Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine
Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers a...
Saved in:
Published in | ACS applied bio materials Vol. 6; no. 2; pp. 349 - 364 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers and minimal side effects. A photosensitizer is the key component of photodynamic therapy (PDT) that generates cytotoxic reactive oxygen species to eradicate cancer cells. As the therapeutic effectivity of PDT greatly depends upon the photosensitizer, great efforts have been made to search for an ideal photosensitizer. Chlorin e6 is a FDA approved second generation photosensitizer that meets the desired clinical properties for PDT. It is known for its high reactive oxygen species (ROS) generation ability and anticancer potency against many types of cancer. Hydrophobicity is a major drawback of Ce6 that leads to its poor biodistribution and rapid clearance from the circulatory system. To overcome this drawback, researchers have designed and fabricated several types of nanosystems, which can enhance Ce6 solubility and thereby enhance its bioavailability. These nanosystems also improve tumor accumulation of Ce6 by selectively targeting the cancer cells through passive and active targeting. In addition, Ce6 has been employed in many combination therapies like chemo-photodynamic therapy, photoimmunotherapy, and combined photodynamic–photothermal therapy. A combination therapy is more curative than a single therapy due to the synergistic effects of individual therapies. Ce6-based nanosystems for combination therapies have shown excellent results in various studies and provide a promising platform for cancer treatment. |
---|---|
AbstractList | Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers and minimal side effects. A photosensitizer is the key component of photodynamic therapy (PDT) that generates cytotoxic reactive oxygen species to eradicate cancer cells. As the therapeutic effectivity of PDT greatly depends upon the photosensitizer, great efforts have been made to search for an ideal photosensitizer. Chlorin e6 is a FDA approved second generation photosensitizer that meets the desired clinical properties for PDT. It is known for its high reactive oxygen species (ROS) generation ability and anticancer potency against many types of cancer. Hydrophobicity is a major drawback of Ce6 that leads to its poor biodistribution and rapid clearance from the circulatory system. To overcome this drawback, researchers have designed and fabricated several types of nanosystems, which can enhance Ce6 solubility and thereby enhance its bioavailability. These nanosystems also improve tumor accumulation of Ce6 by selectively targeting the cancer cells through passive and active targeting. In addition, Ce6 has been employed in many combination therapies like chemo-photodynamic therapy, photoimmunotherapy, and combined photodynamic-photothermal therapy. A combination therapy is more curative than a single therapy due to the synergistic effects of individual therapies. Ce6-based nanosystems for combination therapies have shown excellent results in various studies and provide a promising platform for cancer treatment.Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers and minimal side effects. A photosensitizer is the key component of photodynamic therapy (PDT) that generates cytotoxic reactive oxygen species to eradicate cancer cells. As the therapeutic effectivity of PDT greatly depends upon the photosensitizer, great efforts have been made to search for an ideal photosensitizer. Chlorin e6 is a FDA approved second generation photosensitizer that meets the desired clinical properties for PDT. It is known for its high reactive oxygen species (ROS) generation ability and anticancer potency against many types of cancer. Hydrophobicity is a major drawback of Ce6 that leads to its poor biodistribution and rapid clearance from the circulatory system. To overcome this drawback, researchers have designed and fabricated several types of nanosystems, which can enhance Ce6 solubility and thereby enhance its bioavailability. These nanosystems also improve tumor accumulation of Ce6 by selectively targeting the cancer cells through passive and active targeting. In addition, Ce6 has been employed in many combination therapies like chemo-photodynamic therapy, photoimmunotherapy, and combined photodynamic-photothermal therapy. A combination therapy is more curative than a single therapy due to the synergistic effects of individual therapies. Ce6-based nanosystems for combination therapies have shown excellent results in various studies and provide a promising platform for cancer treatment. Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers and minimal side effects. A photosensitizer is the key component of photodynamic therapy (PDT) that generates cytotoxic reactive oxygen species to eradicate cancer cells. As the therapeutic effectivity of PDT greatly depends upon the photosensitizer, great efforts have been made to search for an ideal photosensitizer. Chlorin e6 is a FDA approved second generation photosensitizer that meets the desired clinical properties for PDT. It is known for its high reactive oxygen species (ROS) generation ability and anticancer potency against many types of cancer. Hydrophobicity is a major drawback of Ce6 that leads to its poor biodistribution and rapid clearance from the circulatory system. To overcome this drawback, researchers have designed and fabricated several types of nanosystems, which can enhance Ce6 solubility and thereby enhance its bioavailability. These nanosystems also improve tumor accumulation of Ce6 by selectively targeting the cancer cells through passive and active targeting. In addition, Ce6 has been employed in many combination therapies like chemo-photodynamic therapy, photoimmunotherapy, and combined photodynamic-photothermal therapy. A combination therapy is more curative than a single therapy due to the synergistic effects of individual therapies. Ce6-based nanosystems for combination therapies have shown excellent results in various studies and provide a promising platform for cancer treatment. |
Author | Rengan, Aravind Kumar Hak, Arshadul Sankaranarayanan, Sri Amruthaa Ali, Mohammad Sadik Shinde, Vinod Ravasaheb |
AuthorAffiliation | Department of Biomedical Engineering |
AuthorAffiliation_xml | – name: Department of Biomedical Engineering |
Author_xml | – sequence: 1 givenname: Arshadul surname: Hak fullname: Hak, Arshadul – sequence: 2 givenname: Mohammad Sadik surname: Ali fullname: Ali, Mohammad Sadik – sequence: 3 givenname: Sri Amruthaa surname: Sankaranarayanan fullname: Sankaranarayanan, Sri Amruthaa – sequence: 4 givenname: Vinod Ravasaheb orcidid: 0000-0002-6167-1663 surname: Shinde fullname: Shinde, Vinod Ravasaheb – sequence: 5 givenname: Aravind Kumar orcidid: 0000-0003-3994-6760 surname: Rengan fullname: Rengan, Aravind Kumar email: aravind@bme.iith.ac.in |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36700563$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM9LwzAYhoNM3Jy7epQeRej8krRJ620OfzJ0Bz2XNE1dRpfMpD3oX2_mpoiw0xdenid833uMesYahdAphjEGgi-F9KJcjYkEyHJ8gAYk5SxmCSG9P-8-Gnm_BAACQHGWH6E-ZRwgZXSAHqeLxjptIsWuokk0d3alvTZv0XxhW-uV8brVn8pFAfmO4mvhVRVNhZEhfRLGrlSlpTbqBB3WovFqtJtD9Hp78zK9j2fPdw_TySwWNM3buCJ1maqqSniZYZbWNKkpoxnmGOhmcAXAlVQJz2iVECB5KbAMjshqzKGkQ3S-_Xft7HunfFuElaVqGmGU7XxBOMvznLMUAnq2Q7syrFmsnV4J91H83B-A8RaQznrvVP2LYCg2HRfbjotdx0FI_glSt6LV1rRO6Ga_drHVQl4sbedMaGgf_AVsWY1t |
CitedBy_id | crossref_primary_10_1007_s10847_025_01295_z crossref_primary_10_1016_j_eurpolymj_2024_113431 crossref_primary_10_3390_ph16091329 crossref_primary_10_1016_j_cej_2024_158143 crossref_primary_10_1021_acs_molpharmaceut_3c01047 crossref_primary_10_1016_j_biopha_2023_114933 crossref_primary_10_1016_j_jphotochemrev_2024_100665 crossref_primary_10_24931_2413_9432_2024_13_2_9_18 crossref_primary_10_1002_cptc_202400109 crossref_primary_10_1016_j_mtbio_2024_101394 crossref_primary_10_3390_pharmaceutics16010014 crossref_primary_10_1021_acsanm_3c02239 crossref_primary_10_1002_advs_202305934 crossref_primary_10_3390_oxygen4040027 crossref_primary_10_18097_BMCRM00244 crossref_primary_10_17816_gc546129 crossref_primary_10_1016_j_jconrel_2024_03_035 crossref_primary_10_3390_ijms25063457 crossref_primary_10_1016_j_ijbiomac_2024_130709 crossref_primary_10_1186_s12575_024_00252_3 crossref_primary_10_1039_D4BM01602E crossref_primary_10_3390_molecules29051015 crossref_primary_10_3390_ph17060729 crossref_primary_10_3390_ijms252312609 crossref_primary_10_3390_pharmaceutics15092222 crossref_primary_10_1016_j_eurpolymj_2024_112871 crossref_primary_10_1002_smll_202311507 crossref_primary_10_3390_ph17121666 crossref_primary_10_1080_1061186X_2023_2284093 crossref_primary_10_1016_j_critrevonc_2025_104691 crossref_primary_10_3390_pharmaceutics16091164 crossref_primary_10_3390_ph17070932 crossref_primary_10_1021_acsabm_3c00518 crossref_primary_10_3390_molecules30030544 crossref_primary_10_3389_fonc_2024_1441338 crossref_primary_10_33145_2304_8336_2023_28_206_215 crossref_primary_10_1002_advs_202302731 crossref_primary_10_2147_IJN_S475531 crossref_primary_10_24931_2413_9432_2024_13_4_13_21 crossref_primary_10_1007_s13402_024_00997_9 crossref_primary_10_1088_1361_6528_ad3c4a crossref_primary_10_31857_S0006302923050162 crossref_primary_10_3390_molecules28135092 crossref_primary_10_1016_j_ccr_2024_216419 crossref_primary_10_1016_j_nantod_2024_102225 crossref_primary_10_3389_fchem_2023_1250621 crossref_primary_10_1080_17435889_2025_2456450 crossref_primary_10_1007_s13205_024_04086_4 crossref_primary_10_1002_adhm_202302374 crossref_primary_10_1021_acsnano_3c03925 crossref_primary_10_1016_j_bbrc_2024_150131 crossref_primary_10_2174_0113816128265544231102065515 crossref_primary_10_1016_j_cej_2024_158522 crossref_primary_10_1016_j_dyepig_2023_111873 crossref_primary_10_1002_adtp_202300329 crossref_primary_10_1016_j_jddst_2025_106716 crossref_primary_10_1021_jacs_4c18400 crossref_primary_10_1016_j_jpha_2023_12_018 crossref_primary_10_1016_j_pdpdt_2024_104096 crossref_primary_10_1134_S0006350923050044 crossref_primary_10_1007_s10853_024_09923_8 crossref_primary_10_1080_17435889_2025_2460960 crossref_primary_10_1021_jacs_4c15537 crossref_primary_10_1021_jacs_4c17879 crossref_primary_10_1016_j_inoche_2024_113491 crossref_primary_10_1016_j_nantod_2024_102151 crossref_primary_10_2147_IJN_S498729 crossref_primary_10_1016_j_mattod_2023_07_003 