3D magnetotelluric inversion with arbitrary data orientation angles
The survey setup of 3D magnetotelluric inversion is typically chosen to best reflect the underlying geological structure. Typically, the individual observation azimuths are distinct from this preferred survey layout orientation; in fact, measured electric and magnetic fields are aligned with local g...
Saved in:
Published in | Computers & geosciences Vol. 188; p. 105596 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The survey setup of 3D magnetotelluric inversion is typically chosen to best reflect the underlying geological structure. Typically, the individual observation azimuths are distinct from this preferred survey layout orientation; in fact, measured electric and magnetic fields are aligned with local geomagnetic North. When that happens, either data preprocessing (rotation) is required before the inversion may be performed, or the orientation of the modeling grid is aligned with the data orientations. None of these approaches is optimal, possibly resulting in a reduction of data quality, the loss of statistical accuracy of the error estimates, or in unnecessary grid cells, resulting in increased computation times. In situations when the data quality may be improved by allowing distinct individual site orientations, such as when cultural noise or faulty instrumentation cause a degradation of one of the modes, data loss due to rotation is especially detrimental. In this paper, we present a modified 3D magnetotelluric inversion algorithm, based on the ModEM software, that allows for direct interpretation of observations with arbitrary data orientation angles (ModEM ADORA). In ModEM ADORA, the modeling responses are rotated to the observation orientation angles after each forward calculation and before the data misfit is evaluated. This allows for direct interpretation of observation data with distinct orientations at each site and (as needed for some historical data) at each frequency. The derivative of the penalty functional is computed by pre-multiplying the derivatives of the data functionals (or the complete Jacobian matrix) by the relevant sparse block-diagonal rotation operators. We describe the principle and implementation of ModEM ADORA, and provide a collection of synthetic and real data tests for validation and an analysis of effectiveness of the ADORA option of ModEM. We show that by decoupling modeling grid and sensor orientations, ModEM ADORA supports both computational efficiency and ease of use, as well as allows for the maximum quality and quantity of inverted data.
•Modeling and observation coordinate systems can now be set arbitrarily for 3D magnetotelluric inversion.•More high-quality data can be incorporated into inversion by choosing optimal data orientation.•Solve for fewer inversion model parameters by rotating the modeling coordinate system to site distribution.•Free for academic use. |
---|---|
AbstractList | The survey setup of 3D magnetotelluric inversion is typically chosen to best reflect the underlying geological structure. Typically, the individual observation azimuths are distinct from this preferred survey layout orientation; in fact, measured electric and magnetic fields are aligned with local geomagnetic North. When that happens, either data preprocessing (rotation) is required before the inversion may be performed, or the orientation of the modeling grid is aligned with the data orientations. None of these approaches is optimal, possibly resulting in a reduction of data quality, the loss of statistical accuracy of the error estimates, or in unnecessary grid cells, resulting in increased computation times. In situations when the data quality may be improved by allowing distinct individual site orientations, such as when cultural noise or faulty instrumentation cause a degradation of one of the modes, data loss due to rotation is especially detrimental. In this paper, we present a modified 3D magnetotelluric inversion algorithm, based on the ModEM software, that allows for direct interpretation of observations with arbitrary data orientation angles (ModEM ADORA). In ModEM ADORA, the modeling responses are rotated to the observation orientation angles after each forward calculation and before the data misfit is evaluated. This allows for direct interpretation of observation data with distinct orientations at each site and (as needed for some historical data) at each frequency. The derivative of the penalty functional is computed by pre-multiplying the derivatives of the data functionals (or the complete Jacobian matrix) by the relevant sparse block-diagonal rotation operators. We describe the principle and implementation of ModEM ADORA, and provide a collection of synthetic and real data tests for validation and an analysis of effectiveness of the ADORA option of ModEM. We show that by decoupling modeling grid and sensor orientations, ModEM ADORA supports both computational efficiency and ease of use, as well as allows for the maximum quality and quantity of inverted data.
•Modeling and observation coordinate systems can now be set arbitrarily for 3D magnetotelluric inversion.•More high-quality data can be incorporated into inversion by choosing optimal data orientation.•Solve for fewer inversion model parameters by rotating the modeling coordinate system to site distribution.•Free for academic use. The survey setup of 3D magnetotelluric inversion is typically chosen to best reflect the underlying geological structure. Typically, the individual observation azimuths are distinct from this preferred survey layout orientation; in fact, measured electric and magnetic fields are aligned with local geomagnetic North. When that happens, either data preprocessing (rotation) is required before the inversion may be performed, or the orientation of the modeling grid is aligned with the data orientations. None of these approaches is optimal, possibly resulting in a reduction of data quality, the loss of statistical accuracy of the error estimates, or in unnecessary grid cells, resulting in increased computation times. In situations when the data quality may be improved by allowing distinct individual site orientations, such as when cultural noise or faulty instrumentation cause a degradation of one of the modes, data loss due to rotation is especially detrimental. In this paper, we present a modified 3D magnetotelluric inversion algorithm, based on the ModEM software, that allows for direct interpretation of observations with arbitrary data orientation angles (ModEM ADORA). In ModEM ADORA, the modeling responses are rotated to the observation orientation angles after each forward calculation and before the data misfit is evaluated. This allows for direct interpretation of observation data with distinct orientations at each site and (as needed for some historical data) at each frequency. The derivative of the penalty functional is computed by pre-multiplying the derivatives of the data functionals (or the complete Jacobian matrix) by the relevant sparse block-diagonal rotation operators. We describe the principle and implementation of ModEM ADORA, and provide a collection of synthetic and real data tests for validation and an analysis of effectiveness of the ADORA option of ModEM. We show that by decoupling modeling grid and sensor orientations, ModEM ADORA supports both computational efficiency and ease of use, as well as allows for the maximum quality and quantity of inverted data. |
ArticleNumber | 105596 |
Author | Liu, Zhongyin Chen, Xiaobin Kelbert, Anna |
Author_xml | – sequence: 1 givenname: Zhongyin orcidid: 0000-0002-4019-5354 surname: Liu fullname: Liu, Zhongyin email: liuzhongyin1990@hotmail.com organization: Institute of Geology, China Earthquake Administration, Huayanli A1, Chaoyang District, Beijing, 100029, Beijing, China – sequence: 2 givenname: Anna orcidid: 0000-0003-4395-398X surname: Kelbert fullname: Kelbert, Anna email: akelbert@usgs.gov organization: Geomagnetism Program, U.S. Geological Survey, 1711 Illinois St., Golden, 80401, CO, United States – sequence: 3 givenname: Xiaobin orcidid: 0000-0003-2584-0551 surname: Chen fullname: Chen, Xiaobin email: cxb@pku.edu.cn organization: Institute of Geology, China Earthquake Administration, Huayanli A1, Chaoyang District, Beijing, 100029, Beijing, China |
BookMark | eNqFkD1PwzAQhj0UibbwC1gysqQ4cWzigQGVTwmJBWbrYl-Kq9QutlvEv8clTAwwnXT3Pqe7Z0Ymzjsk5Kyii4pW4mK90LBCv6hp3eQO51JMyJRS2ZaM0uaYzGJcU0rruuVTsmQ3xQZWDpNPOAy7YHVh3R5DtN4VHza9FRA6mwKEz8JAgsIHiy5BOszBrQaMJ-SohyHi6U-dk9e725flQ_n0fP-4vH4qgXGZSgFUNDVWKHvNgZmmb2tGu64D2vSs1g3XpgJsjJEgu54J1jIQIOSl0KYDZHNyPu7dBv--w5jUxkadrwaHfhcVq3iGGGt5jsoxqoOPMWCvtB1vzp_YQVVUHWSptfqWpQ6y1Cgrs-wXuw12k___h7oaKcwG9haDijqL0mhsQJ2U8fZP_gtAq4nJ |
CitedBy_id | crossref_primary_10_3389_feart_2024_1527559 |
Cites_doi | 10.1029/JB094iB10p14127 10.1093/gji/ggv270 10.1130/0091-7613(1997)025<0359:ISOTSA>2.3.CO;2 10.1016/j.pepi.2004.08.023 10.1038/nature04154 10.1093/gji/ggu121 10.1029/2020JB019731 10.1046/j.1365-246x.2000.00007.x 10.1190/1.1442984 10.1029/2021GL097394 10.1190/1.1440527 10.1007/s10712-013-9234-2 10.1016/j.epsl.2016.07.043 10.1111/j.1365-246X.1993.tb05600.x 10.1038/nature08204 10.1088/0266-5611/16/5/311 10.1190/1.1442228 10.1093/gji/ggz427 10.1130/G33703.1 10.1190/1.1441383 10.1002/2016GL071855 10.1130/G32655.1 10.1126/science.1010580 10.1109/5.18628 10.1111/j.1365-246X.2011.05347.x 10.1046/j.1365-246x.2001.00292.x 10.1002/2016GL070469 10.1111/j.1365-246X.2004.02281.x 10.1029/94RS00326 10.1007/s10712-019-09579-z 10.1016/j.cageo.2014.01.010 10.1126/science.274.5293.1684 10.1038/ngeo830 10.1016/j.epsl.2013.12.026 10.1016/j.epsl.2016.07.036 10.1190/geo2018-0679.1 10.1016/j.pepi.2009.01.013 10.1038/s41561-018-0217-2 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.cageo.2024.105596 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
ExternalDocumentID | 10_1016_j_cageo_2024_105596 S0098300424000797 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACNNM ACRLP ACRPL ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMA HVGLF HZ~ IHE IMUCA J1W KOM LG9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSH SSV SSZ T5K TN5 WUQ ZCA ZMT ~02 ~G- AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-a359t-6a0642e1e9fc5a3d4f8230bbba04f32c45cd1ae4dd9a9bf36383a6a6976cdbae3 |
IEDL.DBID | .~1 |
ISSN | 0098-3004 |
IngestDate | Wed Jul 02 03:20:42 EDT 2025 Tue Jul 01 02:26:51 EDT 2025 Thu Apr 24 23:08:04 EDT 2025 Sun Apr 06 06:53:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Magnetotellurics Data functional Jacobian matrix Tensor rotation 3D inversion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a359t-6a0642e1e9fc5a3d4f8230bbba04f32c45cd1ae4dd9a9bf36383a6a6976cdbae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2584-0551 0000-0002-4019-5354 0000-0003-4395-398X |
PQID | 3153633385 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153633385 crossref_citationtrail_10_1016_j_cageo_2024_105596 crossref_primary_10_1016_j_cageo_2024_105596 elsevier_sciencedirect_doi_10_1016_j_cageo_2024_105596 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 20240601 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Computers & geosciences |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kelbert (b18) 2019; 85 Samrock, Kuvshinov, Bakker, Jackson, Fisseha (b35) 2015; 202 Unsworth, Malin, Egbert, Booker (b45) 1997; 25 Siripunvaraporn, Egbert, Lenbury, Uyeshima (b39) 2005; 150 Chen (b8) 2003 Newman, Alumbaugh (b32) 2000; 140 Cai, Chen, Xu, Tang, Wang, Guo, Han, Dong (b4) 2017; 44 Bedrosian, Peacock, Bowles-Martinez, Schultz, Hill (b2) 2018; 11 Jiang, Chen, Unsworth, Cai, Han, Wang, Dong, Cui, Zhan, Zhao, Tang (b17) 2022; 49 Farquharson, Oldenburg, Haber, Shekhtman (b14) 2002 Holtham, Oldenburg (b16) 2010; 182 Kelbert, Egbert, deGroot-Hedlin (b21) 2012; 40 Roberts, Ferguson, Craven, Kurtz, Boerner, Spratt (b33) 1984 Love, Pulkkinen, Bedrosian, Jonas, Kelbert, Rigler, Finn, Balch, Rutledge, Waggel, Sabata, Kozyra, Black (b26) 2016; 43 Siripunvaraporn, Egbert (b38) 2009; 173 Egbert, Kelbert (b11) 2012; 189 Kelbert, Bedrosian, Murphy (b20) 2019 LaTorraca, Madden, Korringa (b24) 1986; 51 Wannamaker, Booker, Jones, Chave, Filloux, Waff, Law (b47) 1989; 94 Wannamaker, Caldwell, Jiracek, Maris, Hill, Ogawa, Bibby, Bennie, Heise (b48) 2009; 460 Lee, Unsworth, Árnason, Cordell (b25) 2020; 220 Mackie, Smith, Madden (b28) 1994; 29 Sun, Zhan, Unsworth, Egbert, Zhang, Chen, Zhao, Sun, Zhao, Cui, Liu, Han (b41) 2020; 125 Kelbert, Meqbel, Egbert, Tandon (b23) 2014; 66 Robertson, Heinson, Thiel (b34) 2016; 452 Tan, Yu, Booker, Wei (b42) 2003; 46 Booker (b3) 2014; 35 Sims, Bostick, Jr. (b37) 1969 Kelbert, Egbert, Schultz (b22) 2011 Cui, Chen, Zhan, Zhao, Liu (b9) 2020; 63 Bai, Unsworth, Meju, Ma, Teng, Kong, Sun, Sun, Wang, Jiang, Zhao, Xiao, Liu (b1) 2010; 3 Tietze (b43) 2012 Hohmann (b15) 1975; 40 Eggers (b12) 1982; 47 Dong, Wei, Jin, Ye, Zhang, Yin, Xie, Jones (b10) 2016; 454 Eisel, Egbert (b13) 2001; 144 Madden, Mackie (b29) 1989; 77 Zhao, Unsworth, Zhan, Wang, Chen, Jones, Tang, Xiao, Wang, Cai, Li, Wang, Zhang (b50) 2012; 40 Chave, Jones (b7) 2012 Unsworth, Jones, Wei, Marquis, Gokarn, Spratt (b44) 2005; 438 Kelbert (b19) 2019; 41 Chave (b6) 2014; 198 Mackie, Madden (b27) 1993; 115 Soyer, W., Mackie, R., Hallinan, S., Miorelli, F., Pavesi, A., Garanzini, S., 2020. RLM-3D Multiphysics Inversion Modeling: De-Risking Resource Concept Models. In: PROCEEDINGS, 45th Workshop on Geothermal Reservoir Engineering. Stanford, California. Caldwell, Bibby, Brown (b5) 2004; 158 Zhdanov, Hursan (b51) 2000; 16 Meqbel, Egbert, Wannamaker, Kelbert, Schultz (b30) 2014; 402 Wei, Unsworth, Jones, Booker, Tan, Nelson, Chen, Li, Solon, Bedrosian, Jin, Deng, Ledo, Kay, Roberts (b49) 2001; 292 Nelson, Zhao, Brown, Kuo, Che, Liu, Klemperer, Makovsky, Meissner, Mechie, Kind, Wenzel, Ni, Nabelek, Leshou, Tan, Wei, Jones, Booker, Unsworth, Kidd, Hauck, Alsdorf, Ross, Cogan, Wu, Sandvol, Edwards (b31) 1996; 274 Schultz, Egbert, Kelbert, Peery, Clote, Fry, Erofeeva, staff of the National Geoelectromagnetic Facility (b36) 2006–2018 Wannamaker (b46) 1991; 56 Holtham (10.1016/j.cageo.2024.105596_b16) 2010; 182 LaTorraca (10.1016/j.cageo.2024.105596_b24) 1986; 51 Kelbert (10.1016/j.cageo.2024.105596_b19) 2019; 41 Chave (10.1016/j.cageo.2024.105596_b7) 2012 Kelbert (10.1016/j.cageo.2024.105596_b23) 2014; 66 10.1016/j.cageo.2024.105596_b40 Robertson (10.1016/j.cageo.2024.105596_b34) 2016; 452 Mackie (10.1016/j.cageo.2024.105596_b27) 1993; 115 Mackie (10.1016/j.cageo.2024.105596_b28) 1994; 29 Tietze (10.1016/j.cageo.2024.105596_b43) 2012 Madden (10.1016/j.cageo.2024.105596_b29) 1989; 77 Zhao (10.1016/j.cageo.2024.105596_b50) 2012; 40 Zhdanov (10.1016/j.cageo.2024.105596_b51) 2000; 16 Chen (10.1016/j.cageo.2024.105596_b8) 2003 Wannamaker (10.1016/j.cageo.2024.105596_b46) 1991; 56 Farquharson (10.1016/j.cageo.2024.105596_b14) 2002 Hohmann (10.1016/j.cageo.2024.105596_b15) 1975; 40 Jiang (10.1016/j.cageo.2024.105596_b17) 2022; 49 Siripunvaraporn (10.1016/j.cageo.2024.105596_b38) 2009; 173 Lee (10.1016/j.cageo.2024.105596_b25) 2020; 220 Siripunvaraporn (10.1016/j.cageo.2024.105596_b39) 2005; 150 Cai (10.1016/j.cageo.2024.105596_b4) 2017; 44 Sun (10.1016/j.cageo.2024.105596_b41) 2020; 125 Eisel (10.1016/j.cageo.2024.105596_b13) 2001; 144 Dong (10.1016/j.cageo.2024.105596_b10) 2016; 454 Egbert (10.1016/j.cageo.2024.105596_b11) 2012; 189 Schultz (10.1016/j.cageo.2024.105596_b36) 2006 Meqbel (10.1016/j.cageo.2024.105596_b30) 2014; 402 Bai (10.1016/j.cageo.2024.105596_b1) 2010; 3 Roberts (10.1016/j.cageo.2024.105596_b33) 1984 Kelbert (10.1016/j.cageo.2024.105596_b21) 2012; 40 Kelbert (10.1016/j.cageo.2024.105596_b20) 2019 Wannamaker (10.1016/j.cageo.2024.105596_b47) 1989; 94 Unsworth (10.1016/j.cageo.2024.105596_b45) 1997; 25 Eggers (10.1016/j.cageo.2024.105596_b12) 1982; 47 Caldwell (10.1016/j.cageo.2024.105596_b5) 2004; 158 Nelson (10.1016/j.cageo.2024.105596_b31) 1996; 274 Bedrosian (10.1016/j.cageo.2024.105596_b2) 2018; 11 Newman (10.1016/j.cageo.2024.105596_b32) 2000; 140 Sims (10.1016/j.cageo.2024.105596_b37) 1969 Wannamaker (10.1016/j.cageo.2024.105596_b48) 2009; 460 Cui (10.1016/j.cageo.2024.105596_b9) 2020; 63 Kelbert (10.1016/j.cageo.2024.105596_b22) 2011 Kelbert (10.1016/j.cageo.2024.105596_b18) 2019; 85 Booker (10.1016/j.cageo.2024.105596_b3) 2014; 35 Unsworth (10.1016/j.cageo.2024.105596_b44) 2005; 438 Wei (10.1016/j.cageo.2024.105596_b49) 2001; 292 Love (10.1016/j.cageo.2024.105596_b26) 2016; 43 Samrock (10.1016/j.cageo.2024.105596_b35) 2015; 202 Chave (10.1016/j.cageo.2024.105596_b6) 2014; 198 Tan (10.1016/j.cageo.2024.105596_b42) 2003; 46 |
References_xml | – volume: 77 start-page: 318 year: 1989 end-page: 333 ident: b29 article-title: Three-dimensional magnetotelluric modelling and inversion publication-title: Proc. IEEE – volume: 29 start-page: 923 year: 1994 end-page: 935 ident: b28 article-title: Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example publication-title: Radio Sci. – volume: 41 start-page: 115 year: 2019 end-page: 166 ident: b19 article-title: The role of global/regional earth conductivity models in natural geomagnetic hazard mitigation publication-title: Surv. Geophys. – volume: 460 start-page: 733 year: 2009 end-page: 736 ident: b48 article-title: Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand publication-title: Nature – volume: 40 start-page: 309 year: 1975 end-page: 324 ident: b15 article-title: Three-dimensional induced polarization and electromagnetic modeling publication-title: Geophysics – start-page: 7 year: 2012 end-page: 9 ident: b7 article-title: The Magnetotelluric Method: Theory and Practice – volume: 125 year: 2020 ident: b41 article-title: 3-D magnetotelluric imaging of the easternmost Kunlun fault: Insights into strain partitioning and the seismotectonics of the Jiuzhaigou Ms7.0 earthquake publication-title: J. Geophys. Res.: Solid Earth – volume: 47 start-page: 1204 year: 1982 end-page: 1214 ident: b12 article-title: An eigenstate formulation of the magnetotelluric impedance tensor publication-title: Geophysics – year: 2011 ident: b22 article-title: IRIS DMC Data Services Products: EMTF, The Magnetotelluric Transfer Functions – volume: 202 start-page: 1923 year: 2015 end-page: 1948 ident: b35 article-title: 3-d analysis and interpretation of magnetotelluric data from the Aluto-Langano geothermal field, Ethiopia publication-title: Geophys. J. Int. – start-page: 28 year: 2003 end-page: 29 ident: b8 article-title: New Forward and Inversion Algorithms and a Visual Integrated System for MT Data – start-page: 182 year: 2012 ident: b43 article-title: Investigating the Electrical Conductivity Structure of the San Andreas Fault System in the Parkfield-Cholame Region, Central California, with 3D Magnetotelluric Inversion – volume: 292 start-page: 716 year: 2001 end-page: 719 ident: b49 article-title: Detection of widespread fluids in the Tibetan crust by magnetotelluric studies publication-title: Science – volume: 11 start-page: 865 year: 2018 end-page: 870 ident: b2 article-title: Crustal inheritance and a top-down control on arc magmatism at Mount St Helens publication-title: Nat. Geosci. – start-page: 649 year: 2002 end-page: 652 ident: b14 article-title: An algorithm for the three-dimensional inversion of magnetotelluric data publication-title: SEG Technical Program Expanded Abstracts 2002 – volume: 144 start-page: 65 year: 2001 end-page: 82 ident: b13 article-title: On the stability of magnetotelluric transfer function estimates and the reliability of their variances publication-title: Geophys. J. Int. – volume: 158 start-page: 457 year: 2004 end-page: 469 ident: b5 article-title: The magnetotelluric phase tensor publication-title: Geophys. J. Int. – volume: 44 year: 2017 ident: b4 article-title: Rupture mechanism and seismotectonics of the Ms6.5 Ludian earthquake inferred from three-dimensional magnetotelluric imaging publication-title: Geophys. Res. Lett. – volume: 438 start-page: 78 year: 2005 end-page: 81 ident: b44 article-title: Crustal rheology of the Himalaya and southern Tibet inferred from magnetotelluric data publication-title: Nature – volume: 454 start-page: 78 year: 2016 end-page: 85 ident: b10 article-title: Extensional extrusion: Insights into south-eastward expansion of Tibetan Plateau from magnetotelluric array data publication-title: Earth Planet. Sci. Lett. – volume: 63 start-page: 256 year: 2020 end-page: 269 ident: b9 article-title: Characteristics of deep electrical structure and seismogenic structure beneath Anhui Huoshan earthquake area(in Chinese) publication-title: Chin. J. Geophys. – volume: 189 start-page: 251 year: 2012 end-page: 267 ident: b11 article-title: Computational recipes for electromagnetic inverse problems publication-title: Geophys. J. Int. – volume: 51 start-page: 1819 year: 1986 end-page: 1829 ident: b24 article-title: An analysis of the magnetotelluric impedance for three-dimensional conductivity structures publication-title: Geophysics – volume: 173 start-page: 317 year: 2009 end-page: 329 ident: b38 article-title: WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation publication-title: Phys. Earth Planet. Inter. – volume: 35 start-page: 7 year: 2014 end-page: 40 ident: b3 article-title: The magnetotelluric phase tensor: A critical review publication-title: Surv. Geophys. – volume: 198 start-page: 622 year: 2014 end-page: 636 ident: b6 article-title: Magnetotelluric data, stable distributions and impropriety: An existential combination publication-title: Geophys. J. Int. – volume: 115 start-page: 215 year: 1993 end-page: 229 ident: b27 article-title: Three-dimensional magnetotelluric inversion using conjugate gradients publication-title: Geophys. J. Int. – volume: 43 start-page: 9415 year: 2016 end-page: 9424 ident: b26 article-title: Geoelectric hazard maps for the continental United States publication-title: Geophys. Res. Lett. – volume: 49 year: 2022 ident: b17 article-title: Mechanism for the uplift of Gongga Shan in the southeastern Tibetan Plateau constrained by 3D magnetotelluric data publication-title: Geophys. Res. Lett. – volume: 452 start-page: 27 year: 2016 end-page: 35 ident: b34 article-title: Lithospheric reworking at the proterozoic–phanerozoic transition of Australia imaged using AusLAMP magnetotelluric data publication-title: Earth Planet. Sci. Lett. – volume: 220 start-page: 541 year: 2020 end-page: 567 ident: b25 article-title: Imaging the magmatic system beneath the Krafla geothermal field, Iceland: A new 3-D electrical resistivity model from inversion of magnetotelluric data publication-title: Geophys. J. Int. – volume: 150 start-page: 3 year: 2005 end-page: 14 ident: b39 article-title: Three-dimensional magnetotelluric inversion: Data-space method publication-title: Phys. Earth Planet. Inter. – volume: 3 start-page: 358 year: 2010 end-page: 362 ident: b1 article-title: Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging publication-title: Nat. Geosci. – volume: 140 start-page: 410 year: 2000 end-page: 424 ident: b32 article-title: Three-dimensional magnetotelluric inversion using non-linear conjugate gradients publication-title: Geophys. J. Int. – volume: 182 start-page: 168 year: 2010 end-page: 182 ident: b16 article-title: Three-dimensional inversion of ZTEM data publication-title: Geophys. J. Int. – volume: 40 start-page: 447 year: 2012 end-page: 450 ident: b21 article-title: Crust and upper mantle electrical conductivity beneath the Yellowstone Hotspot Track publication-title: Geology – volume: 46 start-page: 705 year: 2003 end-page: 711 ident: b42 article-title: Magnetotelluric three-dimensional modeling using the staggered-grid fnite difference method(in Chinese) publication-title: Chin. J. Geophys. – year: 2006–2018 ident: b36 article-title: USArray TA magnetotelluric transfer functions – reference: Soyer, W., Mackie, R., Hallinan, S., Miorelli, F., Pavesi, A., Garanzini, S., 2020. RLM-3D Multiphysics Inversion Modeling: De-Risking Resource Concept Models. In: PROCEEDINGS, 45th Workshop on Geothermal Reservoir Engineering. Stanford, California. – volume: 402 start-page: 290 year: 2014 end-page: 304 ident: b30 article-title: Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data publication-title: Earth Planet. Sci. Lett. – volume: 40 start-page: 1139 year: 2012 end-page: 1142 ident: b50 article-title: Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 Earthquake Epicentral Area from magnetotelluric data publication-title: Geology – start-page: 127 year: 2019 end-page: 151 ident: b20 article-title: The first 3D conductivity model of the contiguous United States publication-title: Geomagnetically Induced Currents from the Sun To the Power Grid – volume: 94 start-page: 14127 year: 1989 end-page: 14144 ident: b47 article-title: Resistivity cross section through the Juan de Fuca subduction system and its tectonic implications publication-title: J. Geophys. Res.: Solid Earth – volume: 16 start-page: 1297 year: 2000 end-page: 1322 ident: b51 article-title: 3D electromagnetic inversion based on quasi-analytical approximation publication-title: Inverse Problems – volume: 66 start-page: 40 year: 2014 end-page: 53 ident: b23 article-title: ModEM: A modular system for inversion of electromagnetic geophysical data publication-title: Comput. Geosci. – volume: 25 start-page: 359 year: 1997 end-page: 362 ident: b45 article-title: Internal structure of the San Andreas fault at Parkfield, California publication-title: Geology – volume: 85 start-page: F1 year: 2019 end-page: F17 ident: b18 article-title: EMTF XML: New data interchange format and conversion tools for electromagnetic transfer functions publication-title: Geophysics – year: 1984 ident: b33 article-title: Lithoprobe Magnetotelluric Transfer Functions in Western Superior Province, Canada – year: 1969 ident: b37 article-title: Methods of Magnetotelluric Analysis – volume: 274 start-page: 1684 year: 1996 end-page: 1688 ident: b31 article-title: Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results publication-title: Science – volume: 56 start-page: 1716 year: 1991 end-page: 1728 ident: b46 article-title: Advances in three-dimensional magnetotelluric modeling using integral equations publication-title: Geophysics – volume: 94 start-page: 14127 issue: B10 year: 1989 ident: 10.1016/j.cageo.2024.105596_b47 article-title: Resistivity cross section through the Juan de Fuca subduction system and its tectonic implications publication-title: J. Geophys. Res.: Solid Earth doi: 10.1029/JB094iB10p14127 – start-page: 649 year: 2002 ident: 10.1016/j.cageo.2024.105596_b14 article-title: An algorithm for the three-dimensional inversion of magnetotelluric data – volume: 202 start-page: 1923 issue: 3 year: 2015 ident: 10.1016/j.cageo.2024.105596_b35 article-title: 3-d analysis and interpretation of magnetotelluric data from the Aluto-Langano geothermal field, Ethiopia publication-title: Geophys. J. Int. doi: 10.1093/gji/ggv270 – start-page: 127 year: 2019 ident: 10.1016/j.cageo.2024.105596_b20 article-title: The first 3D conductivity model of the contiguous United States – volume: 25 start-page: 359 issue: 4 year: 1997 ident: 10.1016/j.cageo.2024.105596_b45 article-title: Internal structure of the San Andreas fault at Parkfield, California publication-title: Geology doi: 10.1130/0091-7613(1997)025<0359:ISOTSA>2.3.CO;2 – volume: 150 start-page: 3 issue: 1–3 year: 2005 ident: 10.1016/j.cageo.2024.105596_b39 article-title: Three-dimensional magnetotelluric inversion: Data-space method publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2004.08.023 – volume: 438 start-page: 78 issue: 7064 year: 2005 ident: 10.1016/j.cageo.2024.105596_b44 article-title: Crustal rheology of the Himalaya and southern Tibet inferred from magnetotelluric data publication-title: Nature doi: 10.1038/nature04154 – volume: 198 start-page: 622 issue: 1 year: 2014 ident: 10.1016/j.cageo.2024.105596_b6 article-title: Magnetotelluric data, stable distributions and impropriety: An existential combination publication-title: Geophys. J. Int. doi: 10.1093/gji/ggu121 – volume: 125 issue: 5 year: 2020 ident: 10.1016/j.cageo.2024.105596_b41 article-title: 3-D magnetotelluric imaging of the easternmost Kunlun fault: Insights into strain partitioning and the seismotectonics of the Jiuzhaigou Ms7.0 earthquake publication-title: J. Geophys. Res.: Solid Earth doi: 10.1029/2020JB019731 – volume: 140 start-page: 410 issue: 2 year: 2000 ident: 10.1016/j.cageo.2024.105596_b32 article-title: Three-dimensional magnetotelluric inversion using non-linear conjugate gradients publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246x.2000.00007.x – volume: 56 start-page: 1716 issue: 11 year: 1991 ident: 10.1016/j.cageo.2024.105596_b46 article-title: Advances in three-dimensional magnetotelluric modeling using integral equations publication-title: Geophysics doi: 10.1190/1.1442984 – volume: 49 issue: 9 year: 2022 ident: 10.1016/j.cageo.2024.105596_b17 article-title: Mechanism for the uplift of Gongga Shan in the southeastern Tibetan Plateau constrained by 3D magnetotelluric data publication-title: Geophys. Res. Lett. doi: 10.1029/2021GL097394 – volume: 40 start-page: 309 issue: 2 year: 1975 ident: 10.1016/j.cageo.2024.105596_b15 article-title: Three-dimensional induced polarization and electromagnetic modeling publication-title: Geophysics doi: 10.1190/1.1440527 – volume: 35 start-page: 7 year: 2014 ident: 10.1016/j.cageo.2024.105596_b3 article-title: The magnetotelluric phase tensor: A critical review publication-title: Surv. Geophys. doi: 10.1007/s10712-013-9234-2 – volume: 63 start-page: 256 issue: 01 year: 2020 ident: 10.1016/j.cageo.2024.105596_b9 article-title: Characteristics of deep electrical structure and seismogenic structure beneath Anhui Huoshan earthquake area(in Chinese) publication-title: Chin. J. Geophys. – volume: 454 start-page: 78 year: 2016 ident: 10.1016/j.cageo.2024.105596_b10 article-title: Extensional extrusion: Insights into south-eastward expansion of Tibetan Plateau from magnetotelluric array data publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2016.07.043 – year: 2006 ident: 10.1016/j.cageo.2024.105596_b36 – year: 1984 ident: 10.1016/j.cageo.2024.105596_b33 – start-page: 182 year: 2012 ident: 10.1016/j.cageo.2024.105596_b43 – volume: 115 start-page: 215 issue: 1 year: 1993 ident: 10.1016/j.cageo.2024.105596_b27 article-title: Three-dimensional magnetotelluric inversion using conjugate gradients publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1993.tb05600.x – volume: 460 start-page: 733 issue: 7256 year: 2009 ident: 10.1016/j.cageo.2024.105596_b48 article-title: Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand publication-title: Nature doi: 10.1038/nature08204 – volume: 16 start-page: 1297 issue: 5 year: 2000 ident: 10.1016/j.cageo.2024.105596_b51 article-title: 3D electromagnetic inversion based on quasi-analytical approximation publication-title: Inverse Problems doi: 10.1088/0266-5611/16/5/311 – volume: 51 start-page: 1819 issue: 9 year: 1986 ident: 10.1016/j.cageo.2024.105596_b24 article-title: An analysis of the magnetotelluric impedance for three-dimensional conductivity structures publication-title: Geophysics doi: 10.1190/1.1442228 – volume: 220 start-page: 541 issue: 1 year: 2020 ident: 10.1016/j.cageo.2024.105596_b25 article-title: Imaging the magmatic system beneath the Krafla geothermal field, Iceland: A new 3-D electrical resistivity model from inversion of magnetotelluric data publication-title: Geophys. J. Int. doi: 10.1093/gji/ggz427 – volume: 40 start-page: 1139 issue: 12 year: 2012 ident: 10.1016/j.cageo.2024.105596_b50 article-title: Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 Earthquake Epicentral Area from magnetotelluric data publication-title: Geology doi: 10.1130/G33703.1 – volume: 47 start-page: 1204 issue: 8 year: 1982 ident: 10.1016/j.cageo.2024.105596_b12 article-title: An eigenstate formulation of the magnetotelluric impedance tensor publication-title: Geophysics doi: 10.1190/1.1441383 – volume: 44 issue: 3 year: 2017 ident: 10.1016/j.cageo.2024.105596_b4 article-title: Rupture mechanism and seismotectonics of the Ms6.5 Ludian earthquake inferred from three-dimensional magnetotelluric imaging publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL071855 – volume: 182 start-page: 168 issue: 1 year: 2010 ident: 10.1016/j.cageo.2024.105596_b16 article-title: Three-dimensional inversion of ZTEM data publication-title: Geophys. J. Int. – volume: 40 start-page: 447 issue: 5 year: 2012 ident: 10.1016/j.cageo.2024.105596_b21 article-title: Crust and upper mantle electrical conductivity beneath the Yellowstone Hotspot Track publication-title: Geology doi: 10.1130/G32655.1 – volume: 292 start-page: 716 issue: 5517 year: 2001 ident: 10.1016/j.cageo.2024.105596_b49 article-title: Detection of widespread fluids in the Tibetan crust by magnetotelluric studies publication-title: Science doi: 10.1126/science.1010580 – volume: 77 start-page: 318 issue: 2 year: 1989 ident: 10.1016/j.cageo.2024.105596_b29 article-title: Three-dimensional magnetotelluric modelling and inversion publication-title: Proc. IEEE doi: 10.1109/5.18628 – volume: 189 start-page: 251 issue: 1 year: 2012 ident: 10.1016/j.cageo.2024.105596_b11 article-title: Computational recipes for electromagnetic inverse problems publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2011.05347.x – volume: 144 start-page: 65 issue: 1 year: 2001 ident: 10.1016/j.cageo.2024.105596_b13 article-title: On the stability of magnetotelluric transfer function estimates and the reliability of their variances publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246x.2001.00292.x – volume: 46 start-page: 705 issue: 5 year: 2003 ident: 10.1016/j.cageo.2024.105596_b42 article-title: Magnetotelluric three-dimensional modeling using the staggered-grid fnite difference method(in Chinese) publication-title: Chin. J. Geophys. – volume: 43 start-page: 9415 issue: 18 year: 2016 ident: 10.1016/j.cageo.2024.105596_b26 article-title: Geoelectric hazard maps for the continental United States publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL070469 – volume: 158 start-page: 457 issue: 2 year: 2004 ident: 10.1016/j.cageo.2024.105596_b5 article-title: The magnetotelluric phase tensor publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2004.02281.x – volume: 29 start-page: 923 issue: 4 year: 1994 ident: 10.1016/j.cageo.2024.105596_b28 article-title: Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example publication-title: Radio Sci. doi: 10.1029/94RS00326 – year: 1969 ident: 10.1016/j.cageo.2024.105596_b37 – year: 2011 ident: 10.1016/j.cageo.2024.105596_b22 – volume: 41 start-page: 115 year: 2019 ident: 10.1016/j.cageo.2024.105596_b19 article-title: The role of global/regional earth conductivity models in natural geomagnetic hazard mitigation publication-title: Surv. Geophys. doi: 10.1007/s10712-019-09579-z – volume: 66 start-page: 40 year: 2014 ident: 10.1016/j.cageo.2024.105596_b23 article-title: ModEM: A modular system for inversion of electromagnetic geophysical data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2014.01.010 – volume: 274 start-page: 1684 issue: 5293 year: 1996 ident: 10.1016/j.cageo.2024.105596_b31 article-title: Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results publication-title: Science doi: 10.1126/science.274.5293.1684 – volume: 3 start-page: 358 issue: 5 year: 2010 ident: 10.1016/j.cageo.2024.105596_b1 article-title: Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging publication-title: Nat. Geosci. doi: 10.1038/ngeo830 – volume: 402 start-page: 290 year: 2014 ident: 10.1016/j.cageo.2024.105596_b30 article-title: Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2013.12.026 – ident: 10.1016/j.cageo.2024.105596_b40 – volume: 452 start-page: 27 year: 2016 ident: 10.1016/j.cageo.2024.105596_b34 article-title: Lithospheric reworking at the proterozoic–phanerozoic transition of Australia imaged using AusLAMP magnetotelluric data publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2016.07.036 – volume: 85 start-page: F1 issue: 1 year: 2019 ident: 10.1016/j.cageo.2024.105596_b18 article-title: EMTF XML: New data interchange format and conversion tools for electromagnetic transfer functions publication-title: Geophysics doi: 10.1190/geo2018-0679.1 – start-page: 28 year: 2003 ident: 10.1016/j.cageo.2024.105596_b8 – volume: 173 start-page: 317 issue: 3 year: 2009 ident: 10.1016/j.cageo.2024.105596_b38 article-title: WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2009.01.013 – start-page: 7 year: 2012 ident: 10.1016/j.cageo.2024.105596_b7 – volume: 11 start-page: 865 issue: 11 year: 2018 ident: 10.1016/j.cageo.2024.105596_b2 article-title: Crustal inheritance and a top-down control on arc magmatism at Mount St Helens publication-title: Nat. Geosci. doi: 10.1038/s41561-018-0217-2 |
SSID | ssj0002285 |
Score | 2.4206436 |
Snippet | The survey setup of 3D magnetotelluric inversion is typically chosen to best reflect the underlying geological structure. Typically, the individual observation... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105596 |
SubjectTerms | 3D inversion algorithms computer software Data functional data quality instrumentation Jacobian matrix magnetism Magnetotellurics surveys Tensor rotation |
Title | 3D magnetotelluric inversion with arbitrary data orientation angles |
URI | https://dx.doi.org/10.1016/j.cageo.2024.105596 https://www.proquest.com/docview/3153633385 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwGA1DEbyIP3H-GBE8Wrc1adocx3ROxZ0c7BaSNB2V2Y6tE7z4t5svbRVFdvDYkpTymrzka773PoQuDQXK48RjPGEeTXjiRbGiHvVDBfbsvnRamKcRG47pwySYNFC_1sJAWmXF_SWnO7au7rQrNNvzNAWNL4-IO7qDhY6DopzSEEb59cd3mofvR0Htmwmta-chl-Ol7ZwFBaBPod5tAM79f69Ov3jaLT6DXbRT7Rpxr3yxPdQw2T7aunNVed8PUJ_c4Fc5zUyRgygEjIJwmr2Vv8Iw_GrFcqFSp7DHkBOK80VaiY4yLLPpzCwP0Xhw-9wfelV1BE-SgBcekxA7mK7hiQ4kiWkCZ2ZKKdmhCfE1DXTclYbGMZdcJcRONCKZZHb_oWMlDTlCG1memWOEu2GoaWIDm460kTLX3KIWq0iFlJGQGNpEfo2K0JV1OFSwmIk6R-xFOCgFQClKKJvo6qvTvHTOWN-c1XCLHwNAWG5f3_Gi_jjCTg0475CZyVdLQSybM2Jj8ODkvw8_RdtwVeaGnaGNYrEy53YXUqiWG2YttNm7fxyOPgGXJ9ri |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oRPRFvOLdCD5atjVpujzKdNbL9rTB3kLSpqMyW9k6wX9vTi8DRfbga9uU8jX5kpOc7zsAN4Yh5QnqcBFzh8UidjqRZg5zfY327K4qtDD9AQ9G7HnsjdegW2thMK2y4v6S0wu2rq40KzSbH0mCGl_RocXRHU50wl-HDXSn8hqwcff0EgyWhOy6Ha-2zsQGtflQkeYV2mGLIkCXYclbD837_56gflF1Mf_0dmGnWjiSu_Lb9mDNpPuw-VgU5v06gC69J-9qkpo8Q10IegWRJP0sd8MI7rYSNdNJIbInmBZKsllS6Y5SotLJ1MwPYdR7GHYDpyqQ4CjqidzhCsMH0zYiDj1FIxbjsZnWWrVYTN2QeWHUVoZFkVBCx9SONaq44nYJEkZaGXoEjTRLzTGQtu-HLLaxTUvZYFmEwqIW6Y72Gac-NewE3BoVGVbu4VjEYirrNLE3WUApEUpZQnkCt8tGH6V5xurHeQ23_NEHpKX31Q2v658j7ejAIw-Vmmwxl9QSOqc2DPdO__vyK9gKhv1X-fo0eDmDbbxTpoqdQyOfLcyFXZTk-rLqdN8kTN2T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+magnetotelluric+inversion+with+arbitrary+data+orientation+angles&rft.jtitle=Computers+%26+geosciences&rft.au=Liu%2C+Zhongyin&rft.au=Kelbert%2C+Anna&rft.au=Chen%2C+Xiaobin&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=0098-3004&rft.volume=188&rft_id=info:doi/10.1016%2Fj.cageo.2024.105596&rft.externalDocID=S0098300424000797 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon |