Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine

Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers a...

Full description

Saved in:
Bibliographic Details
Published inACS applied bio materials Vol. 6; no. 2; pp. 349 - 364
Main Authors Hak, Arshadul, Ali, Mohammad Sadik, Sankaranarayanan, Sri Amruthaa, Shinde, Vinod Ravasaheb, Rengan, Aravind Kumar
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers and minimal side effects. A photosensitizer is the key component of photodynamic therapy (PDT) that generates cytotoxic reactive oxygen species to eradicate cancer cells. As the therapeutic effectivity of PDT greatly depends upon the photosensitizer, great efforts have been made to search for an ideal photosensitizer. Chlorin e6 is a FDA approved second generation photosensitizer that meets the desired clinical properties for PDT. It is known for its high reactive oxygen species (ROS) generation ability and anticancer potency against many types of cancer. Hydrophobicity is a major drawback of Ce6 that leads to its poor biodistribution and rapid clearance from the circulatory system. To overcome this drawback, researchers have designed and fabricated several types of nanosystems, which can enhance Ce6 solubility and thereby enhance its bioavailability. These nanosystems also improve tumor accumulation of Ce6 by selectively targeting the cancer cells through passive and active targeting. In addition, Ce6 has been employed in many combination therapies like chemo-photodynamic therapy, photoimmunotherapy, and combined photodynamic–photothermal therapy. A combination therapy is more curative than a single therapy due to the synergistic effects of individual therapies. Ce6-based nanosystems for combination therapies have shown excellent results in various studies and provide a promising platform for cancer treatment.
AbstractList Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers and minimal side effects. A photosensitizer is the key component of photodynamic therapy (PDT) that generates cytotoxic reactive oxygen species to eradicate cancer cells. As the therapeutic effectivity of PDT greatly depends upon the photosensitizer, great efforts have been made to search for an ideal photosensitizer. Chlorin e6 is a FDA approved second generation photosensitizer that meets the desired clinical properties for PDT. It is known for its high reactive oxygen species (ROS) generation ability and anticancer potency against many types of cancer. Hydrophobicity is a major drawback of Ce6 that leads to its poor biodistribution and rapid clearance from the circulatory system. To overcome this drawback, researchers have designed and fabricated several types of nanosystems, which can enhance Ce6 solubility and thereby enhance its bioavailability. These nanosystems also improve tumor accumulation of Ce6 by selectively targeting the cancer cells through passive and active targeting. In addition, Ce6 has been employed in many combination therapies like chemo-photodynamic therapy, photoimmunotherapy, and combined photodynamic-photothermal therapy. A combination therapy is more curative than a single therapy due to the synergistic effects of individual therapies. Ce6-based nanosystems for combination therapies have shown excellent results in various studies and provide a promising platform for cancer treatment.Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers and minimal side effects. A photosensitizer is the key component of photodynamic therapy (PDT) that generates cytotoxic reactive oxygen species to eradicate cancer cells. As the therapeutic effectivity of PDT greatly depends upon the photosensitizer, great efforts have been made to search for an ideal photosensitizer. Chlorin e6 is a FDA approved second generation photosensitizer that meets the desired clinical properties for PDT. It is known for its high reactive oxygen species (ROS) generation ability and anticancer potency against many types of cancer. Hydrophobicity is a major drawback of Ce6 that leads to its poor biodistribution and rapid clearance from the circulatory system. To overcome this drawback, researchers have designed and fabricated several types of nanosystems, which can enhance Ce6 solubility and thereby enhance its bioavailability. These nanosystems also improve tumor accumulation of Ce6 by selectively targeting the cancer cells through passive and active targeting. In addition, Ce6 has been employed in many combination therapies like chemo-photodynamic therapy, photoimmunotherapy, and combined photodynamic-photothermal therapy. A combination therapy is more curative than a single therapy due to the synergistic effects of individual therapies. Ce6-based nanosystems for combination therapies have shown excellent results in various studies and provide a promising platform for cancer treatment.
Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers and minimal side effects. A photosensitizer is the key component of photodynamic therapy (PDT) that generates cytotoxic reactive oxygen species to eradicate cancer cells. As the therapeutic effectivity of PDT greatly depends upon the photosensitizer, great efforts have been made to search for an ideal photosensitizer. Chlorin e6 is a FDA approved second generation photosensitizer that meets the desired clinical properties for PDT. It is known for its high reactive oxygen species (ROS) generation ability and anticancer potency against many types of cancer. Hydrophobicity is a major drawback of Ce6 that leads to its poor biodistribution and rapid clearance from the circulatory system. To overcome this drawback, researchers have designed and fabricated several types of nanosystems, which can enhance Ce6 solubility and thereby enhance its bioavailability. These nanosystems also improve tumor accumulation of Ce6 by selectively targeting the cancer cells through passive and active targeting. In addition, Ce6 has been employed in many combination therapies like chemo-photodynamic therapy, photoimmunotherapy, and combined photodynamic-photothermal therapy. A combination therapy is more curative than a single therapy due to the synergistic effects of individual therapies. Ce6-based nanosystems for combination therapies have shown excellent results in various studies and provide a promising platform for cancer treatment.
Author Rengan, Aravind Kumar
Hak, Arshadul
Sankaranarayanan, Sri Amruthaa
Ali, Mohammad Sadik
Shinde, Vinod Ravasaheb
AuthorAffiliation Department of Biomedical Engineering
AuthorAffiliation_xml – name: Department of Biomedical Engineering
Author_xml – sequence: 1
  givenname: Arshadul
  surname: Hak
  fullname: Hak, Arshadul
– sequence: 2
  givenname: Mohammad Sadik
  surname: Ali
  fullname: Ali, Mohammad Sadik
– sequence: 3
  givenname: Sri Amruthaa
  surname: Sankaranarayanan
  fullname: Sankaranarayanan, Sri Amruthaa
– sequence: 4
  givenname: Vinod Ravasaheb
  orcidid: 0000-0002-6167-1663
  surname: Shinde
  fullname: Shinde, Vinod Ravasaheb
– sequence: 5
  givenname: Aravind Kumar
  orcidid: 0000-0003-3994-6760
  surname: Rengan
  fullname: Rengan, Aravind Kumar
  email: aravind@bme.iith.ac.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36700563$$D View this record in MEDLINE/PubMed
BookMark eNp1kM9LwzAYhoNM3Jy7epQeRej8krRJ620OfzJ0Bz2XNE1dRpfMpD3oX2_mpoiw0xdenid833uMesYahdAphjEGgi-F9KJcjYkEyHJ8gAYk5SxmCSG9P-8-Gnm_BAACQHGWH6E-ZRwgZXSAHqeLxjptIsWuokk0d3alvTZv0XxhW-uV8brVn8pFAfmO4mvhVRVNhZEhfRLGrlSlpTbqBB3WovFqtJtD9Hp78zK9j2fPdw_TySwWNM3buCJ1maqqSniZYZbWNKkpoxnmGOhmcAXAlVQJz2iVECB5KbAMjshqzKGkQ3S-_Xft7HunfFuElaVqGmGU7XxBOMvznLMUAnq2Q7syrFmsnV4J91H83B-A8RaQznrvVP2LYCg2HRfbjotdx0FI_glSt6LV1rRO6Ga_drHVQl4sbedMaGgf_AVsWY1t
CitedBy_id crossref_primary_10_1007_s10847_025_01295_z
crossref_primary_10_1016_j_eurpolymj_2024_113431
crossref_primary_10_3390_ph16091329
crossref_primary_10_1016_j_cej_2024_158143
crossref_primary_10_1021_acs_molpharmaceut_3c01047
crossref_primary_10_1016_j_biopha_2023_114933
crossref_primary_10_1016_j_jphotochemrev_2024_100665
crossref_primary_10_24931_2413_9432_2024_13_2_9_18
crossref_primary_10_1002_cptc_202400109
crossref_primary_10_1016_j_mtbio_2024_101394
crossref_primary_10_3390_pharmaceutics16010014
crossref_primary_10_1021_acsanm_3c02239
crossref_primary_10_1002_advs_202305934
crossref_primary_10_3390_oxygen4040027
crossref_primary_10_18097_BMCRM00244
crossref_primary_10_17816_gc546129
crossref_primary_10_1016_j_jconrel_2024_03_035
crossref_primary_10_3390_ijms25063457
crossref_primary_10_1016_j_ijbiomac_2024_130709
crossref_primary_10_1186_s12575_024_00252_3
crossref_primary_10_1039_D4BM01602E
crossref_primary_10_3390_molecules29051015
crossref_primary_10_3390_ph17060729
crossref_primary_10_3390_ijms252312609
crossref_primary_10_3390_pharmaceutics15092222
crossref_primary_10_1016_j_eurpolymj_2024_112871
crossref_primary_10_1002_smll_202311507
crossref_primary_10_3390_ph17121666
crossref_primary_10_1080_1061186X_2023_2284093
crossref_primary_10_1016_j_critrevonc_2025_104691
crossref_primary_10_3390_pharmaceutics16091164
crossref_primary_10_3390_ph17070932
crossref_primary_10_1021_acsabm_3c00518
crossref_primary_10_3390_molecules30030544
crossref_primary_10_3389_fonc_2024_1441338
crossref_primary_10_33145_2304_8336_2023_28_206_215
crossref_primary_10_1002_advs_202302731
crossref_primary_10_2147_IJN_S475531
crossref_primary_10_24931_2413_9432_2024_13_4_13_21
crossref_primary_10_1007_s13402_024_00997_9
crossref_primary_10_1088_1361_6528_ad3c4a
crossref_primary_10_31857_S0006302923050162
crossref_primary_10_3390_molecules28135092
crossref_primary_10_1016_j_ccr_2024_216419
crossref_primary_10_1016_j_nantod_2024_102225
crossref_primary_10_3389_fchem_2023_1250621
crossref_primary_10_1080_17435889_2025_2456450
crossref_primary_10_1007_s13205_024_04086_4
crossref_primary_10_1002_adhm_202302374
crossref_primary_10_1021_acsnano_3c03925
crossref_primary_10_1016_j_bbrc_2024_150131
crossref_primary_10_2174_0113816128265544231102065515
crossref_primary_10_1016_j_cej_2024_158522
crossref_primary_10_1016_j_dyepig_2023_111873
crossref_primary_10_1002_adtp_202300329
crossref_primary_10_1016_j_jddst_2025_106716
crossref_primary_10_1021_jacs_4c18400
crossref_primary_10_1016_j_jpha_2023_12_018
crossref_primary_10_1016_j_pdpdt_2024_104096
crossref_primary_10_1134_S0006350923050044
crossref_primary_10_1007_s10853_024_09923_8
crossref_primary_10_1080_17435889_2025_2460960
crossref_primary_10_1021_jacs_4c15537
crossref_primary_10_1021_jacs_4c17879
crossref_primary_10_1016_j_inoche_2024_113491
crossref_primary_10_1016_j_nantod_2024_102151
crossref_primary_10_2147_IJN_S498729
crossref_primary_10_1016_j_mattod_2023_07_003
crossref_primary_10_2147_IJN_S510339
crossref_primary_10_1016_j_nantod_2024_102399
crossref_primary_10_1002_advs_202405640
crossref_primary_10_1016_j_phrs_2024_107150
crossref_primary_10_1021_acsanm_4c05790
crossref_primary_10_3390_photochem4030021
crossref_primary_10_1016_j_colsurfb_2024_114070
crossref_primary_10_20535_ibb_2024_8_4_317985
crossref_primary_10_1002_adhm_202402823
crossref_primary_10_1021_acsami_3c17977
crossref_primary_10_1016_j_ijpharm_2023_123622
crossref_primary_10_3390_pharmaceutics15082124
crossref_primary_10_1021_acsinfecdis_4c00306
crossref_primary_10_1039_D3NH00584D
crossref_primary_10_3390_nano14110933
crossref_primary_10_1016_j_ijpharm_2024_124496
crossref_primary_10_1016_j_actbio_2024_05_045
crossref_primary_10_1039_D4CB00103F
crossref_primary_10_1016_j_jcis_2024_03_021
crossref_primary_10_1007_s10103_024_04219_4
crossref_primary_10_1021_acs_bioconjchem_3c00432
Cites_doi 10.1021/jo060041z
10.1002/anie.201912824
10.1016/j.xphs.2019.07.024
10.1016/S0169-5002(03)00242-3
10.1016/j.mtbio.2019.100035
10.1515/dmpt-2018-0032
10.1159/000362416
10.1021/acsami.5b05724
10.1007/s10495-017-1424-9
10.1016/j.colsurfb.2019.110722
10.1166/jnn.2016.11922
10.1054/bjoc.1999.0877
10.1562/0031-8655(2001)074<0656:THOPAP>2.0.CO;2
10.1016/j.biomaterials.2019.04.029
10.1039/C9TB02646K
10.1016/j.jdermsci.2015.08.005
10.1111/jphp.12535
10.1371/journal.pone.0105778
10.1016/j.ejpb.2015.03.018
10.2174/157340613804488387
10.1007/s10517-019-04524-x
10.1038/s41467-019-14199-7
10.1021/acsnano.6b03074
10.1016/j.colsurfb.2022.112574
10.1016/j.colsurfb.2019.06.040
10.1039/C7TB02599H
10.1016/j.ijpharm.2018.02.007
10.1016/j.joen.2010.06.001
10.3390/ijms222111354
10.3389/fchem.2021.691697
10.1016/j.ejps.2015.12.023
10.1002/anie.201403036
10.1016/j.jphotobiol.2019.111598
10.1039/C9CC06839B
10.1016/j.biopha.2021.111302
10.1039/C9NR09423G
10.1186/s12951-019-0475-1
10.1002/lsm.22312
10.1016/j.cej.2020.127212
10.7150/thno.22465
10.1016/j.colsurfb.2020.110829
10.1039/C7NR03129G
10.1039/D1NJ04305F
10.3390/jpm11060571
10.1021/acsnano.9b01087
10.1016/j.biomaterials.2018.01.045
10.1111/j.1600-0781.2004.00078.x
10.1021/acsami.9b21525
10.1016/j.cell.2011.02.013
10.1021/acs.molpharmaceut.7b00548
10.1021/acsami.5b01027
10.1016/j.colsurfb.2017.09.045
10.1016/j.biopha.2018.07.049
10.1111/j.1445-2197.1991.tb00230.x
10.1021/acsami.8b18697
10.1016/j.pdpdt.2013.10.003
10.1021/acsami.0c11156
10.1039/C7BM01084B
10.1016/j.jcis.2019.03.087
10.1021/acsomega.9b02386
10.1016/j.biomaterials.2018.03.048
10.1016/j.jconrel.2017.12.008
10.1111/j.1751-1097.2009.00585.x
10.1016/j.biomaterials.2022.121425
10.1021/acsnano.9b03466
10.1039/C9BM01704F
10.1016/j.urolonc.2019.02.011
10.1016/j.cej.2021.130536
10.1021/acsbiomaterials.0c01638
10.5946/ce.2013.46.1.24
10.1002/tcr.201600121
10.3389/fimmu.2014.00489
10.1016/j.carbpol.2020.116509
10.1021/acsami.9b04403
10.1002/anie.201902714
10.1016/j.pdpdt.2020.102091
10.1016/j.pdpdt.2017.06.001
10.3390/molecules23071567
10.3390/ma6030817
10.1016/j.jconrel.2020.07.023
10.1038/nrc2167
10.1021/acsami.8b06758
10.1016/j.molmed.2015.01.001
10.1200/JOP.17.00038
10.1016/j.jphotobiol.2003.10.002
10.1002/adma.201901513
10.1039/D2BM00437B
10.1042/BJ20150942
10.1016/j.saa.2020.118823
10.2147/IJN.S202910
10.1039/b602830f
10.1155/2019/1018439
10.1111/j.1600-0781.2005.00138.x
10.1177/0885328218758925
10.1200/JCO.2017.74.9598
10.7150/thno.15757
10.1158/1078-0432.CCR-07-1441
10.1038/s41598-020-59584-1
10.1002/cplu.202000203
10.18632/oncotarget.20189
10.1634/theoncologist.11-9-1034
10.1056/NEJMra0912273
10.1016/S0738-3991(03)00021-1
10.1016/j.ijbiomac.2019.06.127
10.1016/j.nano.2005.04.001
10.1038/nrc3958
10.1007/s11095-019-2750-0
10.1166/jnn.2018.14872
10.1039/b705461k
10.1002/cam4.3592
10.1016/1011-1344(90)85096-F
10.1039/C9TB01346F
10.2217/nnm-2019-0099
10.1016/j.canlet.2016.01.043
10.1038/nrc1071
10.1016/j.cub.2020.06.081
10.1002/jcb.21320
10.1016/j.ijpharm.2019.118595
10.1016/j.pdpdt.2017.04.005
10.2217/nnm-2018-0255
10.1021/acsami.6b03881
10.1097/HP.0000000000000241
10.3892/or_00000540
10.3390/ijms20163958
10.1038/nrc2587
10.7150/ijms.3635
10.3892/ijo.2018.4661
10.1021/acsnano.7b00715
10.1038/s41571-020-0410-2
10.3389/fphar.2019.00369
10.1016/j.biomaterials.2014.05.063
10.1021/acs.biomac.9b00428
10.1021/acsami.9b03541
10.2183/pjab.88.53
10.1038/s41551-020-0549-2
10.1016/j.ejphar.2018.07.034
10.1021/acsami.8b04779
10.1021/acsami.9b11607
10.1039/C8BM00812D
10.1007/978-1-4939-6646-2_2
10.3322/caac.20114
10.1016/j.pdpdt.2018.06.012
10.1016/j.pdpdt.2017.05.015
10.1021/acsami.8b01522
10.7150/thno.22989
10.1016/j.jphotobiol.2015.10.025
10.1039/C9NR04768A
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsabm.2c00891
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-6422
EndPage 364
ExternalDocumentID 36700563
10_1021_acsabm_2c00891
b945147386
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID 53G
ABFRP
ABQRX
ABUCX
ACS
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a359t-d2fb5edd47b8165f34f36381710338177e007ece4783d42029ba1cfb5a8f170b3
IEDL.DBID ACS
ISSN 2576-6422
IngestDate Fri Jul 11 16:00:52 EDT 2025
Wed Feb 19 02:24:55 EST 2025
Tue Jul 01 04:25:46 EDT 2025
Thu Apr 24 22:56:24 EDT 2025
Tue Feb 21 10:51:57 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords nanoparticle
cancer
chlorin e6
photodynamic therapy
photosensitizer
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a359t-d2fb5edd47b8165f34f36381710338177e007ece4783d42029ba1cfb5a8f170b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3994-6760
0000-0002-6167-1663
PMID 36700563
PQID 2769997650
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2769997650
pubmed_primary_36700563
crossref_primary_10_1021_acsabm_2c00891
crossref_citationtrail_10_1021_acsabm_2c00891
acs_journals_10_1021_acsabm_2c00891
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-20
PublicationDateYYYYMMDD 2023-02-20
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied bio materials
PublicationTitleAlternate ACS Appl. Bio Mater
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
Taber S. W. (ref143/cit143) 1998; 4
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref136/cit136
ref137/cit137
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref132/cit132
ref91/cit91
ref148/cit148
ref55/cit55
ref144/cit144
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref140/cit140
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref27/cit27
ref150/cit150
ref63/cit63
ref56/cit56
ref92/cit92
Matsumura Y. (ref60/cit60) 1986; 46
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref88/cit88
ref17/cit17
ref82/cit82
ref147/cit147
ref53/cit53
ref145/cit145
ref21/cit21
ref149/cit149
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref138/cit138
ref79/cit79
ref139/cit139
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref146/cit146
ref26/cit26
ref142/cit142
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref46/cit46
  doi: 10.1021/jo060041z
– ident: ref90/cit90
  doi: 10.1002/anie.201912824
– ident: ref77/cit77
  doi: 10.1016/j.xphs.2019.07.024
– ident: ref145/cit145
  doi: 10.1016/S0169-5002(03)00242-3
– ident: ref12/cit12
  doi: 10.1016/j.mtbio.2019.100035
– ident: ref27/cit27
  doi: 10.1515/dmpt-2018-0032
– ident: ref150/cit150
  doi: 10.1159/000362416
– ident: ref58/cit58
  doi: 10.1021/acsami.5b05724
– ident: ref53/cit53
  doi: 10.1007/s10495-017-1424-9
– ident: ref100/cit100
  doi: 10.1016/j.colsurfb.2019.110722
– ident: ref16/cit16
  doi: 10.1166/jnn.2016.11922
– ident: ref119/cit119
  doi: 10.1054/bjoc.1999.0877
– ident: ref35/cit35
  doi: 10.1562/0031-8655(2001)074<0656:THOPAP>2.0.CO;2
– ident: ref101/cit101
  doi: 10.1016/j.biomaterials.2019.04.029
– ident: ref134/cit134
  doi: 10.1039/C9TB02646K
– ident: ref18/cit18
  doi: 10.1016/j.jdermsci.2015.08.005
– ident: ref69/cit69
  doi: 10.1111/jphp.12535
– ident: ref115/cit115
  doi: 10.1371/journal.pone.0105778
– ident: ref2/cit2
  doi: 10.1016/j.ejpb.2015.03.018
– ident: ref67/cit67
  doi: 10.2174/157340613804488387
– ident: ref80/cit80
  doi: 10.1007/s10517-019-04524-x
– ident: ref89/cit89
  doi: 10.1038/s41467-019-14199-7
– ident: ref74/cit74
  doi: 10.1021/acsnano.6b03074
– ident: ref113/cit113
  doi: 10.1016/j.colsurfb.2022.112574
– ident: ref66/cit66
  doi: 10.1016/j.colsurfb.2019.06.040
– ident: ref17/cit17
  doi: 10.1039/C7TB02599H
– ident: ref21/cit21
  doi: 10.1016/j.ijpharm.2018.02.007
– ident: ref148/cit148
  doi: 10.1016/j.joen.2010.06.001
– ident: ref11/cit11
  doi: 10.3390/ijms222111354
– ident: ref149/cit149
  doi: 10.3389/fchem.2021.691697
– ident: ref121/cit121
  doi: 10.1016/j.ejps.2015.12.023
– ident: ref24/cit24
  doi: 10.1002/anie.201403036
– ident: ref103/cit103
  doi: 10.1016/j.jphotobiol.2019.111598
– ident: ref123/cit123
  doi: 10.1039/C9CC06839B
– ident: ref14/cit14
  doi: 10.1016/j.biopha.2021.111302
– ident: ref142/cit142
  doi: 10.1039/C9NR09423G
– ident: ref70/cit70
  doi: 10.1186/s12951-019-0475-1
– ident: ref97/cit97
  doi: 10.1002/lsm.22312
– ident: ref111/cit111
  doi: 10.1016/j.cej.2020.127212
– ident: ref86/cit86
  doi: 10.7150/thno.22465
– ident: ref81/cit81
  doi: 10.1016/j.colsurfb.2020.110829
– ident: ref106/cit106
  doi: 10.1039/C7NR03129G
– ident: ref112/cit112
  doi: 10.1039/D1NJ04305F
– ident: ref48/cit48
– ident: ref59/cit59
  doi: 10.3390/jpm11060571
– ident: ref84/cit84
  doi: 10.1021/acsnano.9b01087
– ident: ref99/cit99
  doi: 10.1016/j.biomaterials.2018.01.045
– ident: ref147/cit147
  doi: 10.1111/j.1600-0781.2004.00078.x
– ident: ref141/cit141
  doi: 10.1021/acsami.9b21525
– ident: ref28/cit28
  doi: 10.1016/j.cell.2011.02.013
– ident: ref62/cit62
  doi: 10.1021/acs.molpharmaceut.7b00548
– ident: ref137/cit137
  doi: 10.1021/acsami.5b01027
– ident: ref140/cit140
  doi: 10.1016/j.colsurfb.2017.09.045
– volume: 46
  start-page: 6387
  issue: 12
  year: 1986
  ident: ref60/cit60
  publication-title: Cancer Res.
– ident: ref52/cit52
  doi: 10.1016/j.biopha.2018.07.049
– ident: ref39/cit39
  doi: 10.1111/j.1445-2197.1991.tb00230.x
– ident: ref129/cit129
  doi: 10.1021/acsami.8b18697
– ident: ref146/cit146
  doi: 10.1016/j.pdpdt.2013.10.003
– ident: ref118/cit118
  doi: 10.1021/acsami.0c11156
– ident: ref127/cit127
  doi: 10.1039/C7BM01084B
– ident: ref94/cit94
  doi: 10.1016/j.jcis.2019.03.087
– ident: ref120/cit120
  doi: 10.1021/acsomega.9b02386
– ident: ref124/cit124
  doi: 10.1016/j.biomaterials.2018.03.048
– ident: ref136/cit136
  doi: 10.1016/j.jconrel.2017.12.008
– ident: ref42/cit42
  doi: 10.1111/j.1751-1097.2009.00585.x
– ident: ref116/cit116
  doi: 10.1016/j.biomaterials.2022.121425
– ident: ref125/cit125
  doi: 10.1021/acsnano.9b03466
– ident: ref122/cit122
  doi: 10.1039/C9BM01704F
– ident: ref3/cit3
  doi: 10.1016/j.urolonc.2019.02.011
– ident: ref110/cit110
  doi: 10.1016/j.cej.2021.130536
– ident: ref57/cit57
  doi: 10.1021/acsbiomaterials.0c01638
– ident: ref54/cit54
  doi: 10.5946/ce.2013.46.1.24
– ident: ref38/cit38
  doi: 10.1002/tcr.201600121
– ident: ref29/cit29
  doi: 10.3389/fimmu.2014.00489
– ident: ref64/cit64
  doi: 10.1016/j.carbpol.2020.116509
– ident: ref79/cit79
  doi: 10.1021/acsami.9b04403
– ident: ref128/cit128
  doi: 10.1002/anie.201902714
– ident: ref43/cit43
  doi: 10.1016/j.pdpdt.2020.102091
– ident: ref78/cit78
  doi: 10.1016/j.pdpdt.2017.06.001
– ident: ref130/cit130
  doi: 10.3390/molecules23071567
– ident: ref45/cit45
  doi: 10.3390/ma6030817
– ident: ref88/cit88
  doi: 10.1016/j.jconrel.2020.07.023
– ident: ref91/cit91
  doi: 10.1038/nrc2167
– ident: ref68/cit68
  doi: 10.1021/acsami.8b06758
– ident: ref26/cit26
  doi: 10.1016/j.molmed.2015.01.001
– ident: ref4/cit4
  doi: 10.1200/JOP.17.00038
– ident: ref40/cit40
  doi: 10.1016/j.jphotobiol.2003.10.002
– ident: ref104/cit104
  doi: 10.1002/adma.201901513
– ident: ref109/cit109
  doi: 10.1039/D2BM00437B
– ident: ref44/cit44
  doi: 10.1042/BJ20150942
– ident: ref49/cit49
  doi: 10.1016/j.saa.2020.118823
– ident: ref82/cit82
  doi: 10.2147/IJN.S202910
– ident: ref132/cit132
  doi: 10.1039/b602830f
– ident: ref10/cit10
  doi: 10.1155/2019/1018439
– ident: ref144/cit144
  doi: 10.1111/j.1600-0781.2005.00138.x
– ident: ref98/cit98
  doi: 10.1177/0885328218758925
– volume: 4
  start-page: 2741
  issue: 11
  year: 1998
  ident: ref143/cit143
  publication-title: Clin. Cancer Res.
– ident: ref9/cit9
  doi: 10.1200/JCO.2017.74.9598
– ident: ref139/cit139
  doi: 10.7150/thno.15757
– ident: ref22/cit22
  doi: 10.1158/1078-0432.CCR-07-1441
– ident: ref75/cit75
  doi: 10.1038/s41598-020-59584-1
– ident: ref15/cit15
  doi: 10.1002/cplu.202000203
– ident: ref41/cit41
  doi: 10.18632/oncotarget.20189
– ident: ref51/cit51
  doi: 10.1634/theoncologist.11-9-1034
– ident: ref19/cit19
  doi: 10.1056/NEJMra0912273
– ident: ref7/cit7
  doi: 10.1016/S0738-3991(03)00021-1
– ident: ref96/cit96
  doi: 10.1016/j.ijbiomac.2019.06.127
– ident: ref20/cit20
  doi: 10.1016/j.nano.2005.04.001
– ident: ref30/cit30
  doi: 10.1038/nrc3958
– ident: ref73/cit73
  doi: 10.1007/s11095-019-2750-0
– ident: ref71/cit71
  doi: 10.1166/jnn.2018.14872
– ident: ref36/cit36
  doi: 10.1039/b705461k
– ident: ref83/cit83
  doi: 10.1002/cam4.3592
– ident: ref50/cit50
  doi: 10.1016/1011-1344(90)85096-F
– ident: ref107/cit107
  doi: 10.1039/C9TB01346F
– ident: ref131/cit131
  doi: 10.2217/nnm-2019-0099
– ident: ref31/cit31
  doi: 10.1016/j.canlet.2016.01.043
– ident: ref34/cit34
  doi: 10.1038/nrc1071
– ident: ref32/cit32
  doi: 10.1016/j.cub.2020.06.081
– ident: ref33/cit33
  doi: 10.1002/jcb.21320
– ident: ref105/cit105
  doi: 10.1016/j.ijpharm.2019.118595
– ident: ref133/cit133
  doi: 10.1016/j.pdpdt.2017.04.005
– ident: ref72/cit72
  doi: 10.2217/nnm-2018-0255
– ident: ref92/cit92
  doi: 10.1021/acsami.6b03881
– ident: ref8/cit8
  doi: 10.1097/HP.0000000000000241
– ident: ref47/cit47
  doi: 10.3892/or_00000540
– ident: ref63/cit63
  doi: 10.3390/ijms20163958
– ident: ref6/cit6
  doi: 10.1038/nrc2587
– ident: ref1/cit1
  doi: 10.7150/ijms.3635
– ident: ref5/cit5
  doi: 10.3892/ijo.2018.4661
– ident: ref126/cit126
  doi: 10.1021/acsnano.7b00715
– ident: ref13/cit13
  doi: 10.1038/s41571-020-0410-2
– ident: ref76/cit76
  doi: 10.3389/fphar.2019.00369
– ident: ref93/cit93
  doi: 10.1016/j.biomaterials.2014.05.063
– ident: ref108/cit108
  doi: 10.1021/acs.biomac.9b00428
– ident: ref85/cit85
  doi: 10.1021/acsami.9b03541
– ident: ref61/cit61
  doi: 10.2183/pjab.88.53
– ident: ref114/cit114
  doi: 10.1038/s41551-020-0549-2
– ident: ref25/cit25
  doi: 10.1016/j.ejphar.2018.07.034
– ident: ref138/cit138
  doi: 10.1021/acsami.8b04779
– ident: ref87/cit87
  doi: 10.1021/acsami.9b11607
– ident: ref135/cit135
  doi: 10.1039/C8BM00812D
– ident: ref23/cit23
  doi: 10.1007/978-1-4939-6646-2_2
– ident: ref37/cit37
  doi: 10.3322/caac.20114
– ident: ref55/cit55
  doi: 10.1016/j.pdpdt.2018.06.012
– ident: ref56/cit56
  doi: 10.1016/j.pdpdt.2017.05.015
– ident: ref65/cit65
  doi: 10.1021/acsami.8b01522
– ident: ref95/cit95
  doi: 10.7150/thno.22989
– ident: ref117/cit117
  doi: 10.1016/j.jphotobiol.2015.10.025
– ident: ref102/cit102
  doi: 10.1039/C9NR04768A
SSID ssj0002003189
Score 2.5278666
SecondaryResourceType review_article
Snippet Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 349
SubjectTerms Cell Line, Tumor
Nanomedicine
Neoplasms - drug therapy
Photochemotherapy - methods
Photosensitizing Agents - pharmacology
Reactive Oxygen Species
Tissue Distribution
Title Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine
URI http://dx.doi.org/10.1021/acsabm.2c00891
https://www.ncbi.nlm.nih.gov/pubmed/36700563
https://www.proquest.com/docview/2769997650
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA8yX_TB74_5RUTBp84mTZvWtzkcY6AMdLC3kqQpitrK2r3sr_eSdvNjDH0qtJcQ7i65X3OXXxC6FKkMI-Vrh_IocRisjTDnGBgkIVx7KvQDy8B3_xD0hqw_8kdf-x2_M_iUXAtVCPneogqilTmmvkoDmMEGBHUe57sp1DqnwboGQDsAqumMoXGhCxOHVPEzDi0BlzbIdDcrxqPCchOa2pLX1qSULTVdZG78c_xbaKNGmrhducY2WtHZDlr_xj-4i_qdZ1uAh3Vwg9t4MM7B6vAFD57zMi9MbXv5MtVjDCL2lXMLQS_BHeMqYwwrcz7Lze-hYffuqdNz6ssVHOH5UekkNJW-ThLGZUgCP_VY6gWGro-4nnlwDehBK8146CWMujSSgihoI8KUcFd6-6iR5Zk-RJgFRIRupAFbEaYkF1LAP3caqTQiNOVhE12AEuJ6chSxzXtTEleaiWvNNJEzM0isan5yc03G21L5q7n8R8XMsVTyfGbfGNRoMiIi0_mkiCkPACBzQKlNdFAZft6XYbYDdOgd_Wv0x2jNXERvD7u7J6hRjif6FOBKKc-sp34C-Cbhnw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4heBg8AOPXOsbmCSSe0saOEyd7K9VQYS2qBEi8RbbjqIjRTE36wl_P2U3KBqrEniI5F8u5O_u-5M6fAU5kruJEh8ZjIsk8jmsjzjmOBsmoMIGOw8gx8A2vov4tv7wL71ag0-yFwUGU2FPpkvgv7AK0g21SPbaZxqBld6uvIRJh1qW7vevFTxXmfNRCXoujPcTWrCFqfNOFDUe6_DccLcGYLtacb8FoMUpXYvLQnlWqrZ9eETj-x2tsw2aNO0l37igfYcVMdmDjLzbCXbjsjV05HjHRD9Ilo2mBPoB3yGhcVEVpK92r-yczJSjimrwzDIEZ6VnHmRJcp4smU78Ht-c_b3p9rz5qwZNBmFRexnIVmizjQsU0CvOA50FkyfuoH9iLMIgljDZcxEHGmc8SJanGZ2ScU-GrYB9WJ8XEfALCIypjPzGItCjXSkgl8Qs8T3SeUJaLuAXHqIS0nipl6rLgjKZzzaS1ZlrgNXZJdc1Wbg_N-L1U_nQh_2fO07FU8ntj5hTVaPMjcmKKWZkyESFcFohZW3Awt_-iL8tzh1gx-Pyu0X-DD_2b4SAdXFz9OoR1e0S92wbvf4HVajozRwhkKvXVOe8zw5rqAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iIPrg_TKvEQWfOps0bVrf5nTMKwMVfCtJmqCoq6zdy369J1k3vDDQp0J6GtKTk5yvPed8QehIGBknKtQe5UnmMdgbYc0xmJCMcB2oOIwcA9_tXdR-ZFdP4VNVx21rYWAQBfRUuCC-XdUfmakYBsgJtAv5XqcKHJetWJ-xMTtr1o3m_fjHCnV2amGvxdIe4Gs6Imv81YV1Sar47pIm4Eznb1qL6GE8Updm8lrvl7KuBj9IHP_5KktoocKfuDE0mGU0pbsraP4LK-Equmo-u7Q8rKNT3MCdXg62AHdw5zkv88JmvJcvA93DIOKavDNwhRluWgPqYdiv81HEfg09ti4emm2vOnLBE0GYlF5GjQx1ljEuYxKFJmAmiCyJH_EDe-EaMIVWmvE4yBj1aSIFUfCMiA3hvgzW0XQ37-pNhFlEROwnGhAXYUpyIQV8iZtEmYRQw-MaOgQlpNWSKVIXDackHWomrTRTQ95oblJVsZbbwzPeJsofj-U_hnwdEyUPRlOdghptnER0dd4vUsojgM0csGsNbQxtYNyX5bsDzBhs_Wn0-2i2c95Kby7vrrfRnD2p3lXD-ztouuz19S7gmVLuOfv9BIFo7IM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chlorin+e6%3A+A+Promising+Photosensitizer+in+Photo-Based+Cancer+Nanomedicine&rft.jtitle=ACS+applied+bio+materials&rft.au=Hak%2C+Arshadul&rft.au=Ali%2C+Mohammad+Sadik&rft.au=Sankaranarayanan%2C+Sri+Amruthaa&rft.au=Shinde%2C+Vinod+Ravasaheb&rft.date=2023-02-20&rft.eissn=2576-6422&rft.volume=6&rft.issue=2&rft.spage=349&rft_id=info:doi/10.1021%2Facsabm.2c00891&rft_id=info%3Apmid%2F36700563&rft.externalDocID=36700563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon