Performance of X-shaped and circular pile-improved ground subject to liquefaction-induced lateral spreading
Liquefaction-induced lateral spreading has caused severe damage and significant financial losses in major earthquakes distributed globally. Groups of piling installed in liquefaction- and lateral spreading-susceptible ground has been proven to be effective in reducing lateral displacements, but furt...
Saved in:
Published in | Soil dynamics and earthquake engineering (1984) Vol. 109; pp. 273 - 281 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.06.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liquefaction-induced lateral spreading has caused severe damage and significant financial losses in major earthquakes distributed globally. Groups of piling installed in liquefaction- and lateral spreading-susceptible ground has been proven to be effective in reducing lateral displacements, but further investigation into the soil-structure interactions is required to elucidate the mechanisms for mitigation of displacement. Further, it is hypothesized that cross-, or X-shaped, piling may provide improved restraint on lateral flow deformations due the destructive interference of flow imposed by their cross-section. In this paper, the effectiveness of groups of X-shaped and circular piles to mitigate lateral spreading ground was investigated to improve the understanding of the mechanisms for improvement. Shake table tests were carried out to examine and compare the efficacy and efficiency of X-shaped and circular pile groups. Design parameters including the pile arrangement (square vs. triangular spacing) and orientation (X vs. +) of the X-shaped piling were also taken into consideration. The results demonstrate that the X-shaped pile groups can significantly reduce the lateral displacement and the areal extent of liquefied sand flow as compared to the unimproved and circular pile-improved ground, and that the spacing and orientation play a critical role in the deformation response. These findings will help inform the design of pile-improved ground as well as the design of structural piling adjacent to submerged, liquefiable slopes.
•The efficacy and efficiency of X-shaped pile group to mitigate liquefaction-induced lateral spreading were investigated.•Instrumented shake table tests enabled comparisons between X-shaped and circular pile group.•Design variables including the pile arrangement and X-shaped pile orientation were considered.•Image processing techniques were used to quantify the areal extent of lateral flow.•X-shaped pile groups can significantly reduce the extent of lateral displacement. |
---|---|
AbstractList | Liquefaction-induced lateral spreading has caused severe damage and significant financial losses in major earthquakes distributed globally. Groups of piling installed in liquefaction- and lateral spreading-susceptible ground has been proven to be effective in reducing lateral displacements, but further investigation into the soil-structure interactions is required to elucidate the mechanisms for mitigation of displacement. Further, it is hypothesized that cross-, or X-shaped, piling may provide improved restraint on lateral flow deformations due the destructive interference of flow imposed by their cross-section. In this paper, the effectiveness of groups of X-shaped and circular piles to mitigate lateral spreading ground was investigated to improve the understanding of the mechanisms for improvement. Shake table tests were carried out to examine and compare the efficacy and efficiency of X-shaped and circular pile groups. Design parameters including the pile arrangement (square vs. triangular spacing) and orientation (X vs. +) of the X-shaped piling were also taken into consideration. The results demonstrate that the X-shaped pile groups can significantly reduce the lateral displacement and the areal extent of liquefied sand flow as compared to the unimproved and circular pile-improved ground, and that the spacing and orientation play a critical role in the deformation response. These findings will help inform the design of pile-improved ground as well as the design of structural piling adjacent to submerged, liquefiable slopes. Liquefaction-induced lateral spreading has caused severe damage and significant financial losses in major earthquakes distributed globally. Groups of piling installed in liquefaction- and lateral spreading-susceptible ground has been proven to be effective in reducing lateral displacements, but further investigation into the soil-structure interactions is required to elucidate the mechanisms for mitigation of displacement. Further, it is hypothesized that cross-, or X-shaped, piling may provide improved restraint on lateral flow deformations due the destructive interference of flow imposed by their cross-section. In this paper, the effectiveness of groups of X-shaped and circular piles to mitigate lateral spreading ground was investigated to improve the understanding of the mechanisms for improvement. Shake table tests were carried out to examine and compare the efficacy and efficiency of X-shaped and circular pile groups. Design parameters including the pile arrangement (square vs. triangular spacing) and orientation (X vs. +) of the X-shaped piling were also taken into consideration. The results demonstrate that the X-shaped pile groups can significantly reduce the lateral displacement and the areal extent of liquefied sand flow as compared to the unimproved and circular pile-improved ground, and that the spacing and orientation play a critical role in the deformation response. These findings will help inform the design of pile-improved ground as well as the design of structural piling adjacent to submerged, liquefiable slopes. •The efficacy and efficiency of X-shaped pile group to mitigate liquefaction-induced lateral spreading were investigated.•Instrumented shake table tests enabled comparisons between X-shaped and circular pile group.•Design variables including the pile arrangement and X-shaped pile orientation were considered.•Image processing techniques were used to quantify the areal extent of lateral flow.•X-shaped pile groups can significantly reduce the extent of lateral displacement. |
Author | Stuedlein, Armin W. Chen, Yumin Zhang, Xinlei Li, Wenwen Yang, Yaohui Liu, Hanlong |
Author_xml | – sequence: 1 givenname: Wenwen orcidid: 0000-0003-0482-646X surname: Li fullname: Li, Wenwen organization: Ph.D candidate, College of Civil and Transportation Engineering, Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China – sequence: 2 givenname: Yumin surname: Chen fullname: Chen, Yumin organization: Professor, College of Civil and Transportation Engineering, Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China – sequence: 3 givenname: Armin W. surname: Stuedlein fullname: Stuedlein, Armin W. organization: Associate Professor, School of Civil and Construction Engineering, Oregon State Univ., 101 Kearney Hall, Corvallis, OR 97331 USA – sequence: 4 givenname: Hanlong surname: Liu fullname: Liu, Hanlong organization: Professor, College of Civil Engineering, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China – sequence: 5 givenname: Xinlei surname: Zhang fullname: Zhang, Xinlei organization: Ph.D candidate, College of Civil and Transportation Engineering, Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China – sequence: 6 givenname: Yaohui surname: Yang fullname: Yang, Yaohui organization: Ph.D candidate, College of Civil and Transportation Engineering, Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China |
BookMark | eNqFkEFr3DAQhUVJoZu0P6Fg6NnuSNqVbXoIISRNIJAeWshNjKVRKtcrOZIdyL-vls0pl5xmYN6befOdspMQAzH2lUPDgavvY5Ojn-xLaATwrgHZgBAf2IZ3bV_LLX84YRsQqq1bofgndprzCMBb3qkN-_eLkotpj8FQFV31UOe_OJOtMNjK-GTWCVM1-4lqv59TfC6jxxTXMs3rMJJZqiVWk39ayaFZfAy1D3Y1RTbhQgmnKs-J0Prw-Jl9dDhl-vJaz9if66vflzf13f3P28uLuxqlgqUWZtjtyA6dIgdcIPHStgb4IJQTlrjjEq3qekuIvdo6ZbaScOtIDG0nQZ6xb8e9JW_JlRc9xjWFclILaKEXUkJfVD-OKpNizomcNn7BwwdLQj9pDvpAV4_6la4-0NUgdaFb3Ls37jn5PaaXd33nRx8VAM-eks7GU4FvfSowtY3-nQ3_AciunMQ |
CitedBy_id | crossref_primary_10_1155_2022_5074513 crossref_primary_10_1080_13632469_2023_2173491 crossref_primary_10_1155_2019_4587929 crossref_primary_10_1007_s11440_023_02113_x crossref_primary_10_1016_j_soildyn_2023_107915 crossref_primary_10_1016_j_oceaneng_2021_109808 crossref_primary_10_1016_j_soildyn_2024_108757 crossref_primary_10_1016_j_soildyn_2019_105774 crossref_primary_10_1016_j_cscm_2024_e02926 crossref_primary_10_1061_IJGNAI_GMENG_9223 crossref_primary_10_3390_ma16175868 crossref_primary_10_1007_s11629_020_6546_9 crossref_primary_10_1155_2022_5915356 crossref_primary_10_3390_app13021009 crossref_primary_10_1155_2023_4489478 crossref_primary_10_1007_s11440_021_01404_5 crossref_primary_10_1139_cgj_2020_0505 crossref_primary_10_1680_jgeen_22_00147 crossref_primary_10_1016_j_trgeo_2019_100310 crossref_primary_10_1680_jgeen_23_00196 |
Cites_doi | 10.1016/S0267-7261(02)00134-3 10.1007/s10518-013-9484-x 10.1061/(ASCE)1090-0241(2005)131:11(1378) 10.1016/S0267-7261(99)00008-1 10.1016/j.soildyn.2005.02.018 10.1061/(ASCE)GT.1943-5606.0001554 10.1061/(ASCE)1090-0241(2003)129:10(869) 10.3208/sandf1972.29.105 10.1016/j.soildyn.2012.02.002 10.1016/j.soildyn.2005.02.021 10.1680/jgeot.14.P.238 10.1061/(ASCE)GT.1943-5606.0000921 10.1016/j.compgeo.2013.09.019 10.1080/13632460509350580 10.1061/(ASCE)GT.1943-5606.0000970 10.1016/j.soildyn.2010.04.016 10.3208/sandf.36.Special_81 10.1061/(ASCE)GT.1943-5606.0000759 10.1016/j.compgeo.2015.03.006 10.1061/(ASCE)0733-9410(1995)121:4(316) 10.1061/(ASCE)GT.1943-5606.0001731 10.1061/(ASCE)CF.1943-5509.0000247 10.1016/S0267-7261(02)00094-5 10.1061/(ASCE)0733-9410(1984)110:11(1559) 10.1061/(ASCE)0733-9410(1995)121:12(844) 10.1016/j.soildyn.2013.04.007 10.1680/jphmg.15.00037 10.3208/sandf.49.459 10.1016/j.compgeo.2014.07.007 10.1016/j.soildyn.2016.09.045 10.1061/(ASCE)GT.1943-5606.0000115 10.1007/s11440-013-0280-1 10.1016/0266-352X(87)90001-2 10.1061/(ASCE)GT.1943-5606.0001480 10.3208/sandf.44.6_101 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Jun 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Jun 2018 |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K FR3 KL. KR7 SOI |
DOI | 10.1016/j.soildyn.2018.03.022 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-341X |
EndPage | 281 |
ExternalDocumentID | 10_1016_j_soildyn_2018_03_022 S0267726117309661 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSE SST SSZ T5K TN5 WUQ Y6R ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TG 7UA 8FD C1K EFKBS FR3 KL. KR7 SOI |
ID | FETCH-LOGICAL-a360t-2cb55edb86ef012ae1b867c01b26f2de1f13ad689deaa964f6c43ea4fe2b78303 |
IEDL.DBID | .~1 |
ISSN | 0267-7261 |
IngestDate | Wed Aug 13 06:37:05 EDT 2025 Thu Apr 24 23:08:08 EDT 2025 Tue Jul 01 03:37:50 EDT 2025 Fri Feb 23 02:49:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ground improvement X-shaped pile Liquefaction Shake table test Lateral spreading |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a360t-2cb55edb86ef012ae1b867c01b26f2de1f13ad689deaa964f6c43ea4fe2b78303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0482-646X |
PQID | 2070923309 |
PQPubID | 2045399 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2070923309 crossref_citationtrail_10_1016_j_soildyn_2018_03_022 crossref_primary_10_1016_j_soildyn_2018_03_022 elsevier_sciencedirect_doi_10_1016_j_soildyn_2018_03_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 2018-06-00 20180601 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Soil dynamics and earthquake engineering (1984) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Iai (bib42) 1989; 29 Boulanger, Hayden (bib9) 1995; 121 Dungca, Kuwano, Takahashi, Saruwatari, Izawa, Suzuki (bib37) 2006; 26 Towhata, Vargas-Monge, Orense, Yao (bib24) 1999; 18 Zhang, Lv, Liu, Wang (bib35) 2015; 67 Cubrinovski, Kokusho, Ishihara (bib36) 2006; 26 Seed, Idriss (bib7) 1982 Haeri, Kavand, Rahmani, Torabi (bib38) 2012; 38 Brandenberg, Boulanger, Kutter, Chang (bib27) 2005; 131 Mitchell, Solymar (bib11) 1984; 110 Nguyen, Rayamajhi, Boulanger, Ashford, Lu, Elgamal (bib15) 2013; 139 Lukas RG. Dynamic compaction engineering considerations. Grouting, Soil Improv. Geosynth. Vols 1 2, vol. 30; 1992, p. 940–53. Gianella, Stuedlein (bib13) 2017; 143 Motamed, Towhata, Honda, Yasuda, Tabata, Nakazawa (bib44) 2009; 49 Abdoun, Dobry, O’Rourke, Goh (bib26) 2003; 129 Zhou, Liu, Randolph, Kong, Cao (bib30) 2017; 17 Hamada, Isoyama, Wakamatsu (bib3) 1996; 36 Tasiopoulou, Gerolymos, Tazoh, Gazetas (bib28) 2013; 139 Bartlett, Youd (bib1) 1995; 121 Towhata (bib43) 2008 Liu, Zhou, Kong (bib31) 2014; 62 Iai (bib21) 2005; 9 Motamed, Towhata (bib39) 2010; 136 Lv, Liu, Ng, Ding, Gunawan (bib33) 2014; 55 Lv, Liu, Ding, Kong (bib32) 2011; 26 Lv, Liu, Ng, Gunawan, Ding (bib34) 2014; 9 Li, Luo, Zhang, Zhang, Jiang (bib41) 2014; 36 Rayamajhi, Nguyen, Ashford, Boulanger, Lu, Elgamal (bib18) 2013; 140 Kramer (bib19) 2014; 12 Hamada, Towhata, Yasuda, Isoyama (bib2) 1987; 4 Rollins KM, Anderson JKS, McCain AK, Goughnour RR. Vertical composite drains for mitigating liquefaction hazard. In: Chung JS and Matsui T, editor. Proc. Thirteen. Int. Offshore Polar Eng. Conf. Vol 2, 2003, p. 498–505. Cetin, Youd, Seed, Bray, Sancio, Lettis (bib4) 2002; 22 Siegel TC, NeSmith WM, NeSmith WM, Cargill PE. Ground improvement resulting from installation of drilled displacement piles. Proc. DFI’s 32nd Annu. Conf. Deep Found, 2007, p. 129–138. Motamed, Towhata (bib22) 2010; 30 Takahashi, Takahashi, Morikawa, Towhata, Takano (bib23) 2016; 66 Turner, Brandenberg, Stewart (bib5) 2016; 142 Finn, Fujita (bib25) 2002; 22 Motamed, Towhata, Honda, Tabata, Abe (bib29) 2013; 51 Stuedlein, Gianella, Canivan (bib12) 2016; 142 Yasuda S, Nagase H, Kiku H. Appropriate countermeasures against permanent ground displacement due to liquefaction. 10th World Conf. Earthq Eng Madrid, Spain:1471–1476; 1992. Cubrinovski, Robinson (bib6) 2016; 91 Tokimatsu, Suzuki (bib40) 2004; 44 Seed, Booker (bib16) 1977; 103 Brown (bib10) 1977; 103 Mitchell (10.1016/j.soildyn.2018.03.022_bib11) 1984; 110 Haeri (10.1016/j.soildyn.2018.03.022_bib38) 2012; 38 Iai (10.1016/j.soildyn.2018.03.022_bib21) 2005; 9 Rayamajhi (10.1016/j.soildyn.2018.03.022_bib18) 2013; 140 Zhou (10.1016/j.soildyn.2018.03.022_bib30) 2017; 17 Liu (10.1016/j.soildyn.2018.03.022_bib31) 2014; 62 Boulanger (10.1016/j.soildyn.2018.03.022_bib9) 1995; 121 Li (10.1016/j.soildyn.2018.03.022_bib41) 2014; 36 Towhata (10.1016/j.soildyn.2018.03.022_bib24) 1999; 18 Tasiopoulou (10.1016/j.soildyn.2018.03.022_bib28) 2013; 139 Cubrinovski (10.1016/j.soildyn.2018.03.022_bib6) 2016; 91 Dungca (10.1016/j.soildyn.2018.03.022_bib37) 2006; 26 Lv (10.1016/j.soildyn.2018.03.022_bib34) 2014; 9 Zhang (10.1016/j.soildyn.2018.03.022_bib35) 2015; 67 Takahashi (10.1016/j.soildyn.2018.03.022_bib23) 2016; 66 Stuedlein (10.1016/j.soildyn.2018.03.022_bib12) 2016; 142 Cubrinovski (10.1016/j.soildyn.2018.03.022_bib36) 2006; 26 Tokimatsu (10.1016/j.soildyn.2018.03.022_bib40) 2004; 44 10.1016/j.soildyn.2018.03.022_bib20 Motamed (10.1016/j.soildyn.2018.03.022_bib39) 2010; 136 Hamada (10.1016/j.soildyn.2018.03.022_bib3) 1996; 36 Bartlett (10.1016/j.soildyn.2018.03.022_bib1) 1995; 121 Lv (10.1016/j.soildyn.2018.03.022_bib33) 2014; 55 Gianella (10.1016/j.soildyn.2018.03.022_bib13) 2017; 143 Iai (10.1016/j.soildyn.2018.03.022_bib42) 1989; 29 Turner (10.1016/j.soildyn.2018.03.022_bib5) 2016; 142 Kramer (10.1016/j.soildyn.2018.03.022_bib19) 2014; 12 Seed (10.1016/j.soildyn.2018.03.022_bib7) 1982 Nguyen (10.1016/j.soildyn.2018.03.022_bib15) 2013; 139 Towhata (10.1016/j.soildyn.2018.03.022_bib43) 2008 10.1016/j.soildyn.2018.03.022_bib14 Motamed (10.1016/j.soildyn.2018.03.022_bib22) 2010; 30 Motamed (10.1016/j.soildyn.2018.03.022_bib29) 2013; 51 10.1016/j.soildyn.2018.03.022_bib17 Lv (10.1016/j.soildyn.2018.03.022_bib32) 2011; 26 Hamada (10.1016/j.soildyn.2018.03.022_bib2) 1987; 4 Finn (10.1016/j.soildyn.2018.03.022_bib25) 2002; 22 Motamed (10.1016/j.soildyn.2018.03.022_bib44) 2009; 49 Brandenberg (10.1016/j.soildyn.2018.03.022_bib27) 2005; 131 Brown (10.1016/j.soildyn.2018.03.022_bib10) 1977; 103 Cetin (10.1016/j.soildyn.2018.03.022_bib4) 2002; 22 10.1016/j.soildyn.2018.03.022_bib8 Seed (10.1016/j.soildyn.2018.03.022_bib16) 1977; 103 Abdoun (10.1016/j.soildyn.2018.03.022_bib26) 2003; 129 |
References_xml | – volume: 9 start-page: 529 year: 2014 end-page: 546 ident: bib34 article-title: A modified analytical solution of soil stress distribution for XCC pile foundations publication-title: Acta Geotech – volume: 18 start-page: 347 year: 1999 end-page: 361 ident: bib24 article-title: Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil publication-title: Soil Dyn Earthq Eng – volume: 129 start-page: 869 year: 2003 end-page: 878 ident: bib26 article-title: Pile response to lateral spreads: centrifuge modeling publication-title: J Geotech Geoenviron Eng – volume: 55 start-page: 365 year: 2014 end-page: 377 ident: bib33 article-title: Three-dimensional numerical analysis of the stress transfer mechanism of XCC piled raft foundation publication-title: Comput Geotech – volume: 36 start-page: 81 year: 1996 end-page: 97 ident: bib3 article-title: Liquefaction-induced ground displacement and its related damage to lifeline facilities publication-title: Soils Found – volume: 44 start-page: 101 year: 2004 end-page: 110 ident: bib40 article-title: Pore water pressure response around pile and its effects on p-y behavior during soil liquefaction publication-title: Soils Found – volume: 36 start-page: 1872 year: 2014 end-page: 1878 ident: bib41 article-title: Experimental study on control element of sand pourer preparation of sand foundation model publication-title: Chin J Geotech Eng – reference: Yasuda S, Nagase H, Kiku H. Appropriate countermeasures against permanent ground displacement due to liquefaction. 10th World Conf. Earthq Eng Madrid, Spain:1471–1476; 1992. – volume: 26 start-page: 275 year: 2006 end-page: 286 ident: bib36 article-title: Interpretation from large-scale shake table tests on piles undergoing lateral spreading in liquefied soils publication-title: Soil Dyn Earthq Eng – volume: 142 year: 2016 ident: bib12 article-title: Densification of granular soils using conventional and drained timber displacement piles publication-title: J Geotech Geoenviron Eng – volume: 30 start-page: 1043 year: 2010 end-page: 1060 ident: bib22 article-title: Mitigation measures for pile groups behind quay walls subjected to lateral flow of liquefied soil: shake table model tests publication-title: Soil Dyn Earthq Eng – volume: 103 year: 1977 ident: bib10 article-title: Vibroflotation compaction of cohesionless soils publication-title: J Geotech Geoenviron Eng – volume: 143 year: 2017 ident: bib13 article-title: Performance of driven displacement pile-improved ground in controlled blasting field tests publication-title: J Geotech Geoenviron Eng – volume: 17 start-page: 103 year: 2017 end-page: 121 ident: bib30 article-title: Experimental and analytical study of X-section cast-in-place concrete pile installation effect publication-title: Int J Phys Model Geotech – volume: 142 start-page: 5016001 year: 2016 ident: bib5 article-title: Case study of parallel bridges affected by liquefaction and lateral spreading publication-title: J Geotech Geoenviron Eng – reference: Rollins KM, Anderson JKS, McCain AK, Goughnour RR. Vertical composite drains for mitigating liquefaction hazard. In: Chung JS and Matsui T, editor. Proc. Thirteen. Int. Offshore Polar Eng. Conf. Vol 2, 2003, p. 498–505. – volume: 91 start-page: 187 year: 2016 end-page: 201 ident: bib6 article-title: Lateral spreading evidence and interpretation from the 2010–2011 Christchurch earthquakes publication-title: Soil Dyn Earthq Eng – reference: Lukas RG. Dynamic compaction engineering considerations. Grouting, Soil Improv. Geosynth. Vols 1 2, vol. 30; 1992, p. 940–53. – volume: 67 start-page: 223 year: 2015 end-page: 228 ident: bib35 article-title: An analytical solution for load transfer mechanism of XCC pile foundations publication-title: Comput Geotech – volume: 121 start-page: 316 year: 1995 end-page: 329 ident: bib1 article-title: Empirical prediction of liquefaction-induced lateral spread publication-title: J Geotech Eng – volume: 136 start-page: 477 year: 2010 end-page: 489 ident: bib39 article-title: Shaking table model tests on pile groups behind quay walls subjected to lateral spreading publication-title: J Geotech Geoenviron Eng – volume: 121 start-page: 844 year: 1995 end-page: 855 ident: bib9 article-title: Aspects of compaction grouting of liquefiable soil publication-title: J Geotech Eng – volume: 110 start-page: 1559 year: 1984 end-page: 1576 ident: bib11 article-title: Time-dependent strength gain in freshly deposited or densified sand publication-title: J Geotech Eng – volume: 51 start-page: 35 year: 2013 end-page: 46 ident: bib29 article-title: Pile group response to liquefaction-induced lateral spreading: E-defense large shake table test publication-title: Soil Dyn Earthq Eng – volume: 26 start-page: 287 year: 2006 end-page: 295 ident: bib37 article-title: Shaking table tests on the lateral response of a pile buried in liquefied sand publication-title: Soil Dyn Earthq Eng – volume: 9 start-page: 77 year: 2005 end-page: 103 ident: bib21 article-title: Remediation of liquefiable soils for port structures in Japan—analysis, design and performance publication-title: J Earthq Eng – volume: 22 start-page: 731 year: 2002 end-page: 742 ident: bib25 article-title: Piles in liquefiable soils: seismic analysis and design issues publication-title: Soil Dyn Earthq Eng – volume: 49 start-page: 459 year: 2009 end-page: 475 ident: bib44 article-title: Behaviour of pile group behind a sheet pile quay wall subjected to liquefaction-induced large ground deformation observed in shaking test in E-Defense Project publication-title: Soils Found – volume: 38 start-page: 25 year: 2012 end-page: 45 ident: bib38 article-title: Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing publication-title: Soil Dyn Earthq Eng – year: 2008 ident: bib43 article-title: Geotechnical earthquake engineering – volume: 4 start-page: 197 year: 1987 end-page: 220 ident: bib2 article-title: Study on permanent ground displacement induced by seismic liquefaction publication-title: Comput Geotech – volume: 103 year: 1977 ident: bib16 article-title: Stabilization of potentially liquefiable sand deposits using gravel drains publication-title: J Geotech Geoenviron Eng – volume: 66 start-page: 617 year: 2016 end-page: 626 ident: bib23 article-title: Efficacy of pile-type improvement against lateral flow of liquefied ground publication-title: Geotechnique – volume: 140 start-page: 4013034 year: 2013 ident: bib18 article-title: Numerical study of shear stress distribution for discrete columns in liquefiable soils publication-title: J Geotech Geoenviron Eng – volume: 139 start-page: 223 year: 2013 end-page: 233 ident: bib28 article-title: Pile-group response to large soil displacements and liquefaction: centrifuge experiments versus a physically simplified analysis publication-title: J Geotech Geoenviron Eng – volume: 62 start-page: 268 year: 2014 end-page: 282 ident: bib31 article-title: XCC pile installation effect in soft soil ground: a simplified analytical model publication-title: Comput Geotech – volume: 29 start-page: 105 year: 1989 end-page: 118 ident: bib42 article-title: Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field publication-title: Soils Found – year: 1982 ident: bib7 article-title: Ground motions and soil liquefaction during earthquakes – volume: 22 start-page: 1083 year: 2002 end-page: 1092 ident: bib4 article-title: Liquefaction-induced ground deformations at Hotel Sapanca during Kocaeli (Izmit),Turkey earthquake publication-title: Soil Dyn Earthq Eng – reference: Siegel TC, NeSmith WM, NeSmith WM, Cargill PE. Ground improvement resulting from installation of drilled displacement piles. Proc. DFI’s 32nd Annu. Conf. Deep Found, 2007, p. 129–138. – volume: 139 start-page: 1923 year: 2013 end-page: 1933 ident: bib15 article-title: Design of DSM grids for liquefaction remediation publication-title: J Geotech Geoenviron Eng – volume: 12 start-page: 1049 year: 2014 end-page: 1070 ident: bib19 article-title: Performance-based design methodologies for geotechnical earthquake engineering publication-title: Bull Earthq Eng – volume: 26 start-page: 180 year: 2011 end-page: 189 ident: bib32 article-title: Field tests on bearing characteristics of X-section pile composite foundation publication-title: J Perform Constr Facil – volume: 131 start-page: 1378 year: 2005 end-page: 1391 ident: bib27 article-title: Behavior of pile foundations in laterally spreading ground during centrifuge tests publication-title: J Geotech Geoenviron Eng – volume: 22 start-page: 1083 year: 2002 ident: 10.1016/j.soildyn.2018.03.022_bib4 article-title: Liquefaction-induced ground deformations at Hotel Sapanca during Kocaeli (Izmit),Turkey earthquake publication-title: Soil Dyn Earthq Eng doi: 10.1016/S0267-7261(02)00134-3 – volume: 12 start-page: 1049 year: 2014 ident: 10.1016/j.soildyn.2018.03.022_bib19 article-title: Performance-based design methodologies for geotechnical earthquake engineering publication-title: Bull Earthq Eng doi: 10.1007/s10518-013-9484-x – volume: 131 start-page: 1378 year: 2005 ident: 10.1016/j.soildyn.2018.03.022_bib27 article-title: Behavior of pile foundations in laterally spreading ground during centrifuge tests publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)1090-0241(2005)131:11(1378) – volume: 18 start-page: 347 year: 1999 ident: 10.1016/j.soildyn.2018.03.022_bib24 article-title: Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil publication-title: Soil Dyn Earthq Eng doi: 10.1016/S0267-7261(99)00008-1 – volume: 26 start-page: 275 year: 2006 ident: 10.1016/j.soildyn.2018.03.022_bib36 article-title: Interpretation from large-scale shake table tests on piles undergoing lateral spreading in liquefied soils publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2005.02.018 – volume: 142 year: 2016 ident: 10.1016/j.soildyn.2018.03.022_bib12 article-title: Densification of granular soils using conventional and drained timber displacement piles publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0001554 – volume: 103 year: 1977 ident: 10.1016/j.soildyn.2018.03.022_bib16 article-title: Stabilization of potentially liquefiable sand deposits using gravel drains publication-title: J Geotech Geoenviron Eng – volume: 129 start-page: 869 year: 2003 ident: 10.1016/j.soildyn.2018.03.022_bib26 article-title: Pile response to lateral spreads: centrifuge modeling publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)1090-0241(2003)129:10(869) – volume: 29 start-page: 105 year: 1989 ident: 10.1016/j.soildyn.2018.03.022_bib42 article-title: Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field publication-title: Soils Found doi: 10.3208/sandf1972.29.105 – volume: 38 start-page: 25 year: 2012 ident: 10.1016/j.soildyn.2018.03.022_bib38 article-title: Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2012.02.002 – ident: 10.1016/j.soildyn.2018.03.022_bib14 – volume: 26 start-page: 287 year: 2006 ident: 10.1016/j.soildyn.2018.03.022_bib37 article-title: Shaking table tests on the lateral response of a pile buried in liquefied sand publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2005.02.021 – volume: 66 start-page: 617 year: 2016 ident: 10.1016/j.soildyn.2018.03.022_bib23 article-title: Efficacy of pile-type improvement against lateral flow of liquefied ground publication-title: Geotechnique doi: 10.1680/jgeot.14.P.238 – volume: 139 start-page: 1923 year: 2013 ident: 10.1016/j.soildyn.2018.03.022_bib15 article-title: Design of DSM grids for liquefaction remediation publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0000921 – volume: 55 start-page: 365 year: 2014 ident: 10.1016/j.soildyn.2018.03.022_bib33 article-title: Three-dimensional numerical analysis of the stress transfer mechanism of XCC piled raft foundation publication-title: Comput Geotech doi: 10.1016/j.compgeo.2013.09.019 – volume: 9 start-page: 77 year: 2005 ident: 10.1016/j.soildyn.2018.03.022_bib21 article-title: Remediation of liquefiable soils for port structures in Japan—analysis, design and performance publication-title: J Earthq Eng doi: 10.1080/13632460509350580 – volume: 140 start-page: 4013034 year: 2013 ident: 10.1016/j.soildyn.2018.03.022_bib18 article-title: Numerical study of shear stress distribution for discrete columns in liquefiable soils publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0000970 – volume: 30 start-page: 1043 year: 2010 ident: 10.1016/j.soildyn.2018.03.022_bib22 article-title: Mitigation measures for pile groups behind quay walls subjected to lateral flow of liquefied soil: shake table model tests publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2010.04.016 – volume: 36 start-page: 81 year: 1996 ident: 10.1016/j.soildyn.2018.03.022_bib3 article-title: Liquefaction-induced ground displacement and its related damage to lifeline facilities publication-title: Soils Found doi: 10.3208/sandf.36.Special_81 – ident: 10.1016/j.soildyn.2018.03.022_bib8 – volume: 36 start-page: 1872 year: 2014 ident: 10.1016/j.soildyn.2018.03.022_bib41 article-title: Experimental study on control element of sand pourer preparation of sand foundation model publication-title: Chin J Geotech Eng – volume: 103 year: 1977 ident: 10.1016/j.soildyn.2018.03.022_bib10 article-title: Vibroflotation compaction of cohesionless soils publication-title: J Geotech Geoenviron Eng – volume: 139 start-page: 223 year: 2013 ident: 10.1016/j.soildyn.2018.03.022_bib28 article-title: Pile-group response to large soil displacements and liquefaction: centrifuge experiments versus a physically simplified analysis publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0000759 – volume: 67 start-page: 223 year: 2015 ident: 10.1016/j.soildyn.2018.03.022_bib35 article-title: An analytical solution for load transfer mechanism of XCC pile foundations publication-title: Comput Geotech doi: 10.1016/j.compgeo.2015.03.006 – volume: 121 start-page: 316 year: 1995 ident: 10.1016/j.soildyn.2018.03.022_bib1 article-title: Empirical prediction of liquefaction-induced lateral spread publication-title: J Geotech Eng doi: 10.1061/(ASCE)0733-9410(1995)121:4(316) – volume: 143 year: 2017 ident: 10.1016/j.soildyn.2018.03.022_bib13 article-title: Performance of driven displacement pile-improved ground in controlled blasting field tests publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0001731 – year: 1982 ident: 10.1016/j.soildyn.2018.03.022_bib7 – volume: 26 start-page: 180 year: 2011 ident: 10.1016/j.soildyn.2018.03.022_bib32 article-title: Field tests on bearing characteristics of X-section pile composite foundation publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)CF.1943-5509.0000247 – volume: 22 start-page: 731 year: 2002 ident: 10.1016/j.soildyn.2018.03.022_bib25 article-title: Piles in liquefiable soils: seismic analysis and design issues publication-title: Soil Dyn Earthq Eng doi: 10.1016/S0267-7261(02)00094-5 – volume: 110 start-page: 1559 year: 1984 ident: 10.1016/j.soildyn.2018.03.022_bib11 article-title: Time-dependent strength gain in freshly deposited or densified sand publication-title: J Geotech Eng doi: 10.1061/(ASCE)0733-9410(1984)110:11(1559) – volume: 121 start-page: 844 year: 1995 ident: 10.1016/j.soildyn.2018.03.022_bib9 article-title: Aspects of compaction grouting of liquefiable soil publication-title: J Geotech Eng doi: 10.1061/(ASCE)0733-9410(1995)121:12(844) – year: 2008 ident: 10.1016/j.soildyn.2018.03.022_bib43 – ident: 10.1016/j.soildyn.2018.03.022_bib17 – volume: 51 start-page: 35 year: 2013 ident: 10.1016/j.soildyn.2018.03.022_bib29 article-title: Pile group response to liquefaction-induced lateral spreading: E-defense large shake table test publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2013.04.007 – volume: 17 start-page: 103 year: 2017 ident: 10.1016/j.soildyn.2018.03.022_bib30 article-title: Experimental and analytical study of X-section cast-in-place concrete pile installation effect publication-title: Int J Phys Model Geotech doi: 10.1680/jphmg.15.00037 – volume: 49 start-page: 459 year: 2009 ident: 10.1016/j.soildyn.2018.03.022_bib44 article-title: Behaviour of pile group behind a sheet pile quay wall subjected to liquefaction-induced large ground deformation observed in shaking test in E-Defense Project publication-title: Soils Found doi: 10.3208/sandf.49.459 – volume: 62 start-page: 268 year: 2014 ident: 10.1016/j.soildyn.2018.03.022_bib31 article-title: XCC pile installation effect in soft soil ground: a simplified analytical model publication-title: Comput Geotech doi: 10.1016/j.compgeo.2014.07.007 – volume: 91 start-page: 187 year: 2016 ident: 10.1016/j.soildyn.2018.03.022_bib6 article-title: Lateral spreading evidence and interpretation from the 2010–2011 Christchurch earthquakes publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2016.09.045 – volume: 136 start-page: 477 year: 2010 ident: 10.1016/j.soildyn.2018.03.022_bib39 article-title: Shaking table model tests on pile groups behind quay walls subjected to lateral spreading publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0000115 – volume: 9 start-page: 529 year: 2014 ident: 10.1016/j.soildyn.2018.03.022_bib34 article-title: A modified analytical solution of soil stress distribution for XCC pile foundations publication-title: Acta Geotech doi: 10.1007/s11440-013-0280-1 – volume: 4 start-page: 197 year: 1987 ident: 10.1016/j.soildyn.2018.03.022_bib2 article-title: Study on permanent ground displacement induced by seismic liquefaction publication-title: Comput Geotech doi: 10.1016/0266-352X(87)90001-2 – volume: 142 start-page: 5016001 year: 2016 ident: 10.1016/j.soildyn.2018.03.022_bib5 article-title: Case study of parallel bridges affected by liquefaction and lateral spreading publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0001480 – ident: 10.1016/j.soildyn.2018.03.022_bib20 – volume: 44 start-page: 101 year: 2004 ident: 10.1016/j.soildyn.2018.03.022_bib40 article-title: Pore water pressure response around pile and its effects on p-y behavior during soil liquefaction publication-title: Soils Found doi: 10.3208/sandf.44.6_101 |
SSID | ssj0017186 |
Score | 2.3078578 |
Snippet | Liquefaction-induced lateral spreading has caused severe damage and significant financial losses in major earthquakes distributed globally. Groups of piling... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 273 |
SubjectTerms | Circularity Deformation mechanisms Design Design parameters Earthquake damage Earthquakes Ground improvement Lateral displacement Lateral spreading Liquefaction Pile groups Piles Seismic activity Seismic design Seismic engineering Shake table test Shake table tests Soil investigations Soil mechanics Soil-structure interaction Spreading Structural engineering X-shaped pile |
Title | Performance of X-shaped and circular pile-improved ground subject to liquefaction-induced lateral spreading |
URI | https://dx.doi.org/10.1016/j.soildyn.2018.03.022 https://www.proquest.com/docview/2070923309 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvGxSg5e47ZpmqTHRZRVUQQV9haSNsHVslv2cfDib3fSpq4KInhrm6aEmenMZJjvC0KnLpGRpYaTLNM5YSwRRFMqCLMpJBgmg6Dm65C3d3zwxK6H6bCDzlssjG-rDL6_8em1tw5PekGavWo06j34s5MEbABiMFJI2msEOxPeys_eP9s8YvC9vKmzCOLfXqJ4ei-eL7cs3jwNaixrrlNKf4tPPzx1HX4uN9FGyBtxv1naFurY8TZa_8ImuINe75cgADxxeEhmz7qyBdbjAuejad1xiitwA2RUlxJgyIM6YHS2ML4eg-cTXHpC1wB3ILBhB9UXuNQeqFziWTVtmu530dPlxeP5gISzFIhOeDQnNDdpagsjuXUQk7SN4VLkUWwod7SwsYsTXXCZFVbrjDPHc5ZYzRwoUkiIc3toZTwZ232EtbVRLp2B5EOzNKMmZSaJnBCRs5mU2QFirQRVHojG_XkXpWo7yl5UELzygldRokDwB-jsc1rVMG38NUG26lHfTEZBNPhrardVpwr_7AzGRQTpLhjT4f-_fITW_F3TTNZFK_Ppwh5D2jI3J7VdnqDV_tXN4O4DZffvUQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSD-MT1mYPXuG2aJulRRFlfi6DC3kLSJrhadsvuevDfO2lTXyCCt9JhSpmZzqszXxA6domMLDWcZJnOCWOJIJpSQZhNIcEwGQQ134e8HfD-I7sapsMFdNbuwvixyuD7G59ee-twpxek2atGo969PztJQAEQg5FC0g4l0KJHp0o7aPH08ro_-PiZAO6XN60WQTzD5yJP79lD5pbFm0dCjWUNd0rpbyHqh7OuI9DFGloNqSM-bd5uHS3Y8QZa-QIouIle7j73APDE4SGZPenKFliPC5yPpvXQKa7AE5BR3U0Akt_rAOrs1fiWDJ5PcOkxXcPGA4GaHbRf4FL7XeUSz6ppM3e_hR4vzh_O-iQcp0B0wqM5oblJU1sYya2DsKRtDJcij2JDuaOFjV2c6ILLrLBaZ5w5nrPEauZAl0JCqNtGnfFkbHcQ1tZGuXQG8g_N0oyalJkkckJEzmZSZl3EWgmqPGCN-yMvStUOlT2rIHjlBa-iRIHgu-jkg61qwDb-YpCtetQ3q1EQEP5i3W_VqcJnOwO6iCDjBXva_f-Tj9BS_-H2Rt1cDq730LKnNLNl-6gzn77aA8hi5uYwWOk7kwjyAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+X-shaped+and+circular+pile-improved+ground+subject+to+liquefaction-induced+lateral+spreading&rft.jtitle=Soil+dynamics+and+earthquake+engineering+%281984%29&rft.au=Li%2C+Wenwen&rft.au=Chen%2C+Yumin&rft.au=Stuedlein%2C+Armin+W&rft.au=Liu%2C+Hanlong&rft.date=2018-06-01&rft.pub=Elsevier+BV&rft.issn=0267-7261&rft.eissn=1879-341X&rft.volume=109&rft.spage=273&rft_id=info:doi/10.1016%2Fj.soildyn.2018.03.022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-7261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-7261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-7261&client=summon |