Lithium Adsorption on Graphene at Finite Temperature

The increasing demand for high-energy-density lithium-ion batteries motivates a search for alternative electrode materials. Experimentally obtained graphene-based structures have been suggested to replace the state-of-the-art graphitic anode. For a thorough characterization of Li adsorption on graph...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 122; no. 36; pp. 20800 - 20808
Main Authors Shaidu, Yusuf, Küçükbenli, Emine, de Gironcoli, Stefano
Format Journal Article
LanguageEnglish
Published American Chemical Society 13.09.2018
Online AccessGet full text

Cover

Loading…
Abstract The increasing demand for high-energy-density lithium-ion batteries motivates a search for alternative electrode materials. Experimentally obtained graphene-based structures have been suggested to replace the state-of-the-art graphitic anode. For a thorough characterization of Li adsorption on graphene, we study the interaction of Li with graphene both at zero and finite temperatures. The zero-temperature study was carried out by means of density functional theory (DFT), accounting for van der Waals (vdW) interactions, whereas the finite temperature behavior was studied by Monte Carlo techniques with a DFT-derived Li–graphene interaction potential constructed via cluster expansion method. Our calculations reveal two distinct types of orderings of Li on graphene, Li-gas (dispersed Li-ion) and Li-cluster phases. The zero-temperature calculations show that, even when vdW is included, the Li–graphene interaction is mainly electrostatic and phase separation to pristine graphene and bulk Li is energetically most favorable. However, at nonzero temperatures, entropy contribution to free energy allows the lesser-ordered Li-gas and Li-cluster states to be more favorable at sufficiently low concentrations: at temperatures below 400 K and concentrations below 1Li:6C, Li-gas and Li-cluster phases coexist whereas at higher concentrations, only clusters remain stable. At temperatures above 400 K, Li-gas phase can be stabilized with respect to Li cluster or Li bulk at higher concentrations. Furthermore, small variations in chemical potential are shown to be enough to change that concentration threshold. Finally, we show that the Li-cluster phases can have Li-island or Li-stripe ordering; however, Li stripes appear due to the finite size of the simulation cell and therefore the Li-island phase is expected to dominate in the thermodynamic limit instead.
AbstractList The increasing demand for high-energy-density lithium-ion batteries motivates a search for alternative electrode materials. Experimentally obtained graphene-based structures have been suggested to replace the state-of-the-art graphitic anode. For a thorough characterization of Li adsorption on graphene, we study the interaction of Li with graphene both at zero and finite temperatures. The zero-temperature study was carried out by means of density functional theory (DFT), accounting for van der Waals (vdW) interactions, whereas the finite temperature behavior was studied by Monte Carlo techniques with a DFT-derived Li–graphene interaction potential constructed via cluster expansion method. Our calculations reveal two distinct types of orderings of Li on graphene, Li-gas (dispersed Li-ion) and Li-cluster phases. The zero-temperature calculations show that, even when vdW is included, the Li–graphene interaction is mainly electrostatic and phase separation to pristine graphene and bulk Li is energetically most favorable. However, at nonzero temperatures, entropy contribution to free energy allows the lesser-ordered Li-gas and Li-cluster states to be more favorable at sufficiently low concentrations: at temperatures below 400 K and concentrations below 1Li:6C, Li-gas and Li-cluster phases coexist whereas at higher concentrations, only clusters remain stable. At temperatures above 400 K, Li-gas phase can be stabilized with respect to Li cluster or Li bulk at higher concentrations. Furthermore, small variations in chemical potential are shown to be enough to change that concentration threshold. Finally, we show that the Li-cluster phases can have Li-island or Li-stripe ordering; however, Li stripes appear due to the finite size of the simulation cell and therefore the Li-island phase is expected to dominate in the thermodynamic limit instead.
Author Shaidu, Yusuf
Küçükbenli, Emine
de Gironcoli, Stefano
AuthorAffiliation The Abdus Salam International Centre for Theoretical Physics
International School for Advanced Studies
AuthorAffiliation_xml – name: International School for Advanced Studies
– name: The Abdus Salam International Centre for Theoretical Physics
Author_xml – sequence: 1
  givenname: Yusuf
  surname: Shaidu
  fullname: Shaidu, Yusuf
  organization: International School for Advanced Studies
– sequence: 2
  givenname: Emine
  surname: Küçükbenli
  fullname: Küçükbenli, Emine
  organization: International School for Advanced Studies
– sequence: 3
  givenname: Stefano
  orcidid: 0000-0002-2307-0998
  surname: de Gironcoli
  fullname: de Gironcoli, Stefano
  email: degironc@sissa.it
  organization: International School for Advanced Studies
BookMark eNp1j81qwzAQhEVJoUnae49-gNpdWZYlHUNokoKhl_QsJHlFHOofJPvQt6_ThN4KC7MwM8t-K7Lo-g4JeaaQUcjpq3ExOw_OZdICL6W6I0uqWJ6KgvPF316IB7KK8QzAGVC2JEXVjKdmapNNHfswjE3fJfPsgxlO2GFixmTXdM2IyRHbAYMZp4CP5N6br4hPN12Tz93bcXtIq4_9-3ZTpYZxNabSgCyNNJKBsTm1KCQgZ6g8rx2zRaGsEMILpCV3HjwFxaxlqkYFTpbA1gSud13oYwzo9RCa1oRvTUFfqPVMrS_U-kY9V16ulV-nn0I3P_h__Ae1QFz7
CitedBy_id crossref_primary_10_1038_s41524_024_01225_6
crossref_primary_10_1021_jacsau_1c00260
crossref_primary_10_1103_PhysRevApplied_12_014001
crossref_primary_10_1063_10_0000698
crossref_primary_10_1016_j_jmgm_2021_107998
crossref_primary_10_1149_1945_7111_ac1210
crossref_primary_10_1016_j_mseb_2021_115061
crossref_primary_10_1063_5_0083852
crossref_primary_10_1103_PRXEnergy_2_023005
crossref_primary_10_1002_er_6027
crossref_primary_10_1039_D4CP01928H
Cites_doi 10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.46.12587
10.1103/PhysRevB.92.075403
10.1021/nl100865a
10.1103/PhysRevB.40.3616
10.1021/acsnano.7b08489
10.1016/j.carbon.2009.03.053
10.1093/biomet/57.1.97
10.1021/nl101223k
10.1016/j.commatsci.2014.07.043
10.1039/C6RA00101G
10.1103/PhysRevB.82.125416
10.1021/am3000962
10.1063/1.3521275
10.1103/PhysRevB.13.5188
10.1021/nl3019164
10.1063/1.3265431
10.1016/0379-6779(94)90306-9
10.1126/science.1102896
10.1021/nl502429m
10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
10.1021/acs.jpcc.6b05458
10.1016/j.carbon.2016.03.016
10.1088/0953-8984/21/39/395502
10.1126/science.270.5236.590
10.1021/jz500199d
10.1103/PhysRev.140.A1133
10.1021/am401548c
10.1126/science.aam5852
10.1103/PhysRev.136.B864
10.1103/PhysRevB.50.17953
10.1021/am506008w
10.1016/0008-6223(75)90040-8
10.1103/PhysRevB.87.041108
10.1103/PhysRev.100.544
10.1063/1.1699114
10.1038/natrevmats.2016.13
10.1021/jp304861d
10.1021/nl800957b
10.1021/ct300042p
10.1103/PhysRevB.77.235430
10.1016/0378-7753(83)87040-2
10.1088/1361-648X/aa8f79
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acs.jpcc.8b05689
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 20808
ExternalDocumentID 10_1021_acs_jpcc_8b05689
b443211802
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
AAYXX
ABJNI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a359t-8a086a8a830ab21be780e53e9f5dc3b449b777f7e165cf0f1093bb39de90c8603
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Fri Aug 23 01:44:02 EDT 2024
Thu Aug 27 13:41:56 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a359t-8a086a8a830ab21be780e53e9f5dc3b449b777f7e165cf0f1093bb39de90c8603
ORCID 0000-0002-2307-0998
OpenAccessLink https://zenodo.org/record/3369619/files/DeGironcoli_JPCC2018.pdf
PageCount 9
ParticipantIDs crossref_primary_10_1021_acs_jpcc_8b05689
acs_journals_10_1021_acs_jpcc_8b05689
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-09-13
PublicationDateYYYYMMDD 2018-09-13
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-13
  day: 13
PublicationDecade 2010
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref30/cit30
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref37/cit37
  doi: 10.1103/PhysRevB.46.12587
– ident: ref34/cit34
  doi: 10.1103/PhysRevB.92.075403
– ident: ref41/cit41
  doi: 10.1021/nl100865a
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.40.3616
– ident: ref11/cit11
  doi: 10.1021/acsnano.7b08489
– ident: ref9/cit9
  doi: 10.1016/j.carbon.2009.03.053
– ident: ref39/cit39
  doi: 10.1093/biomet/57.1.97
– ident: ref7/cit7
  doi: 10.1021/nl101223k
– ident: ref27/cit27
  doi: 10.1016/j.commatsci.2014.07.043
– ident: ref21/cit21
  doi: 10.1039/C6RA00101G
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.82.125416
– ident: ref18/cit18
  doi: 10.1021/am3000962
– ident: ref28/cit28
  doi: 10.1063/1.3521275
– ident: ref31/cit31
  doi: 10.1103/PhysRevB.13.5188
– ident: ref13/cit13
  doi: 10.1021/nl3019164
– ident: ref16/cit16
  doi: 10.1063/1.3265431
– ident: ref36/cit36
  doi: 10.1016/0379-6779(94)90306-9
– ident: ref5/cit5
  doi: 10.1126/science.1102896
– ident: ref10/cit10
  doi: 10.1021/nl502429m
– ident: ref3/cit3
  doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
– ident: ref15/cit15
  doi: 10.1021/acs.jpcc.6b05458
– ident: ref17/cit17
  doi: 10.1016/j.carbon.2016.03.016
– ident: ref25/cit25
  doi: 10.1088/0953-8984/21/39/395502
– ident: ref6/cit6
  doi: 10.1126/science.270.5236.590
– ident: ref20/cit20
  doi: 10.1021/jz500199d
– ident: ref23/cit23
  doi: 10.1103/PhysRev.140.A1133
– ident: ref19/cit19
  doi: 10.1021/am401548c
– ident: ref12/cit12
  doi: 10.1126/science.aam5852
– ident: ref22/cit22
  doi: 10.1103/PhysRev.136.B864
– ident: ref24/cit24
  doi: 10.1103/PhysRevB.50.17953
– ident: ref42/cit42
  doi: 10.1021/am506008w
– ident: ref4/cit4
  doi: 10.1016/0008-6223(75)90040-8
– ident: ref29/cit29
  doi: 10.1103/PhysRevB.87.041108
– ident: ref35/cit35
  doi: 10.1103/PhysRev.100.544
– ident: ref38/cit38
  doi: 10.1063/1.1699114
– ident: ref1/cit1
  doi: 10.1038/natrevmats.2016.13
– ident: ref14/cit14
  doi: 10.1021/jp304861d
– ident: ref8/cit8
  doi: 10.1021/nl800957b
– ident: ref40/cit40
  doi: 10.1021/ct300042p
– ident: ref33/cit33
  doi: 10.1103/PhysRevB.77.235430
– ident: ref2/cit2
  doi: 10.1016/0378-7753(83)87040-2
– ident: ref26/cit26
  doi: 10.1088/1361-648X/aa8f79
SSID ssj0053013
Score 2.3843603
Snippet The increasing demand for high-energy-density lithium-ion batteries motivates a search for alternative electrode materials. Experimentally obtained...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 20800
Title Lithium Adsorption on Graphene at Finite Temperature
URI http://dx.doi.org/10.1021/acs.jpcc.8b05689
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3rxLdYXe9CDh6y7m2STHEuxFlEvttDbkidWsS3d7cVf7-yjWHyAkFMIYTOZne8LM3yD0KVWXkdWCuxJGmGqvMAi1RTbxEurgF-bqqry8SntD-n9iI2-ZHK-Z_CT-EaZPHydGRMKDWAt5DraSAAWy4dWp_u8jLoMHJXUGWRgjJTyJiX52w4lEJl8BYhWEKW3U7cmyishwrKQ5C1cFDo0Hz9lGv_xsbtouyGWQaf2hD205ib7aLO77Od2gOjDuHgZL96Djs2n8ypSBDDuSsVqCHiBKoLeuGSgwcABl661lg_RsHc76PZx0zMBK8JkgYWCN4oSSpBI6STWjovIMeKkZ9YQTanUnHPPXZwy4yNfqklpTaR1MjIijcgRak2mE3eMAqkFN4YpH1sPf3aiiBUKrs5ywlK44za6guNmjc_nWZXOTuKsmgQbZI0N2uh6aehsVkto_Ln25J97nqItYC5V4UZMzlCrmC_cObCDQl9UbvEJkMC1NQ
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VMsDCG1GeGWBgSEniOLbHqqIUKAxQJLbIT1EQBTXpwq_n8iggBBJImazodD6f7z7rzp8BDpV0KjCC-44kgR9Lx32eqNg3kRNGIr7WZVfl1XXSv4sv7ul9A8LZXRhUIkNJWVnE_2QXCE-KscdXrdtcYc7mYg7mKcNkV6Ch7u0s-FL0V1IVkhE4xjGrK5M_SSjykc6-5KMviaW3DDcfKpX9JE_taa7a-u0bW-O_dF6BpRpmep3KL1ahYcdrsNCdve62DvFglD-Mps9ex2QvkzJuePidFfzVGP48mXu9UYFHvaFFZF0xL2_AXe902O379QsKviRU5D6XeGKRXHISSBWFyjIeWEqscNRoouJYKMaYYzZMqHaBK7illCLCWBFongRkE5rjl7HdAk8ozrSm0oXG4T6PJDFc4kIaRmiCK96CI5xuWu-ALC2L21GYloNog7S2QQuOZ_ZOXytCjV__3f6jzANY6A-vBung_PpyBxYR05QtHSHZhWY-mdo9xA252i895R1fT72g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gHrxLb7NQQ8eUpPubnb3WKr1XQRb8Rb2iVWsxaQXf72TNJUiCgo5LWGYzM7jCzP7LcChVl5HVorQkyQKqfIiFImmoa17aRXia1NOVd62k4suvXpkj1PAxmdhUIkMJWVlE7-I6oH1FcNAfFKsPw-MqQmNdVvIaZhlPKZFPDaa9-MEzNBnyaiZjOCRUl51J3-SUNQkk03UpIni0lqChy-1ypmSl9ow1zXz8Y2x8d96L8NiBTeDxsg_VmDK9Vdhvjm-5W0N6E0vf-oNX4OGzd7ey_wR4HNe8FhjGgxUHrR6BS4NOg4R9oiBeR26rbNO8yKsblIIFWEyD4XCPxcllCCR0vVYOy4ix4iTnllDNKVSc849d3HCjI98wTGlNZHWyciIJCIbMNN_67tNCKQW3BimfGw9xntdESsUbqjlhCW481twhJ-bVpGQpWWTux6n5SLaIK1ssAXHY5ungxGxxq_vbv9R5gHM3Z220pvL9vUOLCC0KSc7YrILM_n70O0hfMj1fuksn6JSwBo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+Adsorption+on+Graphene+at+Finite+Temperature&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Shaidu%2C+Yusuf&rft.au=Ku%CC%88c%CC%A7u%CC%88kbenli%2C+Emine&rft.au=de+Gironcoli%2C+Stefano&rft.date=2018-09-13&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=122&rft.issue=36&rft.spage=20800&rft.epage=20808&rft_id=info:doi/10.1021%2Facs.jpcc.8b05689&rft.externalDocID=b443211802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon