi, Boulanger, Ashford, Lu, Elgamal (bib15) 2013; 139
Lukas RG. Dynamic compaction engineering considerations. Grouting, Soil Improv. Geosynth. Vols 1 2, vol. 30; 1992, p. 940–53.
Gianella, Stuedlein (bib13) 2017; 143
Motamed, Towhata, Honda, Yasuda, Tabata, Nakazawa (bib44) 2009; 49
Abdoun, Dobry, O’Rourke, Goh (bib26) 2003; 129
Zhou, Liu, Randolph, Kong, Cao (bib30) 2017; 17
Hamada, Isoyama, Wakamatsu (bib3) 1996; 36
Tasiopoulou, Gerolymos, Tazoh, Gazetas (bib28) 2013; 139
Bartlett, Youd (bib1) 1995; 121
Towhata (bib43) 2008
Liu, Zhou, Kong (bib31) 2014; 62
Iai (bib21) 2005; 9
Motamed, Towhata (bib39) 2010; 136
Lv, Liu, Ng, Ding, Gunawan (bib33) 2014; 55
Lv, Liu, Ding, Kong (bib32) 2011; 26
Lv, Liu, Ng, Gunawan, Ding (bib34) 2014; 9
Li, Luo, Zhang, Zhang, Jiang (bib41) 2014; 36
Rayamajhi, Nguyen, Ashford, Boulanger, Lu, Elgamal (bib18) 2013; 140
Kramer (bib19) 2014; 12
Hamada, Towhata, Yasuda, Isoyama (bib2) 1987; 4
Rollins KM, Anderson JKS, McCain AK, Goughnour RR. Vertical composite drains for mitigating liquefaction hazard. In: Chung JS and Matsui T, editor. Proc. Thirteen. Int. Offshore Polar Eng. Conf. Vol 2, 2003, p. 498–505.
Cetin, Youd, Seed, Bray, Sancio, Lettis (bib4) 2002; 22
Siegel TC, NeSmith WM, NeSmith WM, Cargill PE. Ground improvement resulting from installation of drilled displacement piles. Proc. DFI’s 32nd Annu. Conf. Deep Found, 2007, p. 129–138.
Motamed, Towhata (bib22) 2010; 30
Takahashi, Takahashi, Morikawa, Towhata, Takano (bib23) 2016; 66
Turner, Brandenberg, Stewart (bib5) 2016; 142
Finn, Fujita (bib25) 2002; 22
Motamed, Towhata, Honda, Tabata, Abe (bib29) 2013; 51
Stuedlein, Gianella, Canivan (bib12) 2016; 142
Yasuda S, Nagase H, Kiku H. Appropriate countermeasures against permanent ground displacement due to liquefaction. 10th World Conf. Earthq Eng Madrid, Spain:1471–1476; 1992.
Cubrinovski, Robinson (bib6) 2016; 91
Tokimatsu, Suzuki (bib40) 2004; 44
Seed, Booker (bib16) 1977; 103
Brown (bib10) 1977; 103
Mitchell (10.1016/j.soildyn.2018.03.022_bib11) 1984; 110
Haeri (10.1016/j.soildyn.2018.03.022_bib38) 2012; 38
Iai (10.1016/j.soildyn.2018.03.022_bib21) 2005; 9
Rayamajhi (10.1016/j.soildyn.2018.03.022_bib18) 2013; 140
Zhou (10.1016/j.soildyn.2018.03.022_bib30) 2017; 17
Liu (10.1016/j.soildyn.2018.03.022_bib31) 2014; 62
Boulanger (10.1016/j.soildyn.2018.03.022_bib9) 1995; 121
Li (10.1016/j.soildyn.2018.03.022_bib41) 2014; 36
Towhata (10.1016/j.soildyn.2018.03.022_bib24) 1999; 18
Tasiopoulou (10.1016/j.soildyn.2018.03.022_bib28) 2013; 139
Cubrinovski (10.1016/j.soildyn.2018.03.022_bib6) 2016; 91
Dungca (10.1016/j.soildyn.2018.03.022_bib37) 2006; 26
Lv (10.1016/j.soildyn.2018.03.022_bib34) 2014; 9
Zhang (10.1016/j.soildyn.2018.03.022_bib35) 2015; 67
Takahashi (10.1016/j.soildyn.2018.03.022_bib23) 2016; 66
Stuedlein (10.1016/j.soildyn.2018.03.022_bib12) 2016; 142
Cubrinovski (10.1016/j.soildyn.2018.03.022_bib36) 2006; 26
Tokimatsu (10.1016/j.soildyn.2018.03.022_bib40) 2004; 44
10.1016/j.soildyn.2018.03.022_bib20
Motamed (10.1016/j.soildyn.2018.03.022_bib39) 2010; 136
Hamada (10.1016/j.soildyn.2018.03.022_bib3) 1996; 36
Bartlett (10.1016/j.soildyn.2018.03.022_bib1) 1995; 121
Lv (10.1016/j.soildyn.2018.03.022_bib33) 2014; 55
Gianella (10.1016/j.soildyn.2018.03.022_bib13) 2017; 143
Iai (10.1016/j.soildyn.2018.03.022_bib42) 1989; 29
Turner (10.1016/j.soildyn.2018.03.022_bib5) 2016; 142
Kramer (10.1016/j.soildyn.2018.03.022_bib19) 2014; 12
Seed (10.1016/j.soildyn.2018.03.022_bib7) 1982
Nguyen (10.1016/j.soildyn.2018.03.022_bib15) 2013; 139
Towhata (10.1016/j.soildyn.2018.03.022_bib43) 2008
10.1016/j.soildyn.2018.03.022_bib14
Motamed (10.1016/j.soildyn.2018.03.022_bib22) 2010; 30
Motamed (10.1016/j.soildyn.2018.03.022_bib29) 2013; 51
10.1016/j.soildyn.2018.03.022_bib17
Lv (10.1016/j.soildyn.2018.03.022_bib32) 2011; 26
Hamada (10.1016/j.soildyn.2018.03.022_bib2) 1987; 4
Finn (10.1016/j.soildyn.2018.03.022_bib25) 2002; 22
Motamed (10.1016/j.soildyn.2018.03.022_bib44) 2009; 49
Brandenberg (10.1016/j.soildyn.2018.03.022_bib27) 2005; 131
Brown (10.1016/j.soildyn.2018.03.022_bib10) 1977; 103
Cetin (10.1016/j.soildyn.2018.03.022_bib4) 2002; 22
10.1016/j.soildyn.2018.03.022_bib8
Seed (10.1016/j.soildyn.2018.03.022_bib16) 1977; 103
Abdoun (10.1016/j.soildyn.2018.03.022_bib26) 2003; 129
References_xml – volume: 9
  start-page: 529
  year: 2014
  end-page: 546
  ident: bib34
  article-title: A modified analytical solution of soil stress distribution for XCC pile foundations
  publication-title: Acta Geotech
– volume: 18
  start-page: 347
  year: 1999
  end-page: 361
  ident: bib24
  article-title: Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil
  publication-title: Soil Dyn Earthq Eng
– volume: 129
  start-page: 869
  year: 2003
  end-page: 878
  ident: bib26
  article-title: Pile response to lateral spreads: centrifuge modeling
  publication-title: J Geotech Geoenviron Eng
– volume: 55
  start-page: 365
  year: 2014
  end-page: 377
  ident: bib33
  article-title: Three-dimensional numerical analysis of the stress transfer mechanism of XCC piled raft foundation
  publication-title: Comput Geotech
– volume: 36
  start-page: 81
  year: 1996
  end-page: 97
  ident: bib3
  article-title: Liquefaction-induced ground displacement and its related damage to lifeline facilities
  publication-title: Soils Found
– volume: 44
  start-page: 101
  year: 2004
  end-page: 110
  ident: bib40
  article-title: Pore water pressure response around pile and its effects on p-y behavior during soil liquefaction
  publication-title: Soils Found
– volume: 36
  start-page: 1872
  year: 2014
  end-page: 1878
  ident: bib41
  article-title: Experimental study on control element of sand pourer preparation of sand foundation model
  publication-title: Chin J Geotech Eng
– reference: Yasuda S, Nagase H, Kiku H. Appropriate countermeasures against permanent ground displacement due to liquefaction. 10th World Conf. Earthq Eng Madrid, Spain:1471–1476; 1992.
– volume: 26
  start-page: 275
  year: 2006
  end-page: 286
  ident: bib36
  article-title: Interpretation from large-scale shake table tests on piles undergoing lateral spreading in liquefied soils
  publication-title: Soil Dyn Earthq Eng
– volume: 142
  year: 2016
  ident: bib12
  article-title: Densification of granular soils using conventional and drained timber displacement piles
  publication-title: J Geotech Geoenviron Eng
– volume: 30
  start-page: 1043
  year: 2010
  end-page: 1060
  ident: bib22
  article-title: Mitigation measures for pile groups behind quay walls subjected to lateral flow of liquefied soil: shake table model tests
  publication-title: Soil Dyn Earthq Eng
– volume: 103
  year: 1977
  ident: bib10
  article-title: Vibroflotation compaction of cohesionless soils
  publication-title: J Geotech Geoenviron Eng
– volume: 143
  year: 2017
  ident: bib13
  article-title: Performance of driven displacement pile-improved ground in controlled blasting field tests
  publication-title: J Geotech Geoenviron Eng
– volume: 17
  start-page: 103
  year: 2017
  end-page: 121
  ident: bib30
  article-title: Experimental and analytical study of X-section cast-in-place concrete pile installation effect
  publication-title: Int J Phys Model Geotech
– volume: 142
  start-page: 5016001
  year: 2016
  ident: bib5
  article-title: Case study of parallel bridges affected by liquefaction and lateral spreading
  publication-title: J Geotech Geoenviron Eng
– reference: Rollins KM, Anderson JKS, McCain AK, Goughnour RR. Vertical composite drains for mitigating liquefaction hazard. In: Chung JS and Matsui T, editor. Proc. Thirteen. Int. Offshore Polar Eng. Conf. Vol 2, 2003, p. 498–505.
– volume: 91
  start-page: 187
  year: 2016
  end-page: 201
  ident: bib6
  article-title: Lateral spreading evidence and interpretation from the 2010–2011 Christchurch earthquakes
  publication-title: Soil Dyn Earthq Eng
– reference: Lukas RG. Dynamic compaction engineering considerations. Grouting, Soil Improv. Geosynth. Vols 1 2, vol. 30; 1992, p. 940–53.
– volume: 67
  start-page: 223
  year: 2015
  end-page: 228
  ident: bib35
  article-title: An analytical solution for load transfer mechanism of XCC pile foundations
  publication-title: Comput Geotech
– volume: 121
  start-page: 316
  year: 1995
  end-page: 329
  ident: bib1
  article-title: Empirical prediction of liquefaction-induced lateral spread
  publication-title: J Geotech Eng
– volume: 136
  start-page: 477
  year: 2010
  end-page: 489
  ident: bib39
  article-title: Shaking table model tests on pile groups behind quay walls subjected to lateral spreading
  publication-title: J Geotech Geoenviron Eng
– volume: 121
  start-page: 844
  year: 1995
  end-page: 855
  ident: bib9
  article-title: Aspects of compaction grouting of liquefiable soil
  publication-title: J Geotech Eng
– volume: 110
  start-page: 1559
  year: 1984
  end-page: 1576
  ident: bib11
  article-title: Time-dependent strength gain in freshly deposited or densified sand
  publication-title: J Geotech Eng
– volume: 51
  start-page: 35
  year: 2013
  end-page: 46
  ident: bib29
  article-title: Pile group response to liquefaction-induced lateral spreading: E-defense large shake table test
  publication-title: Soil Dyn Earthq Eng
– volume: 26
  start-page: 287
  year: 2006
  end-page: 295
  ident: bib37
  article-title: Shaking table tests on the lateral response of a pile buried in liquefied sand
  publication-title: Soil Dyn Earthq Eng
– volume: 9
  start-page: 77
  year: 2005
  end-page: 103
  ident: bib21
  article-title: Remediation of liquefiable soils for port structures in Japan—analysis, design and performance
  publication-title: J Earthq Eng
– volume: 22
  start-page: 731
  year: 2002
  end-page: 742
  ident: bib25
  article-title: Piles in liquefiable soils: seismic analysis and design issues
  publication-title: Soil Dyn Earthq Eng
– volume: 49
  start-page: 459
  year: 2009
  end-page: 475
  ident: bib44
  article-title: Behaviour of pile group behind a sheet pile quay wall subjected to liquefaction-induced large ground deformation observed in shaking test in E-Defense Project
  publication-title: Soils Found
– volume: 38
  start-page: 25
  year: 2012
  end-page: 45
  ident: bib38
  article-title: Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing
  publication-title: Soil Dyn Earthq Eng
– year: 2008
  ident: bib43
  article-title: Geotechnical earthquake engineering
– volume: 4
  start-page: 197
  year: 1987
  end-page: 220
  ident: bib2
  article-title: Study on permanent ground displacement induced by seismic liquefaction
  publication-title: Comput Geotech
– volume: 103
  year: 1977
  ident: bib16
  article-title: Stabilization of potentially liquefiable sand deposits using gravel drains
  publication-title: J Geotech Geoenviron Eng
– volume: 66
  start-page: 617
  year: 2016
  end-page: 626
  ident: bib23
  article-title: Efficacy of pile-type improvement against lateral flow of liquefied ground
  publication-title: Geotechnique
– volume: 140
  start-page: 4013034
  year: 2013
  ident: bib18
  article-title: Numerical study of shear stress distribution for discrete columns in liquefiable soils
  publication-title: J Geotech Geoenviron Eng
– volume: 139
  start-page: 223
  year: 2013
  end-page: 233
  ident: bib28
  article-title: Pile-group response to large soil displacements and liquefaction: centrifuge experiments versus a physically simplified analysis
  publication-title: J Geotech Geoenviron Eng
– volume: 62
  start-page: 268
  year: 2014
  end-page: 282
  ident: bib31
  article-title: XCC pile installation effect in soft soil ground: a simplified analytical model
  publication-title: Comput Geotech
– volume: 29
  start-page: 105
  year: 1989
  end-page: 118
  ident: bib42
  article-title: Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field
  publication-title: Soils Found
– year: 1982
  ident: bib7
  article-title: Ground motions and soil liquefaction during earthquakes
– volume: 22
  start-page: 1083
  year: 2002
  end-page: 1092
  ident: bib4
  article-title: Liquefaction-induced ground deformations at Hotel Sapanca during Kocaeli (Izmit),Turkey earthquake
  publication-title: Soil Dyn Earthq Eng
– reference: Siegel TC, NeSmith WM, NeSmith WM, Cargill PE. Ground improvement resulting from installation of drilled displacement piles. Proc. DFI’s 32nd Annu. Conf. Deep Found, 2007, p. 129–138.
– volume: 139
  start-page: 1923
  year: 2013
  end-page: 1933
  ident: bib15
  article-title: Design of DSM grids for liquefaction remediation
  publication-title: J Geotech Geoenviron Eng
– volume: 12
  start-page: 1049
  year: 2014
  end-page: 1070
  ident: bib19
  article-title: Performance-based design methodologies for geotechnical earthquake engineering
  publication-title: Bull Earthq Eng
– volume: 26
  start-page: 180
  year: 2011
  end-page: 189
  ident: bib32
  article-title: Field tests on bearing characteristics of X-section pile composite foundation
  publication-title: J Perform Constr Facil
– volume: 131
  start-page: 1378
  year: 2005
  end-page: 1391
  ident: bib27
  article-title: Behavior of pile foundations in laterally spreading ground during centrifuge tests
  publication-title: J Geotech Geoenviron Eng
– volume: 22
  start-page: 1083
  year: 2002
  ident: 10.1016/j.soildyn.2018.03.022_bib4
  article-title: Liquefaction-induced ground deformations at Hotel Sapanca during Kocaeli (Izmit),Turkey earthquake
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/S0267-7261(02)00134-3
– volume: 12
  start-page: 1049
  year: 2014
  ident: 10.1016/j.soildyn.2018.03.022_bib19
  article-title: Performance-based design methodologies for geotechnical earthquake engineering
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-013-9484-x
– volume: 131
  start-page: 1378
  year: 2005
  ident: 10.1016/j.soildyn.2018.03.022_bib27
  article-title: Behavior of pile foundations in laterally spreading ground during centrifuge tests
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(2005)131:11(1378)
– volume: 18
  start-page: 347
  year: 1999
  ident: 10.1016/j.soildyn.2018.03.022_bib24
  article-title: Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/S0267-7261(99)00008-1
– volume: 26
  start-page: 275
  year: 2006
  ident: 10.1016/j.soildyn.2018.03.022_bib36
  article-title: Interpretation from large-scale shake table tests on piles undergoing lateral spreading in liquefied soils
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2005.02.018
– volume: 142
  year: 2016
  ident: 10.1016/j.soildyn.2018.03.022_bib12
  article-title: Densification of granular soils using conventional and drained timber displacement piles
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0001554
– volume: 103
  year: 1977
  ident: 10.1016/j.soildyn.2018.03.022_bib16
  article-title: Stabilization of potentially liquefiable sand deposits using gravel drains
  publication-title: J Geotech Geoenviron Eng
– volume: 129
  start-page: 869
  year: 2003
  ident: 10.1016/j.soildyn.2018.03.022_bib26
  article-title: Pile response to lateral spreads: centrifuge modeling
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(2003)129:10(869)
– volume: 29
  start-page: 105
  year: 1989
  ident: 10.1016/j.soildyn.2018.03.022_bib42
  article-title: Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field
  publication-title: Soils Found
  doi: 10.3208/sandf1972.29.105
– volume: 38
  start-page: 25
  year: 2012
  ident: 10.1016/j.soildyn.2018.03.022_bib38
  article-title: Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2012.02.002
– ident: 10.1016/j.soildyn.2018.03.022_bib14
– volume: 26
  start-page: 287
  year: 2006
  ident: 10.1016/j.soildyn.2018.03.022_bib37
  article-title: Shaking table tests on the lateral response of a pile buried in liquefied sand
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2005.02.021
– volume: 66
  start-page: 617
  year: 2016
  ident: 10.1016/j.soildyn.2018.03.022_bib23
  article-title: Efficacy of pile-type improvement against lateral flow of liquefied ground
  publication-title: Geotechnique
  doi: 10.1680/jgeot.14.P.238
– volume: 139
  start-page: 1923
  year: 2013
  ident: 10.1016/j.soildyn.2018.03.022_bib15
  article-title: Design of DSM grids for liquefaction remediation
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0000921
– volume: 55
  start-page: 365
  year: 2014
  ident: 10.1016/j.soildyn.2018.03.022_bib33
  article-title: Three-dimensional numerical analysis of the stress transfer mechanism of XCC piled raft foundation
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2013.09.019
– volume: 9
  start-page: 77
  year: 2005
  ident: 10.1016/j.soildyn.2018.03.022_bib21
  article-title: Remediation of liquefiable soils for port structures in Japan—analysis, design and performance
  publication-title: J Earthq Eng
  doi: 10.1080/13632460509350580
– volume: 140
  start-page: 4013034
  year: 2013
  ident: 10.1016/j.soildyn.2018.03.022_bib18
  article-title: Numerical study of shear stress distribution for discrete columns in liquefiable soils
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0000970
– volume: 30
  start-page: 1043
  year: 2010
  ident: 10.1016/j.soildyn.2018.03.022_bib22
  article-title: Mitigation measures for pile groups behind quay walls subjected to lateral flow of liquefied soil: shake table model tests
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2010.04.016
– volume: 36
  start-page: 81
  year: 1996
  ident: 10.1016/j.soildyn.2018.03.022_bib3
  article-title: Liquefaction-induced ground displacement and its related damage to lifeline facilities
  publication-title: Soils Found
  doi: 10.3208/sandf.36.Special_81
– ident: 10.1016/j.soildyn.2018.03.022_bib8
– volume: 36
  start-page: 1872
  year: 2014
  ident: 10.1016/j.soildyn.2018.03.022_bib41
  article-title: Experimental study on control element of sand pourer preparation of sand foundation model
  publication-title: Chin J Geotech Eng
– volume: 103
  year: 1977
  ident: 10.1016/j.soildyn.2018.03.022_bib10
  article-title: Vibroflotation compaction of cohesionless soils
  publication-title: J Geotech Geoenviron Eng
– volume: 139
  start-page: 223
  year: 2013
  ident: 10.1016/j.soildyn.2018.03.022_bib28
  article-title: Pile-group response to large soil displacements and liquefaction: centrifuge experiments versus a physically simplified analysis
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0000759
– volume: 67
  start-page: 223
  year: 2015
  ident: 10.1016/j.soildyn.2018.03.022_bib35
  article-title: An analytical solution for load transfer mechanism of XCC pile foundations
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2015.03.006
– volume: 121
  start-page: 316
  year: 1995
  ident: 10.1016/j.soildyn.2018.03.022_bib1
  article-title: Empirical prediction of liquefaction-induced lateral spread
  publication-title: J Geotech Eng
  doi: 10.1061/(ASCE)0733-9410(1995)121:4(316)
– volume: 143
  year: 2017
  ident: 10.1016/j.soildyn.2018.03.022_bib13
  article-title: Performance of driven displacement pile-improved ground in controlled blasting field tests
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0001731
– year: 1982
  ident: 10.1016/j.soildyn.2018.03.022_bib7
– volume: 26
  start-page: 180
  year: 2011
  ident: 10.1016/j.soildyn.2018.03.022_bib32
  article-title: Field tests on bearing characteristics of X-section pile composite foundation
  publication-title: J Perform Constr Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0000247
– volume: 22
  start-page: 731
  year: 2002
  ident: 10.1016/j.soildyn.2018.03.022_bib25
  article-title: Piles in liquefiable soils: seismic analysis and design issues
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/S0267-7261(02)00094-5
– volume: 110
  start-page: 1559
  year: 1984
  ident: 10.1016/j.soildyn.2018.03.022_bib11
  article-title: Time-dependent strength gain in freshly deposited or densified sand
  publication-title: J Geotech Eng
  doi: 10.1061/(ASCE)0733-9410(1984)110:11(1559)
– volume: 121
  start-page: 844
  year: 1995
  ident: 10.1016/j.soildyn.2018.03.022_bib9
  article-title: Aspects of compaction grouting of liquefiable soil
  publication-title: J Geotech Eng
  doi: 10.1061/(ASCE)0733-9410(1995)121:12(844)
– year: 2008
  ident: 10.1016/j.soildyn.2018.03.022_bib43
– ident: 10.1016/j.soildyn.2018.03.022_bib17
– volume: 51
  start-page: 35
  year: 2013
  ident: 10.1016/j.soildyn.2018.03.022_bib29
  article-title: Pile group response to liquefaction-induced lateral spreading: E-defense large shake table test
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2013.04.007
– volume: 17
  start-page: 103
  year: 2017
  ident: 10.1016/j.soildyn.2018.03.022_bib30
  article-title: Experimental and analytical study of X-section cast-in-place concrete pile installation effect
  publication-title: Int J Phys Model Geotech
  doi: 10.1680/jphmg.15.00037
– volume: 49
  start-page: 459
  year: 2009
  ident: 10.1016/j.soildyn.2018.03.022_bib44
  article-title: Behaviour of pile group behind a sheet pile quay wall subjected to liquefaction-induced large ground deformation observed in shaking test in E-Defense Project
  publication-title: Soils Found
  doi: 10.3208/sandf.49.459
– volume: 62
  start-page: 268
  year: 2014
  ident: 10.1016/j.soildyn.2018.03.022_bib31
  article-title: XCC pile installation effect in soft soil ground: a simplified analytical model
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2014.07.007
– volume: 91
  start-page: 187
  year: 2016
  ident: 10.1016/j.soildyn.2018.03.022_bib6
  article-title: Lateral spreading evidence and interpretation from the 2010–2011 Christchurch earthquakes
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2016.09.045
– volume: 136
  start-page: 477
  year: 2010
  ident: 10.1016/j.soildyn.2018.03.022_bib39
  article-title: Shaking table model tests on pile groups behind quay walls subjected to lateral spreading
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0000115
– volume: 9
  start-page: 529
  year: 2014
  ident: 10.1016/j.soildyn.2018.03.022_bib34
  article-title: A modified analytical solution of soil stress distribution for XCC pile foundations
  publication-title: Acta Geotech
  doi: 10.1007/s11440-013-0280-1
– volume: 4
  start-page: 197
  year: 1987
  ident: 10.1016/j.soildyn.2018.03.022_bib2
  article-title: Study on permanent ground displacement induced by seismic liquefaction
  publication-title: Comput Geotech
  doi: 10.1016/0266-352X(87)90001-2
– volume: 142
  start-page: 5016001
  year: 2016
  ident: 10.1016/j.soildyn.2018.03.022_bib5
  article-title: Case study of parallel bridges affected by liquefaction and lateral spreading
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0001480
– ident: 10.1016/j.soildyn.2018.03.022_bib20
– volume: 44
  start-page: 101
  year: 2004
  ident: 10.1016/j.soildyn.2018.03.022_bib40
  article-title: Pore water pressure response around pile and its effects on p-y behavior during soil liquefaction
  publication-title: Soils Found
  doi: 10.3208/sandf.44.6_101
SSID ssj0017186
Score 2.3078578
Snippet Liquefaction-induced lateral spreading has caused severe damage and significant financial losses in major earthquakes distributed globally. Groups of piling...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 273
SubjectTerms Circularity
Deformation mechanisms
Design
Design parameters
Earthquake damage
Earthquakes
Ground improvement
Lateral displacement
Lateral spreading
Liquefaction
Pile groups
Piles
Seismic activity
Seismic design
Seismic engineering
Shake table test
Shake table tests
Soil investigations
Soil mechanics
Soil-structure interaction
Spreading
Structural engineering
X-shaped pile
Title Performance of X-shaped and circular pile-improved ground subject to liquefaction-induced lateral spreading
URI https://dx.doi.org/10.1016/j.soildyn.2018.03.022
https://www.proquest.com/docview/2070923309
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvGxSg5e47ZpmqTHRZRVUQQV9haSNsHVslv2cfDib3fSpq4KInhrm6aEmenMZJjvC0KnLpGRpYaTLNM5YSwRRFMqCLMpJBgmg6Dm65C3d3zwxK6H6bCDzlssjG-rDL6_8em1tw5PekGavWo06j34s5MEbABiMFJI2msEOxPeys_eP9s8YvC9vKmzCOLfXqJ4ei-eL7cs3jwNaixrrlNKf4tPPzx1HX4uN9FGyBtxv1naFurY8TZa_8ImuINe75cgADxxeEhmz7qyBdbjAuejad1xiitwA2RUlxJgyIM6YHS2ML4eg-cTXHpC1wB3ILBhB9UXuNQeqFziWTVtmu530dPlxeP5gISzFIhOeDQnNDdpagsjuXUQk7SN4VLkUWwod7SwsYsTXXCZFVbrjDPHc5ZYzRwoUkiIc3toZTwZ232EtbVRLp2B5EOzNKMmZSaJnBCRs5mU2QFirQRVHojG_XkXpWo7yl5UELzygldRokDwB-jsc1rVMG38NUG26lHfTEZBNPhrardVpwr_7AzGRQTpLhjT4f-_fITW_F3TTNZFK_Ppwh5D2jI3J7VdnqDV_tXN4O4DZffvUQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSD-MT1mYPXuG2aJulRRFlfi6DC3kLSJrhadsvuevDfO2lTXyCCt9JhSpmZzqszXxA6domMLDWcZJnOCWOJIJpSQZhNIcEwGQQ134e8HfD-I7sapsMFdNbuwvixyuD7G59ee-twpxek2atGo969PztJQAEQg5FC0g4l0KJHp0o7aPH08ro_-PiZAO6XN60WQTzD5yJP79lD5pbFm0dCjWUNd0rpbyHqh7OuI9DFGloNqSM-bd5uHS3Y8QZa-QIouIle7j73APDE4SGZPenKFliPC5yPpvXQKa7AE5BR3U0Akt_rAOrs1fiWDJ5PcOkxXcPGA4GaHbRf4FL7XeUSz6ppM3e_hR4vzh_O-iQcp0B0wqM5oblJU1sYya2DsKRtDJcij2JDuaOFjV2c6ILLrLBaZ5w5nrPEauZAl0JCqNtGnfFkbHcQ1tZGuXQG8g_N0oyalJkkckJEzmZSZl3EWgmqPGCN-yMvStUOlT2rIHjlBa-iRIHgu-jkg61qwDb-YpCtetQ3q1EQEP5i3W_VqcJnOwO6iCDjBXva_f-Tj9BS_-H2Rt1cDq730LKnNLNl-6gzn77aA8hi5uYwWOk7kwjyAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+X-shaped+and+circular+pile-improved+ground+subject+to+liquefaction-induced+lateral+spreading&rft.jtitle=Soil+dynamics+and+earthquake+engineering+%281984%29&rft.au=Li%2C+Wenwen&rft.au=Chen%2C+Yumin&rft.au=Stuedlein%2C+Armin+W&rft.au=Liu%2C+Hanlong&rft.date=2018-06-01&rft.pub=Elsevier+BV&rft.issn=0267-7261&rft.eissn=1879-341X&rft.volume=109&rft.spage=273&rft_id=info:doi/10.1016%2Fj.soildyn.2018.03.022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-7261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-7261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-7261&client=summon