Automated Machine Learning Methods, Systems, Challenges
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial...
Saved in:
Main Authors | , , |
---|---|
Format | eBook |
Language | English |
Published |
Cham
Springer Nature
2019
Springer International Publishing AG |
Edition | 1 |
Series | The Springer Series on Challenges in Machine Learning |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Table of Contents:
- Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Part I AutoML Methods -- 1 Hyperparameter Optimization -- 1.1 Introduction -- 1.2 Problem Statement -- 1.2.1 Alternatives to Optimization: Ensembling and Marginalization -- 1.2.2 Optimizing for Multiple Objectives -- 1.3 Blackbox Hyperparameter Optimization -- 1.3.1 Model-Free Blackbox Optimization Methods -- 1.3.2 Bayesian Optimization -- 1.3.2.1 Bayesian Optimization in a Nutshell -- 1.3.2.2 Surrogate Models -- 1.3.2.3 Configuration Space Description -- 1.3.2.4 Constrained Bayesian Optimization -- 1.4 Multi-fidelity Optimization -- 1.4.1 Learning Curve-Based Prediction for Early Stopping -- 1.4.2 Bandit-Based Algorithm Selection Methods -- 1.4.3 Adaptive Choices of Fidelities -- 1.5 Applications to AutoML -- 1.6 Open Problems and Future Research Directions -- 1.6.1 Benchmarks and Comparability -- 1.6.2 Gradient-Based Optimization -- 1.6.3 Scalability -- 1.6.4 Overfitting and Generalization -- 1.6.5 Arbitrary-Size Pipeline Construction -- Bibliography -- 2 Meta-Learning -- 2.1 Introduction -- 2.2 Learning from Model Evaluations -- 2.2.1 Task-Independent Recommendations -- 2.2.2 Configuration Space Design -- 2.2.3 Configuration Transfer -- 2.2.3.1 Relative Landmarks -- 2.2.3.2 Surrogate Models -- 2.2.3.3 Warm-Started Multi-task Learning -- 2.2.3.4 Other Techniques -- 2.2.4 Learning Curves -- 2.3 Learning from Task Properties -- 2.3.1 Meta-Features -- 2.3.2 Learning Meta-Features -- 2.3.3 Warm-Starting Optimization from Similar Tasks -- 2.3.4 Meta-Models -- 2.3.4.1 Ranking -- 2.3.4.2 Performance Prediction -- 2.3.5 Pipeline Synthesis -- 2.3.6 To Tune or Not to Tune? -- 2.4 Learning from Prior Models -- 2.4.1 Transfer Learning -- 2.4.2 Meta-Learning in Neural Networks -- 2.4.3 Few-Shot Learning -- 2.4.4 Beyond Supervised Learning -- 2.5 Conclusion -- Bibliography
- 3 Neural Architecture Search -- 3.1 Introduction -- 3.2 Search Space -- 3.3 Search Strategy -- 3.4 Performance Estimation Strategy -- 3.5 Future Directions -- Bibliography -- Part II AutoML Systems -- 4 Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA -- 4.1 Introduction -- 4.2 Preliminaries -- 4.2.1 Model Selection -- 4.2.2 Hyperparameter Optimization -- 4.3 CASH -- 4.3.1 Sequential Model-Based Algorithm Configuration (SMAC) -- 4.4 Auto-WEKA -- 4.5 Experimental Evaluation -- 4.5.1 Baseline Methods -- 4.5.2 Results for Cross-Validation Performance -- 4.5.3 Results for Test Performance -- 4.6 Conclusion -- 4.6.1 Community Adoption -- Bibliography -- 5 Hyperopt-Sklearn -- 5.1 Introduction -- 5.2 Background: Hyperopt for Optimization -- 5.3 Scikit-Learn Model Selection as a Search Problem -- 5.4 Example Usage -- 5.5 Experiments -- 5.6 Discussion and Future Work -- 5.7 Conclusions -- Bibliography -- 6 Auto-sklearn: Efficient and Robust Automated MachineLearning -- 6.1 Introduction -- 6.2 AutoML as a CASH Problem -- 6.3 New Methods for Increasing Efficiency and Robustness of AutoML -- 6.3.1 Meta-learning for Finding Good Instantiations of Machine Learning Frameworks -- 6.3.2 Automated Ensemble Construction of Models Evaluated During Optimization -- 6.4 A Practical Automated Machine Learning System -- 6.5 Comparing Auto-sklearn to Auto-WEKA and Hyperopt-Sklearn -- 6.6 Evaluation of the Proposed AutoML Improvements -- 6.7 Detailed Analysis of Auto-sklearn Components -- 6.8 Discussion and Conclusion -- 6.8.1 Discussion -- 6.8.2 Usage -- 6.8.3 Extensions in PoSH Auto-sklearn -- 6.8.4 Conclusion and Future Work -- Bibliography -- 7 Towards Automatically-Tuned Deep Neural Networks -- 7.1 Introduction -- 7.2 Auto-Net 1.0 -- 7.3 Auto-Net 2.0 -- 7.4 Experiments -- 7.4.1 Baseline Evaluation of Auto-Net 1.0 and Auto-sklearn
- 7.4.2 Results for AutoML Competition Datasets -- 7.4.3 Comparing AutoNet 1.0 and 2.0 -- 7.5 Conclusion -- Bibliography -- 8 TPOT: A Tree-Based Pipeline Optimization Toolfor Automating Machine Learning -- 8.1 Introduction -- 8.2 Methods -- 8.2.1 Machine Learning Pipeline Operators -- 8.2.2 Constructing Tree-Based Pipelines -- 8.2.3 Optimizing Tree-Based Pipelines -- 8.2.4 Benchmark Data -- 8.3 Results -- 8.4 Conclusions and Future Work -- Bibliography -- 9 The Automatic Statistician -- 9.1 Introduction -- 9.2 Basic Anatomy of an Automatic Statistician -- 9.2.1 Related Work -- 9.3 An Automatic Statistician for Time Series Data -- 9.3.1 The Grammar over Kernels -- 9.3.2 The Search and Evaluation Procedure -- 9.3.3 Generating Descriptions in Natural Language -- 9.3.4 Comparison with Humans -- 9.4 Other Automatic Statistician Systems -- 9.4.1 Core Components -- 9.4.2 Design Challenges -- 9.4.2.1 User Interaction -- 9.4.2.2 Missing and Messy Data -- 9.4.2.3 Resource Allocation -- 9.5 Conclusion -- Bibliography -- Part III AutoML Challenges -- 10 Analysis of the AutoML Challenge Series 2015-2018 -- 10.1 Introduction -- 10.2 Problem Formalization and Overview -- 10.2.1 Scope of the Problem -- 10.2.2 Full Model Selection -- 10.2.3 Optimization of Hyper-parameters -- 10.2.4 Strategies of Model Search -- 10.3 Data -- 10.4 Challenge Protocol -- 10.4.1 Time Budget and Computational Resources -- 10.4.2 Scoring Metrics -- 10.4.3 Rounds and Phases in the 2015/2016 Challenge -- 10.4.4 Phases in the 2018 Challenge -- 10.5 Results -- 10.5.1 Scores Obtained in the 2015/2016 Challenge -- 10.5.2 Scores Obtained in the 2018 Challenge -- 10.5.3 Difficulty of Datasets/Tasks -- 10.5.4 Hyper-parameter Optimization -- 10.5.5 Meta-learning -- 10.5.6 Methods Used in the Challenges -- 10.6 Discussion -- 10.7 Conclusion -- Bibliography -- Correction to: Neural Architecture Search