crossref_primary_10_2147_IJN_S510339 crossref_primary_10_1016_j_nantod_2024_102399 crossref_primary_10_1002_advs_202405640 crossref_primary_10_1016_j_phrs_2024_107150 crossref_primary_10_1021_acsanm_4c05790 crossref_primary_10_3390_photochem4030021 crossref_primary_10_1016_j_colsurfb_2024_114070 crossref_primary_10_20535_ibb_2024_8_4_317985 crossref_primary_10_1002_adhm_202402823 crossref_primary_10_1021_acsami_3c17977 crossref_primary_10_1016_j_ijpharm_2023_123622 crossref_primary_10_3390_pharmaceutics15082124 crossref_primary_10_1021_acsinfecdis_4c00306 crossref_primary_10_1039_D3NH00584D crossref_primary_10_3390_nano14110933 crossref_primary_10_1016_j_ijpharm_2024_124496 crossref_primary_10_1016_j_actbio_2024_05_045 crossref_primary_10_1039_D4CB00103F crossref_primary_10_1016_j_jcis_2024_03_021 crossref_primary_10_1007_s10103_024_04219_4 crossref_primary_10_1021_acs_bioconjchem_3c00432 |
Cites_doi | 10.1021/jo060041z 10.1002/anie.201912824 10.1016/j.xphs.2019.07.024 10.1016/S0169-5002(03)00242-3 10.1016/j.mtbio.2019.100035 10.1515/dmpt-2018-0032 10.1159/000362416 10.1021/acsami.5b05724 10.1007/s10495-017-1424-9 10.1016/j.colsurfb.2019.110722 10.1166/jnn.2016.11922 10.1054/bjoc.1999.0877 10.1562/0031-8655(2001)074<0656:THOPAP>2.0.CO;2 10.1016/j.biomaterials.2019.04.029 10.1039/C9TB02646K 10.1016/j.jdermsci.2015.08.005 10.1111/jphp.12535 10.1371/journal.pone.0105778 10.1016/j.ejpb.2015.03.018 10.2174/157340613804488387 10.1007/s10517-019-04524-x 10.1038/s41467-019-14199-7 10.1021/acsnano.6b03074 10.1016/j.colsurfb.2022.112574 10.1016/j.colsurfb.2019.06.040 10.1039/C7TB02599H 10.1016/j.ijpharm.2018.02.007 10.1016/j.joen.2010.06.001 10.3390/ijms222111354 10.3389/fchem.2021.691697 10.1016/j.ejps.2015.12.023 10.1002/anie.201403036 10.1016/j.jphotobiol.2019.111598 10.1039/C9CC06839B 10.1016/j.biopha.2021.111302 10.1039/C9NR09423G 10.1186/s12951-019-0475-1 10.1002/lsm.22312 10.1016/j.cej.2020.127212 10.7150/thno.22465 10.1016/j.colsurfb.2020.110829 10.1039/C7NR03129G 10.1039/D1NJ04305F 10.3390/jpm11060571 10.1021/acsnano.9b01087 10.1016/j.biomaterials.2018.01.045 10.1111/j.1600-0781.2004.00078.x 10.1021/acsami.9b21525 10.1016/j.cell.2011.02.013 10.1021/acs.molpharmaceut.7b00548 10.1021/acsami.5b01027 10.1016/j.colsurfb.2017.09.045 10.1016/j.biopha.2018.07.049 10.1111/j.1445-2197.1991.tb00230.x 10.1021/acsami.8b18697 10.1016/j.pdpdt.2013.10.003 10.1021/acsami.0c11156 10.1039/C7BM01084B 10.1016/j.jcis.2019.03.087 10.1021/acsomega.9b02386 10.1016/j.biomaterials.2018.03.048 10.1016/j.jconrel.2017.12.008 10.1111/j.1751-1097.2009.00585.x 10.1016/j.biomaterials.2022.121425 10.1021/acsnano.9b03466 10.1039/C9BM01704F 10.1016/j.urolonc.2019.02.011 10.1016/j.cej.2021.130536 10.1021/acsbiomaterials.0c01638 10.5946/ce.2013.46.1.24 10.1002/tcr.201600121 10.3389/fimmu.2014.00489 10.1016/j.carbpol.2020.116509 10.1021/acsami.9b04403 10.1002/anie.201902714 10.1016/j.pdpdt.2020.102091 10.1016/j.pdpdt.2017.06.001 10.3390/molecules23071567 10.3390/ma6030817 10.1016/j.jconrel.2020.07.023 10.1038/nrc2167 10.1021/acsami.8b06758 10.1016/j.molmed.2015.01.001 10.1200/JOP.17.00038 10.1016/j.jphotobiol.2003.10.002 10.1002/adma.201901513 10.1039/D2BM00437B 10.1042/BJ20150942 10.1016/j.saa.2020.118823 10.2147/IJN.S202910 10.1039/b602830f 10.1155/2019/1018439 10.1111/j.1600-0781.2005.00138.x 10.1177/0885328218758925 10.1200/JCO.2017.74.9598 10.7150/thno.15757 10.1158/1078-0432.CCR-07-1441 10.1038/s41598-020-59584-1 10.1002/cplu.202000203 10.18632/oncotarget.20189 10.1634/theoncologist.11-9-1034 10.1056/NEJMra0912273 10.1016/S0738-3991(03)00021-1 10.1016/j.ijbiomac.2019.06.127 10.1016/j.nano.2005.04.001 10.1038/nrc3958 10.1007/s11095-019-2750-0 10.1166/jnn.2018.14872 10.1039/b705461k 10.1002/cam4.3592 10.1016/1011-1344(90)85096-F 10.1039/C9TB01346F 10.2217/nnm-2019-0099 10.1016/j.canlet.2016.01.043 10.1038/nrc1071 10.1016/j.cub.2020.06.081 10.1002/jcb.21320 10.1016/j.ijpharm.2019.118595 10.1016/j.pdpdt.2017.04.005 10.2217/nnm-2018-0255 10.1021/acsami.6b03881 10.1097/HP.0000000000000241 10.3892/or_00000540 10.3390/ijms20163958 10.1038/nrc2587 10.7150/ijms.3635 10.3892/ijo.2018.4661 10.1021/acsnano.7b00715 10.1038/s41571-020-0410-2 10.3389/fphar.2019.00369 10.1016/j.biomaterials.2014.05.063 10.1021/acs.biomac.9b00428 10.1021/acsami.9b03541 10.2183/pjab.88.53 10.1038/s41551-020-0549-2 10.1016/j.ejphar.2018.07.034 10.1021/acsami.8b04779 10.1021/acsami.9b11607 10.1039/C8BM00812D 10.1007/978-1-4939-6646-2_2 10.3322/caac.20114 10.1016/j.pdpdt.2018.06.012 10.1016/j.pdpdt.2017.05.015 10.1021/acsami.8b01522 10.7150/thno.22989 10.1016/j.jphotobiol.2015.10.025 10.1039/C9NR04768A |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsabm.2c00891 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-6422 |
EndPage | 364 |
ExternalDocumentID | 36700563 10_1021_acsabm_2c00891 b945147386 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | 53G ABFRP ABQRX ABUCX ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a359t-d2fb5edd47b8165f34f36381710338177e007ece4783d42029ba1cfb5a8f170b3 |
IEDL.DBID | ACS |
ISSN | 2576-6422 |
IngestDate | Fri Jul 11 16:00:52 EDT 2025 Wed Feb 19 02:24:55 EST 2025 Tue Jul 01 04:25:46 EDT 2025 Thu Apr 24 22:56:24 EDT 2025 Tue Feb 21 10:51:57 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | nanoparticle cancer chlorin e6 photodynamic therapy photosensitizer |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a359t-d2fb5edd47b8165f34f36381710338177e007ece4783d42029ba1cfb5a8f170b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3994-6760 0000-0002-6167-1663 |
PMID | 36700563 |
PQID | 2769997650 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2769997650 pubmed_primary_36700563 crossref_primary_10_1021_acsabm_2c00891 crossref_citationtrail_10_1021_acsabm_2c00891 acs_journals_10_1021_acsabm_2c00891 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-20 |
PublicationDateYYYYMMDD | 2023-02-20 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied bio materials |
PublicationTitleAlternate | ACS Appl. Bio Mater |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 Taber S. W. (ref143/cit143) 1998; 4 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref148/cit148 ref55/cit55 ref144/cit144 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref27/cit27 ref150/cit150 ref63/cit63 ref56/cit56 ref92/cit92 Matsumura Y. (ref60/cit60) 1986; 46 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref88/cit88 ref17/cit17 ref82/cit82 ref147/cit147 ref53/cit53 ref145/cit145 ref21/cit21 ref149/cit149 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 ref26/cit26 ref142/cit142 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref46/cit46 doi: 10.1021/jo060041z – ident: ref90/cit90 doi: 10.1002/anie.201912824 – ident: ref77/cit77 doi: 10.1016/j.xphs.2019.07.024 – ident: ref145/cit145 doi: 10.1016/S0169-5002(03)00242-3 – ident: ref12/cit12 doi: 10.1016/j.mtbio.2019.100035 – ident: ref27/cit27 doi: 10.1515/dmpt-2018-0032 – ident: ref150/cit150 doi: 10.1159/000362416 – ident: ref58/cit58 doi: 10.1021/acsami.5b05724 – ident: ref53/cit53 doi: 10.1007/s10495-017-1424-9 – ident: ref100/cit100 doi: 10.1016/j.colsurfb.2019.110722 – ident: ref16/cit16 doi: 10.1166/jnn.2016.11922 – ident: ref119/cit119 doi: 10.1054/bjoc.1999.0877 – ident: ref35/cit35 doi: 10.1562/0031-8655(2001)074<0656:THOPAP>2.0.CO;2 – ident: ref101/cit101 doi: 10.1016/j.biomaterials.2019.04.029 – ident: ref134/cit134 doi: 10.1039/C9TB02646K – ident: ref18/cit18 doi: 10.1016/j.jdermsci.2015.08.005 – ident: ref69/cit69 doi: 10.1111/jphp.12535 – ident: ref115/cit115 doi: 10.1371/journal.pone.0105778 – ident: ref2/cit2 doi: 10.1016/j.ejpb.2015.03.018 – ident: ref67/cit67 doi: 10.2174/157340613804488387 – ident: ref80/cit80 doi: 10.1007/s10517-019-04524-x – ident: ref89/cit89 doi: 10.1038/s41467-019-14199-7 – ident: ref74/cit74 doi: 10.1021/acsnano.6b03074 – ident: ref113/cit113 doi: 10.1016/j.colsurfb.2022.112574 – ident: ref66/cit66 doi: 10.1016/j.colsurfb.2019.06.040 – ident: ref17/cit17 doi: 10.1039/C7TB02599H – ident: ref21/cit21 doi: 10.1016/j.ijpharm.2018.02.007 – ident: ref148/cit148 doi: 10.1016/j.joen.2010.06.001 – ident: ref11/cit11 doi: 10.3390/ijms222111354 – ident: ref149/cit149 doi: 10.3389/fchem.2021.691697 – ident: ref121/cit121 doi: 10.1016/j.ejps.2015.12.023 – ident: ref24/cit24 doi: 10.1002/anie.201403036 – ident: ref103/cit103 doi: 10.1016/j.jphotobiol.2019.111598 – ident: ref123/cit123 doi: 10.1039/C9CC06839B – ident: ref14/cit14 doi: 10.1016/j.biopha.2021.111302 – ident: ref142/cit142 doi: 10.1039/C9NR09423G – ident: ref70/cit70 doi: 10.1186/s12951-019-0475-1 – ident: ref97/cit97 doi: 10.1002/lsm.22312 – ident: ref111/cit111 doi: 10.1016/j.cej.2020.127212 – ident: ref86/cit86 doi: 10.7150/thno.22465 – ident: ref81/cit81 doi: 10.1016/j.colsurfb.2020.110829 – ident: ref106/cit106 doi: 10.1039/C7NR03129G – ident: ref112/cit112 doi: 10.1039/D1NJ04305F – ident: ref48/cit48 – ident: ref59/cit59 doi: 10.3390/jpm11060571 – ident: ref84/cit84 doi: 10.1021/acsnano.9b01087 – ident: ref99/cit99 doi: 10.1016/j.biomaterials.2018.01.045 – ident: ref147/cit147 doi: 10.1111/j.1600-0781.2004.00078.x – ident: ref141/cit141 doi: 10.1021/acsami.9b21525 – ident: ref28/cit28 doi: 10.1016/j.cell.2011.02.013 – ident: ref62/cit62 doi: 10.1021/acs.molpharmaceut.7b00548 – ident: ref137/cit137 doi: 10.1021/acsami.5b01027 – ident: ref140/cit140 doi: 10.1016/j.colsurfb.2017.09.045 – volume: 46 start-page: 6387 issue: 12 year: 1986 ident: ref60/cit60 publication-title: Cancer Res. – ident: ref52/cit52 doi: 10.1016/j.biopha.2018.07.049 – ident: ref39/cit39 doi: 10.1111/j.1445-2197.1991.tb00230.x – ident: ref129/cit129 doi: 10.1021/acsami.8b18697 – ident: ref146/cit146 doi: 10.1016/j.pdpdt.2013.10.003 – ident: ref118/cit118 doi: 10.1021/acsami.0c11156 – ident: ref127/cit127 doi: 10.1039/C7BM01084B – ident: ref94/cit94 doi: 10.1016/j.jcis.2019.03.087 – ident: ref120/cit120 doi: 10.1021/acsomega.9b02386 – ident: ref124/cit124 doi: 10.1016/j.biomaterials.2018.03.048 – ident: ref136/cit136 doi: 10.1016/j.jconrel.2017.12.008 – ident: ref42/cit42 doi: 10.1111/j.1751-1097.2009.00585.x – ident: ref116/cit116 doi: 10.1016/j.biomaterials.2022.121425 – ident: ref125/cit125 doi: 10.1021/acsnano.9b03466 – ident: ref122/cit122 doi: 10.1039/C9BM01704F – ident: ref3/cit3 doi: 10.1016/j.urolonc.2019.02.011 – ident: ref110/cit110 doi: 10.1016/j.cej.2021.130536 – ident: ref57/cit57 doi: 10.1021/acsbiomaterials.0c01638 – ident: ref54/cit54 doi: 10.5946/ce.2013.46.1.24 – ident: ref38/cit38 doi: 10.1002/tcr.201600121 – ident: ref29/cit29 doi: 10.3389/fimmu.2014.00489 – ident: ref64/cit64 doi: 10.1016/j.carbpol.2020.116509 – ident: ref79/cit79 doi: 10.1021/acsami.9b04403 – ident: ref128/cit128 doi: 10.1002/anie.201902714 – ident: ref43/cit43 doi: 10.1016/j.pdpdt.2020.102091 – ident: ref78/cit78 doi: 10.1016/j.pdpdt.2017.06.001 – ident: ref130/cit130 doi: 10.3390/molecules23071567 – ident: ref45/cit45 doi: 10.3390/ma6030817 – ident: ref88/cit88 doi: 10.1016/j.jconrel.2020.07.023 – ident: ref91/cit91 doi: 10.1038/nrc2167 – ident: ref68/cit68 doi: 10.1021/acsami.8b06758 – ident: ref26/cit26 doi: 10.1016/j.molmed.2015.01.001 – ident: ref4/cit4 doi: 10.1200/JOP.17.00038 – ident: ref40/cit40 doi: 10.1016/j.jphotobiol.2003.10.002 – ident: ref104/cit104 doi: 10.1002/adma.201901513 – ident: ref109/cit109 doi: 10.1039/D2BM00437B – ident: ref44/cit44 doi: 10.1042/BJ20150942 – ident: ref49/cit49 doi: 10.1016/j.saa.2020.118823 – ident: ref82/cit82 doi: 10.2147/IJN.S202910 – ident: ref132/cit132 doi: 10.1039/b602830f – ident: ref10/cit10 doi: 10.1155/2019/1018439 – ident: ref144/cit144 doi: 10.1111/j.1600-0781.2005.00138.x – ident: ref98/cit98 doi: 10.1177/0885328218758925 – volume: 4 start-page: 2741 issue: 11 year: 1998 ident: ref143/cit143 publication-title: Clin. Cancer Res. – ident: ref9/cit9 doi: 10.1200/JCO.2017.74.9598 – ident: ref139/cit139 doi: 10.7150/thno.15757 – ident: ref22/cit22 doi: 10.1158/1078-0432.CCR-07-1441 – ident: ref75/cit75 doi: 10.1038/s41598-020-59584-1 – ident: ref15/cit15 doi: 10.1002/cplu.202000203 – ident: ref41/cit41 doi: 10.18632/oncotarget.20189 – ident: ref51/cit51 doi: 10.1634/theoncologist.11-9-1034 – ident: ref19/cit19 doi: 10.1056/NEJMra0912273 – ident: ref7/cit7 doi: 10.1016/S0738-3991(03)00021-1 – ident: ref96/cit96 doi: 10.1016/j.ijbiomac.2019.06.127 – ident: ref20/cit20 doi: 10.1016/j.nano.2005.04.001 – ident: ref30/cit30 doi: 10.1038/nrc3958 – ident: ref73/cit73 doi: 10.1007/s11095-019-2750-0 – ident: ref71/cit71 doi: 10.1166/jnn.2018.14872 – ident: ref36/cit36 doi: 10.1039/b705461k – ident: ref83/cit83 doi: 10.1002/cam4.3592 – ident: ref50/cit50 doi: 10.1016/1011-1344(90)85096-F – ident: ref107/cit107 doi: 10.1039/C9TB01346F – ident: ref131/cit131 doi: 10.2217/nnm-2019-0099 – ident: ref31/cit31 doi: 10.1016/j.canlet.2016.01.043 – ident: ref34/cit34 doi: 10.1038/nrc1071 – ident: ref32/cit32 doi: 10.1016/j.cub.2020.06.081 – ident: ref33/cit33 doi: 10.1002/jcb.21320 – ident: ref105/cit105 doi: 10.1016/j.ijpharm.2019.118595 – ident: ref133/cit133 doi: 10.1016/j.pdpdt.2017.04.005 – ident: ref72/cit72 doi: 10.2217/nnm-2018-0255 – ident: ref92/cit92 doi: 10.1021/acsami.6b03881 – ident: ref8/cit8 doi: 10.1097/HP.0000000000000241 – ident: ref47/cit47 doi: 10.3892/or_00000540 – ident: ref63/cit63 doi: 10.3390/ijms20163958 – ident: ref6/cit6 doi: 10.1038/nrc2587 – ident: ref1/cit1 doi: 10.7150/ijms.3635 – ident: ref5/cit5 doi: 10.3892/ijo.2018.4661 – ident: ref126/cit126 doi: 10.1021/acsnano.7b00715 – ident: ref13/cit13 doi: 10.1038/s41571-020-0410-2 – ident: ref76/cit76 doi: 10.3389/fphar.2019.00369 – ident: ref93/cit93 doi: 10.1016/j.biomaterials.2014.05.063 – ident: ref108/cit108 doi: 10.1021/acs.biomac.9b00428 – ident: ref85/cit85 doi: 10.1021/acsami.9b03541 – ident: ref61/cit61 doi: 10.2183/pjab.88.53 – ident: ref114/cit114 doi: 10.1038/s41551-020-0549-2 – ident: ref25/cit25 doi: 10.1016/j.ejphar.2018.07.034 – ident: ref138/cit138 doi: 10.1021/acsami.8b04779 – ident: ref87/cit87 doi: 10.1021/acsami.9b11607 – ident: ref135/cit135 doi: 10.1039/C8BM00812D – ident: ref23/cit23 doi: 10.1007/978-1-4939-6646-2_2 – ident: ref37/cit37 doi: 10.3322/caac.20114 – ident: ref55/cit55 doi: 10.1016/j.pdpdt.2018.06.012 – ident: ref56/cit56 doi: 10.1016/j.pdpdt.2017.05.015 – ident: ref65/cit65 doi: 10.1021/acsami.8b01522 – ident: ref95/cit95 doi: 10.7150/thno.22989 – ident: ref117/cit117 doi: 10.1016/j.jphotobiol.2015.10.025 – ident: ref102/cit102 doi: 10.1039/C9NR04768A |
SSID | ssj0002003189 |
Score | 2.5278666 |
SecondaryResourceType | review_article |
Snippet | Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 349 |
SubjectTerms | Cell Line, Tumor Nanomedicine Neoplasms - drug therapy Photochemotherapy - methods Photosensitizing Agents - pharmacology Reactive Oxygen Species Tissue Distribution |
Title | Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine |
URI | http://dx.doi.org/10.1021/acsabm.2c00891 https://www.ncbi.nlm.nih.gov/pubmed/36700563 https://www.proquest.com/docview/2769997650 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA8yX_TB74_5RUTBp84mTZvWtzkcY6AMdLC3kqQpitrK2r3sr_eSdvNjDH0qtJcQ7i65X3OXXxC6FKkMI-Vrh_IocRisjTDnGBgkIVx7KvQDy8B3_xD0hqw_8kdf-x2_M_iUXAtVCPneogqilTmmvkoDmMEGBHUe57sp1DqnwboGQDsAqumMoXGhCxOHVPEzDi0BlzbIdDcrxqPCchOa2pLX1qSULTVdZG78c_xbaKNGmrhducY2WtHZDlr_xj-4i_qdZ1uAh3Vwg9t4MM7B6vAFD57zMi9MbXv5MtVjDCL2lXMLQS_BHeMqYwwrcz7Lze-hYffuqdNz6ssVHOH5UekkNJW-ThLGZUgCP_VY6gWGro-4nnlwDehBK8146CWMujSSgihoI8KUcFd6-6iR5Zk-RJgFRIRupAFbEaYkF1LAP3caqTQiNOVhE12AEuJ6chSxzXtTEleaiWvNNJEzM0isan5yc03G21L5q7n8R8XMsVTyfGbfGNRoMiIi0_mkiCkPACBzQKlNdFAZft6XYbYDdOgd_Wv0x2jNXERvD7u7J6hRjif6FOBKKc-sp34C-Cbhnw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4heBg8AOPXOsbmCSSe0saOEyd7K9VQYS2qBEi8RbbjqIjRTE36wl_P2U3KBqrEniI5F8u5O_u-5M6fAU5kruJEh8ZjIsk8jmsjzjmOBsmoMIGOw8gx8A2vov4tv7wL71ag0-yFwUGU2FPpkvgv7AK0g21SPbaZxqBld6uvIRJh1qW7vevFTxXmfNRCXoujPcTWrCFqfNOFDUe6_DccLcGYLtacb8FoMUpXYvLQnlWqrZ9eETj-x2tsw2aNO0l37igfYcVMdmDjLzbCXbjsjV05HjHRD9Ilo2mBPoB3yGhcVEVpK92r-yczJSjimrwzDIEZ6VnHmRJcp4smU78Ht-c_b3p9rz5qwZNBmFRexnIVmizjQsU0CvOA50FkyfuoH9iLMIgljDZcxEHGmc8SJanGZ2ScU-GrYB9WJ8XEfALCIypjPzGItCjXSkgl8Qs8T3SeUJaLuAXHqIS0nipl6rLgjKZzzaS1ZlrgNXZJdc1Wbg_N-L1U_nQh_2fO07FU8ntj5hTVaPMjcmKKWZkyESFcFohZW3Awt_-iL8tzh1gx-Pyu0X-DD_2b4SAdXFz9OoR1e0S92wbvf4HVajozRwhkKvXVOe8zw5rqAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iIPrg_TKvEQWfOps0bVrf5nTMKwMVfCtJmqCoq6zdy369J1k3vDDQp0J6GtKTk5yvPed8QehIGBknKtQe5UnmMdgbYc0xmJCMcB2oOIwcA9_tXdR-ZFdP4VNVx21rYWAQBfRUuCC-XdUfmakYBsgJtAv5XqcKHJetWJ-xMTtr1o3m_fjHCnV2amGvxdIe4Gs6Imv81YV1Sar47pIm4Eznb1qL6GE8Updm8lrvl7KuBj9IHP_5KktoocKfuDE0mGU0pbsraP4LK-Equmo-u7Q8rKNT3MCdXg62AHdw5zkv88JmvJcvA93DIOKavDNwhRluWgPqYdiv81HEfg09ti4emm2vOnLBE0GYlF5GjQx1ljEuYxKFJmAmiCyJH_EDe-EaMIVWmvE4yBj1aSIFUfCMiA3hvgzW0XQ37-pNhFlEROwnGhAXYUpyIQV8iZtEmYRQw-MaOgQlpNWSKVIXDackHWomrTRTQ95oblJVsZbbwzPeJsofj-U_hnwdEyUPRlOdghptnER0dd4vUsojgM0csGsNbQxtYNyX5bsDzBhs_Wn0-2i2c95Kby7vrrfRnD2p3lXD-ztouuz19S7gmVLuOfv9BIFo7IM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chlorin+e6%3A+A+Promising+Photosensitizer+in+Photo-Based+Cancer+Nanomedicine&rft.jtitle=ACS+applied+bio+materials&rft.au=Hak%2C+Arshadul&rft.au=Ali%2C+Mohammad+Sadik&rft.au=Sankaranarayanan%2C+Sri+Amruthaa&rft.au=Shinde%2C+Vinod+Ravasaheb&rft.date=2023-02-20&rft.eissn=2576-6422&rft.volume=6&rft.issue=2&rft.spage=349&rft_id=info:doi/10.1021%2Facsabm.2c00891&rft_id=info%3Apmid%2F36700563&rft.externalDocID=36700563 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon |