3D magnetotelluric inversion with arbitrary data orientation angles

The survey setup of 3D magnetotelluric inversion is typically chosen to best reflect the underlying geological structure. Typically, the individual observation azimuths are distinct from this preferred survey layout orientation; in fact, measured electric and magnetic fields are aligned with local g...

Full description

Saved in:
Bibliographic Details
Published inComputers & geosciences Vol. 188; p. 105596
Main Authors Liu, Zhongyin, Kelbert, Anna, Chen, Xiaobin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The survey setup of 3D magnetotelluric inversion is typically chosen to best reflect the underlying geological structure. Typically, the individual observation azimuths are distinct from this preferred survey layout orientation; in fact, measured electric and magnetic fields are aligned with local geomagnetic North. When that happens, either data preprocessing (rotation) is required before the inversion may be performed, or the orientation of the modeling grid is aligned with the data orientations. None of these approaches is optimal, possibly resulting in a reduction of data quality, the loss of statistical accuracy of the error estimates, or in unnecessary grid cells, resulting in increased computation times. In situations when the data quality may be improved by allowing distinct individual site orientations, such as when cultural noise or faulty instrumentation cause a degradation of one of the modes, data loss due to rotation is especially detrimental. In this paper, we present a modified 3D magnetotelluric inversion algorithm, based on the ModEM software, that allows for direct interpretation of observations with arbitrary data orientation angles (ModEM ADORA). In ModEM ADORA, the modeling responses are rotated to the observation orientation angles after each forward calculation and before the data misfit is evaluated. This allows for direct interpretation of observation data with distinct orientations at each site and (as needed for some historical data) at each frequency. The derivative of the penalty functional is computed by pre-multiplying the derivatives of the data functionals (or the complete Jacobian matrix) by the relevant sparse block-diagonal rotation operators. We describe the principle and implementation of ModEM ADORA, and provide a collection of synthetic and real data tests for validation and an analysis of effectiveness of the ADORA option of ModEM. We show that by decoupling modeling grid and sensor orientations, ModEM ADORA supports both computational efficiency and ease of use, as well as allows for the maximum quality and quantity of inverted data. •Modeling and observation coordinate systems can now be set arbitrarily for 3D magnetotelluric inversion.•More high-quality data can be incorporated into inversion by choosing optimal data orientation.•Solve for fewer inversion model parameters by rotating the modeling coordinate system to site distribution.•Free for academic use.
AbstractList The survey setup of 3D magnetotelluric inversion is typically chosen to best reflect the underlying geological structure. Typically, the individual observation azimuths are distinct from this preferred survey layout orientation; in fact, measured electric and magnetic fields are aligned with local geomagnetic North. When that happens, either data preprocessing (rotation) is required before the inversion may be performed, or the orientation of the modeling grid is aligned with the data orientations. None of these approaches is optimal, possibly resulting in a reduction of data quality, the loss of statistical accuracy of the error estimates, or in unnecessary grid cells, resulting in increased computation times. In situations when the data quality may be improved by allowing distinct individual site orientations, such as when cultural noise or faulty instrumentation cause a degradation of one of the modes, data loss due to rotation is especially detrimental. In this paper, we present a modified 3D magnetotelluric inversion algorithm, based on the ModEM software, that allows for direct interpretation of observations with arbitrary data orientation angles (ModEM ADORA). In ModEM ADORA, the modeling responses are rotated to the observation orientation angles after each forward calculation and before the data misfit is evaluated. This allows for direct interpretation of observation data with distinct orientations at each site and (as needed for some historical data) at each frequency. The derivative of the penalty functional is computed by pre-multiplying the derivatives of the data functionals (or the complete Jacobian matrix) by the relevant sparse block-diagonal rotation operators. We describe the principle and implementation of ModEM ADORA, and provide a collection of synthetic and real data tests for validation and an analysis of effectiveness of the ADORA option of ModEM. We show that by decoupling modeling grid and sensor orientations, ModEM ADORA supports both computational efficiency and ease of use, as well as allows for the maximum quality and quantity of inverted data. •Modeling and observation coordinate systems can now be set arbitrarily for 3D magnetotelluric inversion.•More high-quality data can be incorporated into inversion by choosing optimal data orientation.•Solve for fewer inversion model parameters by rotating the modeling coordinate system to site distribution.•Free for academic use.
The survey setup of 3D magnetotelluric inversion is typically chosen to best reflect the underlying geological structure. Typically, the individual observation azimuths are distinct from this preferred survey layout orientation; in fact, measured electric and magnetic fields are aligned with local geomagnetic North. When that happens, either data preprocessing (rotation) is required before the inversion may be performed, or the orientation of the modeling grid is aligned with the data orientations. None of these approaches is optimal, possibly resulting in a reduction of data quality, the loss of statistical accuracy of the error estimates, or in unnecessary grid cells, resulting in increased computation times. In situations when the data quality may be improved by allowing distinct individual site orientations, such as when cultural noise or faulty instrumentation cause a degradation of one of the modes, data loss due to rotation is especially detrimental. In this paper, we present a modified 3D magnetotelluric inversion algorithm, based on the ModEM software, that allows for direct interpretation of observations with arbitrary data orientation angles (ModEM ADORA). In ModEM ADORA, the modeling responses are rotated to the observation orientation angles after each forward calculation and before the data misfit is evaluated. This allows for direct interpretation of observation data with distinct orientations at each site and (as needed for some historical data) at each frequency. The derivative of the penalty functional is computed by pre-multiplying the derivatives of the data functionals (or the complete Jacobian matrix) by the relevant sparse block-diagonal rotation operators. We describe the principle and implementation of ModEM ADORA, and provide a collection of synthetic and real data tests for validation and an analysis of effectiveness of the ADORA option of ModEM. We show that by decoupling modeling grid and sensor orientations, ModEM ADORA supports both computational efficiency and ease of use, as well as allows for the maximum quality and quantity of inverted data.
ArticleNumber 105596
Author Liu, Zhongyin
Chen, Xiaobin
Kelbert, Anna
Author_xml – sequence: 1
  givenname: Zhongyin
  orcidid: 0000-0002-4019-5354
  surname: Liu
  fullname: Liu, Zhongyin
  email: liuzhongyin1990@hotmail.com
  organization: Institute of Geology, China Earthquake Administration, Huayanli A1, Chaoyang District, Beijing, 100029, Beijing, China
– sequence: 2
  givenname: Anna
  orcidid: 0000-0003-4395-398X
  surname: Kelbert
  fullname: Kelbert, Anna
  email: akelbert@usgs.gov
  organization: Geomagnetism Program, U.S. Geological Survey, 1711 Illinois St., Golden, 80401, CO, United States
– sequence: 3
  givenname: Xiaobin
  orcidid: 0000-0003-2584-0551
  surname: Chen
  fullname: Chen, Xiaobin
  email: cxb@pku.edu.cn
  organization: Institute of Geology, China Earthquake Administration, Huayanli A1, Chaoyang District, Beijing, 100029, Beijing, China
BookMark eNqFkD1PwzAQhj0UibbwC1gysqQ4cWzigQGVTwmJBWbrYl-Kq9QutlvEv8clTAwwnXT3Pqe7Z0Ymzjsk5Kyii4pW4mK90LBCv6hp3eQO51JMyJRS2ZaM0uaYzGJcU0rruuVTsmQ3xQZWDpNPOAy7YHVh3R5DtN4VHza9FRA6mwKEz8JAgsIHiy5BOszBrQaMJ-SohyHi6U-dk9e725flQ_n0fP-4vH4qgXGZSgFUNDVWKHvNgZmmb2tGu64D2vSs1g3XpgJsjJEgu54J1jIQIOSl0KYDZHNyPu7dBv--w5jUxkadrwaHfhcVq3iGGGt5jsoxqoOPMWCvtB1vzp_YQVVUHWSptfqWpQ6y1Cgrs-wXuw12k___h7oaKcwG9haDijqL0mhsQJ2U8fZP_gtAq4nJ
CitedBy_id crossref_primary_10_3389_feart_2024_1527559
Cites_doi 10.1029/JB094iB10p14127
10.1093/gji/ggv270
10.1130/0091-7613(1997)025<0359:ISOTSA>2.3.CO;2
10.1016/j.pepi.2004.08.023
10.1038/nature04154
10.1093/gji/ggu121
10.1029/2020JB019731
10.1046/j.1365-246x.2000.00007.x
10.1190/1.1442984
10.1029/2021GL097394
10.1190/1.1440527
10.1007/s10712-013-9234-2
10.1016/j.epsl.2016.07.043
10.1111/j.1365-246X.1993.tb05600.x
10.1038/nature08204
10.1088/0266-5611/16/5/311
10.1190/1.1442228
10.1093/gji/ggz427
10.1130/G33703.1
10.1190/1.1441383
10.1002/2016GL071855
10.1130/G32655.1
10.1126/science.1010580
10.1109/5.18628
10.1111/j.1365-246X.2011.05347.x
10.1046/j.1365-246x.2001.00292.x
10.1002/2016GL070469
10.1111/j.1365-246X.2004.02281.x
10.1029/94RS00326
10.1007/s10712-019-09579-z
10.1016/j.cageo.2014.01.010
10.1126/science.274.5293.1684
10.1038/ngeo830
10.1016/j.epsl.2013.12.026
10.1016/j.epsl.2016.07.036
10.1190/geo2018-0679.1
10.1016/j.pepi.2009.01.013
10.1038/s41561-018-0217-2
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.cageo.2024.105596
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geology
ExternalDocumentID 10_1016_j_cageo_2024_105596
S0098300424000797
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACRPL
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSH
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-a359t-6a0642e1e9fc5a3d4f8230bbba04f32c45cd1ae4dd9a9bf36383a6a6976cdbae3
IEDL.DBID .~1
ISSN 0098-3004
IngestDate Wed Jul 02 03:20:42 EDT 2025
Tue Jul 01 02:26:51 EDT 2025
Thu Apr 24 23:08:04 EDT 2025
Sun Apr 06 06:53:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Magnetotellurics
Data functional
Jacobian matrix
Tensor rotation
3D inversion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a359t-6a0642e1e9fc5a3d4f8230bbba04f32c45cd1ae4dd9a9bf36383a6a6976cdbae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2584-0551
0000-0002-4019-5354
0000-0003-4395-398X
PQID 3153633385
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153633385
crossref_citationtrail_10_1016_j_cageo_2024_105596
crossref_primary_10_1016_j_cageo_2024_105596
elsevier_sciencedirect_doi_10_1016_j_cageo_2024_105596
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Computers & geosciences
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kelbert (b18) 2019; 85
Samrock, Kuvshinov, Bakker, Jackson, Fisseha (b35) 2015; 202
Unsworth, Malin, Egbert, Booker (b45) 1997; 25
Siripunvaraporn, Egbert, Lenbury, Uyeshima (b39) 2005; 150
Chen (b8) 2003
Newman, Alumbaugh (b32) 2000; 140
Cai, Chen, Xu, Tang, Wang, Guo, Han, Dong (b4) 2017; 44
Bedrosian, Peacock, Bowles-Martinez, Schultz, Hill (b2) 2018; 11
Jiang, Chen, Unsworth, Cai, Han, Wang, Dong, Cui, Zhan, Zhao, Tang (b17) 2022; 49
Farquharson, Oldenburg, Haber, Shekhtman (b14) 2002
Holtham, Oldenburg (b16) 2010; 182
Kelbert, Egbert, deGroot-Hedlin (b21) 2012; 40
Roberts, Ferguson, Craven, Kurtz, Boerner, Spratt (b33) 1984
Love, Pulkkinen, Bedrosian, Jonas, Kelbert, Rigler, Finn, Balch, Rutledge, Waggel, Sabata, Kozyra, Black (b26) 2016; 43
Siripunvaraporn, Egbert (b38) 2009; 173
Egbert, Kelbert (b11) 2012; 189
Kelbert, Bedrosian, Murphy (b20) 2019
LaTorraca, Madden, Korringa (b24) 1986; 51
Wannamaker, Booker, Jones, Chave, Filloux, Waff, Law (b47) 1989; 94
Wannamaker, Caldwell, Jiracek, Maris, Hill, Ogawa, Bibby, Bennie, Heise (b48) 2009; 460
Lee, Unsworth, Árnason, Cordell (b25) 2020; 220
Mackie, Smith, Madden (b28) 1994; 29
Sun, Zhan, Unsworth, Egbert, Zhang, Chen, Zhao, Sun, Zhao, Cui, Liu, Han (b41) 2020; 125
Kelbert, Meqbel, Egbert, Tandon (b23) 2014; 66
Robertson, Heinson, Thiel (b34) 2016; 452
Tan, Yu, Booker, Wei (b42) 2003; 46
Booker (b3) 2014; 35
Sims, Bostick, Jr. (b37) 1969
Kelbert, Egbert, Schultz (b22) 2011
Cui, Chen, Zhan, Zhao, Liu (b9) 2020; 63
Bai, Unsworth, Meju, Ma, Teng, Kong, Sun, Sun, Wang, Jiang, Zhao, Xiao, Liu (b1) 2010; 3
Tietze (b43) 2012
Hohmann (b15) 1975; 40
Eggers (b12) 1982; 47
Dong, Wei, Jin, Ye, Zhang, Yin, Xie, Jones (b10) 2016; 454
Eisel, Egbert (b13) 2001; 144
Madden, Mackie (b29) 1989; 77
Zhao, Unsworth, Zhan, Wang, Chen, Jones, Tang, Xiao, Wang, Cai, Li, Wang, Zhang (b50) 2012; 40
Chave, Jones (b7) 2012
Unsworth, Jones, Wei, Marquis, Gokarn, Spratt (b44) 2005; 438
Kelbert (b19) 2019; 41
Chave (b6) 2014; 198
Mackie, Madden (b27) 1993; 115
Soyer, W., Mackie, R., Hallinan, S., Miorelli, F., Pavesi, A., Garanzini, S., 2020. RLM-3D Multiphysics Inversion Modeling: De-Risking Resource Concept Models. In: PROCEEDINGS, 45th Workshop on Geothermal Reservoir Engineering. Stanford, California.
Caldwell, Bibby, Brown (b5) 2004; 158
Zhdanov, Hursan (b51) 2000; 16
Meqbel, Egbert, Wannamaker, Kelbert, Schultz (b30) 2014; 402
Wei, Unsworth, Jones, Booker, Tan, Nelson, Chen, Li, Solon, Bedrosian, Jin, Deng, Ledo, Kay, Roberts (b49) 2001; 292
Nelson, Zhao, Brown, Kuo, Che, Liu, Klemperer, Makovsky, Meissner, Mechie, Kind, Wenzel, Ni, Nabelek, Leshou, Tan, Wei, Jones, Booker, Unsworth, Kidd, Hauck, Alsdorf, Ross, Cogan, Wu, Sandvol, Edwards (b31) 1996; 274
Schultz, Egbert, Kelbert, Peery, Clote, Fry, Erofeeva, staff of the National Geoelectromagnetic Facility (b36) 2006–2018
Wannamaker (b46) 1991; 56
Holtham (10.1016/j.cageo.2024.105596_b16) 2010; 182
LaTorraca (10.1016/j.cageo.2024.105596_b24) 1986; 51
Kelbert (10.1016/j.cageo.2024.105596_b19) 2019; 41
Chave (10.1016/j.cageo.2024.105596_b7) 2012
Kelbert (10.1016/j.cageo.2024.105596_b23) 2014; 66
10.1016/j.cageo.2024.105596_b40
Robertson (10.1016/j.cageo.2024.105596_b34) 2016; 452
Mackie (10.1016/j.cageo.2024.105596_b27) 1993; 115
Mackie (10.1016/j.cageo.2024.105596_b28) 1994; 29
Tietze (10.1016/j.cageo.2024.105596_b43) 2012
Madden (10.1016/j.cageo.2024.105596_b29) 1989; 77
Zhao (10.1016/j.cageo.2024.105596_b50) 2012; 40
Zhdanov (10.1016/j.cageo.2024.105596_b51) 2000; 16
Chen (10.1016/j.cageo.2024.105596_b8) 2003
Wannamaker (10.1016/j.cageo.2024.105596_b46) 1991; 56
Farquharson (10.1016/j.cageo.2024.105596_b14) 2002
Hohmann (10.1016/j.cageo.2024.105596_b15) 1975; 40
Jiang (10.1016/j.cageo.2024.105596_b17) 2022; 49
Siripunvaraporn (10.1016/j.cageo.2024.105596_b38) 2009; 173
Lee (10.1016/j.cageo.2024.105596_b25) 2020; 220
Siripunvaraporn (10.1016/j.cageo.2024.105596_b39) 2005; 150
Cai (10.1016/j.cageo.2024.105596_b4) 2017; 44
Sun (10.1016/j.cageo.2024.105596_b41) 2020; 125
Eisel (10.1016/j.cageo.2024.105596_b13) 2001; 144
Dong (10.1016/j.cageo.2024.105596_b10) 2016; 454
Egbert (10.1016/j.cageo.2024.105596_b11) 2012; 189
Schultz (10.1016/j.cageo.2024.105596_b36) 2006
Meqbel (10.1016/j.cageo.2024.105596_b30) 2014; 402
Bai (10.1016/j.cageo.2024.105596_b1) 2010; 3
Roberts (10.1016/j.cageo.2024.105596_b33) 1984
Kelbert (10.1016/j.cageo.2024.105596_b21) 2012; 40
Kelbert (10.1016/j.cageo.2024.105596_b20) 2019
Wannamaker (10.1016/j.cageo.2024.105596_b47) 1989; 94
Unsworth (10.1016/j.cageo.2024.105596_b45) 1997; 25
Eggers (10.1016/j.cageo.2024.105596_b12) 1982; 47
Caldwell (10.1016/j.cageo.2024.105596_b5) 2004; 158
Nelson (10.1016/j.cageo.2024.105596_b31) 1996; 274
Bedrosian (10.1016/j.cageo.2024.105596_b2) 2018; 11
Newman (10.1016/j.cageo.2024.105596_b32) 2000; 140
Sims (10.1016/j.cageo.2024.105596_b37) 1969
Wannamaker (10.1016/j.cageo.2024.105596_b48) 2009; 460
Cui (10.1016/j.cageo.2024.105596_b9) 2020; 63
Kelbert (10.1016/j.cageo.2024.105596_b22) 2011
Kelbert (10.1016/j.cageo.2024.105596_b18) 2019; 85
Booker (10.1016/j.cageo.2024.105596_b3) 2014; 35
Unsworth (10.1016/j.cageo.2024.105596_b44) 2005; 438
Wei (10.1016/j.cageo.2024.105596_b49) 2001; 292
Love (10.1016/j.cageo.2024.105596_b26) 2016; 43
Samrock (10.1016/j.cageo.2024.105596_b35) 2015; 202
Chave (10.1016/j.cageo.2024.105596_b6) 2014; 198
Tan (10.1016/j.cageo.2024.105596_b42) 2003; 46
References_xml – volume: 77
  start-page: 318
  year: 1989
  end-page: 333
  ident: b29
  article-title: Three-dimensional magnetotelluric modelling and inversion
  publication-title: Proc. IEEE
– volume: 29
  start-page: 923
  year: 1994
  end-page: 935
  ident: b28
  article-title: Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example
  publication-title: Radio Sci.
– volume: 41
  start-page: 115
  year: 2019
  end-page: 166
  ident: b19
  article-title: The role of global/regional earth conductivity models in natural geomagnetic hazard mitigation
  publication-title: Surv. Geophys.
– volume: 460
  start-page: 733
  year: 2009
  end-page: 736
  ident: b48
  article-title: Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand
  publication-title: Nature
– volume: 40
  start-page: 309
  year: 1975
  end-page: 324
  ident: b15
  article-title: Three-dimensional induced polarization and electromagnetic modeling
  publication-title: Geophysics
– start-page: 7
  year: 2012
  end-page: 9
  ident: b7
  article-title: The Magnetotelluric Method: Theory and Practice
– volume: 125
  year: 2020
  ident: b41
  article-title: 3-D magnetotelluric imaging of the easternmost Kunlun fault: Insights into strain partitioning and the seismotectonics of the Jiuzhaigou Ms7.0 earthquake
  publication-title: J. Geophys. Res.: Solid Earth
– volume: 47
  start-page: 1204
  year: 1982
  end-page: 1214
  ident: b12
  article-title: An eigenstate formulation of the magnetotelluric impedance tensor
  publication-title: Geophysics
– year: 2011
  ident: b22
  article-title: IRIS DMC Data Services Products: EMTF, The Magnetotelluric Transfer Functions
– volume: 202
  start-page: 1923
  year: 2015
  end-page: 1948
  ident: b35
  article-title: 3-d analysis and interpretation of magnetotelluric data from the Aluto-Langano geothermal field, Ethiopia
  publication-title: Geophys. J. Int.
– start-page: 28
  year: 2003
  end-page: 29
  ident: b8
  article-title: New Forward and Inversion Algorithms and a Visual Integrated System for MT Data
– start-page: 182
  year: 2012
  ident: b43
  article-title: Investigating the Electrical Conductivity Structure of the San Andreas Fault System in the Parkfield-Cholame Region, Central California, with 3D Magnetotelluric Inversion
– volume: 292
  start-page: 716
  year: 2001
  end-page: 719
  ident: b49
  article-title: Detection of widespread fluids in the Tibetan crust by magnetotelluric studies
  publication-title: Science
– volume: 11
  start-page: 865
  year: 2018
  end-page: 870
  ident: b2
  article-title: Crustal inheritance and a top-down control on arc magmatism at Mount St Helens
  publication-title: Nat. Geosci.
– start-page: 649
  year: 2002
  end-page: 652
  ident: b14
  article-title: An algorithm for the three-dimensional inversion of magnetotelluric data
  publication-title: SEG Technical Program Expanded Abstracts 2002
– volume: 144
  start-page: 65
  year: 2001
  end-page: 82
  ident: b13
  article-title: On the stability of magnetotelluric transfer function estimates and the reliability of their variances
  publication-title: Geophys. J. Int.
– volume: 158
  start-page: 457
  year: 2004
  end-page: 469
  ident: b5
  article-title: The magnetotelluric phase tensor
  publication-title: Geophys. J. Int.
– volume: 44
  year: 2017
  ident: b4
  article-title: Rupture mechanism and seismotectonics of the Ms6.5 Ludian earthquake inferred from three-dimensional magnetotelluric imaging
  publication-title: Geophys. Res. Lett.
– volume: 438
  start-page: 78
  year: 2005
  end-page: 81
  ident: b44
  article-title: Crustal rheology of the Himalaya and southern Tibet inferred from magnetotelluric data
  publication-title: Nature
– volume: 454
  start-page: 78
  year: 2016
  end-page: 85
  ident: b10
  article-title: Extensional extrusion: Insights into south-eastward expansion of Tibetan Plateau from magnetotelluric array data
  publication-title: Earth Planet. Sci. Lett.
– volume: 63
  start-page: 256
  year: 2020
  end-page: 269
  ident: b9
  article-title: Characteristics of deep electrical structure and seismogenic structure beneath Anhui Huoshan earthquake area(in Chinese)
  publication-title: Chin. J. Geophys.
– volume: 189
  start-page: 251
  year: 2012
  end-page: 267
  ident: b11
  article-title: Computational recipes for electromagnetic inverse problems
  publication-title: Geophys. J. Int.
– volume: 51
  start-page: 1819
  year: 1986
  end-page: 1829
  ident: b24
  article-title: An analysis of the magnetotelluric impedance for three-dimensional conductivity structures
  publication-title: Geophysics
– volume: 173
  start-page: 317
  year: 2009
  end-page: 329
  ident: b38
  article-title: WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation
  publication-title: Phys. Earth Planet. Inter.
– volume: 35
  start-page: 7
  year: 2014
  end-page: 40
  ident: b3
  article-title: The magnetotelluric phase tensor: A critical review
  publication-title: Surv. Geophys.
– volume: 198
  start-page: 622
  year: 2014
  end-page: 636
  ident: b6
  article-title: Magnetotelluric data, stable distributions and impropriety: An existential combination
  publication-title: Geophys. J. Int.
– volume: 115
  start-page: 215
  year: 1993
  end-page: 229
  ident: b27
  article-title: Three-dimensional magnetotelluric inversion using conjugate gradients
  publication-title: Geophys. J. Int.
– volume: 43
  start-page: 9415
  year: 2016
  end-page: 9424
  ident: b26
  article-title: Geoelectric hazard maps for the continental United States
  publication-title: Geophys. Res. Lett.
– volume: 49
  year: 2022
  ident: b17
  article-title: Mechanism for the uplift of Gongga Shan in the southeastern Tibetan Plateau constrained by 3D magnetotelluric data
  publication-title: Geophys. Res. Lett.
– volume: 452
  start-page: 27
  year: 2016
  end-page: 35
  ident: b34
  article-title: Lithospheric reworking at the proterozoic–phanerozoic transition of Australia imaged using AusLAMP magnetotelluric data
  publication-title: Earth Planet. Sci. Lett.
– volume: 220
  start-page: 541
  year: 2020
  end-page: 567
  ident: b25
  article-title: Imaging the magmatic system beneath the Krafla geothermal field, Iceland: A new 3-D electrical resistivity model from inversion of magnetotelluric data
  publication-title: Geophys. J. Int.
– volume: 150
  start-page: 3
  year: 2005
  end-page: 14
  ident: b39
  article-title: Three-dimensional magnetotelluric inversion: Data-space method
  publication-title: Phys. Earth Planet. Inter.
– volume: 3
  start-page: 358
  year: 2010
  end-page: 362
  ident: b1
  article-title: Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging
  publication-title: Nat. Geosci.
– volume: 140
  start-page: 410
  year: 2000
  end-page: 424
  ident: b32
  article-title: Three-dimensional magnetotelluric inversion using non-linear conjugate gradients
  publication-title: Geophys. J. Int.
– volume: 182
  start-page: 168
  year: 2010
  end-page: 182
  ident: b16
  article-title: Three-dimensional inversion of ZTEM data
  publication-title: Geophys. J. Int.
– volume: 40
  start-page: 447
  year: 2012
  end-page: 450
  ident: b21
  article-title: Crust and upper mantle electrical conductivity beneath the Yellowstone Hotspot Track
  publication-title: Geology
– volume: 46
  start-page: 705
  year: 2003
  end-page: 711
  ident: b42
  article-title: Magnetotelluric three-dimensional modeling using the staggered-grid fnite difference method(in Chinese)
  publication-title: Chin. J. Geophys.
– year: 2006–2018
  ident: b36
  article-title: USArray TA magnetotelluric transfer functions
– reference: Soyer, W., Mackie, R., Hallinan, S., Miorelli, F., Pavesi, A., Garanzini, S., 2020. RLM-3D Multiphysics Inversion Modeling: De-Risking Resource Concept Models. In: PROCEEDINGS, 45th Workshop on Geothermal Reservoir Engineering. Stanford, California.
– volume: 402
  start-page: 290
  year: 2014
  end-page: 304
  ident: b30
  article-title: Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data
  publication-title: Earth Planet. Sci. Lett.
– volume: 40
  start-page: 1139
  year: 2012
  end-page: 1142
  ident: b50
  article-title: Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 Earthquake Epicentral Area from magnetotelluric data
  publication-title: Geology
– start-page: 127
  year: 2019
  end-page: 151
  ident: b20
  article-title: The first 3D conductivity model of the contiguous United States
  publication-title: Geomagnetically Induced Currents from the Sun To the Power Grid
– volume: 94
  start-page: 14127
  year: 1989
  end-page: 14144
  ident: b47
  article-title: Resistivity cross section through the Juan de Fuca subduction system and its tectonic implications
  publication-title: J. Geophys. Res.: Solid Earth
– volume: 16
  start-page: 1297
  year: 2000
  end-page: 1322
  ident: b51
  article-title: 3D electromagnetic inversion based on quasi-analytical approximation
  publication-title: Inverse Problems
– volume: 66
  start-page: 40
  year: 2014
  end-page: 53
  ident: b23
  article-title: ModEM: A modular system for inversion of electromagnetic geophysical data
  publication-title: Comput. Geosci.
– volume: 25
  start-page: 359
  year: 1997
  end-page: 362
  ident: b45
  article-title: Internal structure of the San Andreas fault at Parkfield, California
  publication-title: Geology
– volume: 85
  start-page: F1
  year: 2019
  end-page: F17
  ident: b18
  article-title: EMTF XML: New data interchange format and conversion tools for electromagnetic transfer functions
  publication-title: Geophysics
– year: 1984
  ident: b33
  article-title: Lithoprobe Magnetotelluric Transfer Functions in Western Superior Province, Canada
– year: 1969
  ident: b37
  article-title: Methods of Magnetotelluric Analysis
– volume: 274
  start-page: 1684
  year: 1996
  end-page: 1688
  ident: b31
  article-title: Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results
  publication-title: Science
– volume: 56
  start-page: 1716
  year: 1991
  end-page: 1728
  ident: b46
  article-title: Advances in three-dimensional magnetotelluric modeling using integral equations
  publication-title: Geophysics
– volume: 94
  start-page: 14127
  issue: B10
  year: 1989
  ident: 10.1016/j.cageo.2024.105596_b47
  article-title: Resistivity cross section through the Juan de Fuca subduction system and its tectonic implications
  publication-title: J. Geophys. Res.: Solid Earth
  doi: 10.1029/JB094iB10p14127
– start-page: 649
  year: 2002
  ident: 10.1016/j.cageo.2024.105596_b14
  article-title: An algorithm for the three-dimensional inversion of magnetotelluric data
– volume: 202
  start-page: 1923
  issue: 3
  year: 2015
  ident: 10.1016/j.cageo.2024.105596_b35
  article-title: 3-d analysis and interpretation of magnetotelluric data from the Aluto-Langano geothermal field, Ethiopia
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggv270
– start-page: 127
  year: 2019
  ident: 10.1016/j.cageo.2024.105596_b20
  article-title: The first 3D conductivity model of the contiguous United States
– volume: 25
  start-page: 359
  issue: 4
  year: 1997
  ident: 10.1016/j.cageo.2024.105596_b45
  article-title: Internal structure of the San Andreas fault at Parkfield, California
  publication-title: Geology
  doi: 10.1130/0091-7613(1997)025<0359:ISOTSA>2.3.CO;2
– volume: 150
  start-page: 3
  issue: 1–3
  year: 2005
  ident: 10.1016/j.cageo.2024.105596_b39
  article-title: Three-dimensional magnetotelluric inversion: Data-space method
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2004.08.023
– volume: 438
  start-page: 78
  issue: 7064
  year: 2005
  ident: 10.1016/j.cageo.2024.105596_b44
  article-title: Crustal rheology of the Himalaya and southern Tibet inferred from magnetotelluric data
  publication-title: Nature
  doi: 10.1038/nature04154
– volume: 198
  start-page: 622
  issue: 1
  year: 2014
  ident: 10.1016/j.cageo.2024.105596_b6
  article-title: Magnetotelluric data, stable distributions and impropriety: An existential combination
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggu121
– volume: 125
  issue: 5
  year: 2020
  ident: 10.1016/j.cageo.2024.105596_b41
  article-title: 3-D magnetotelluric imaging of the easternmost Kunlun fault: Insights into strain partitioning and the seismotectonics of the Jiuzhaigou Ms7.0 earthquake
  publication-title: J. Geophys. Res.: Solid Earth
  doi: 10.1029/2020JB019731
– volume: 140
  start-page: 410
  issue: 2
  year: 2000
  ident: 10.1016/j.cageo.2024.105596_b32
  article-title: Three-dimensional magnetotelluric inversion using non-linear conjugate gradients
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246x.2000.00007.x
– volume: 56
  start-page: 1716
  issue: 11
  year: 1991
  ident: 10.1016/j.cageo.2024.105596_b46
  article-title: Advances in three-dimensional magnetotelluric modeling using integral equations
  publication-title: Geophysics
  doi: 10.1190/1.1442984
– volume: 49
  issue: 9
  year: 2022
  ident: 10.1016/j.cageo.2024.105596_b17
  article-title: Mechanism for the uplift of Gongga Shan in the southeastern Tibetan Plateau constrained by 3D magnetotelluric data
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL097394
– volume: 40
  start-page: 309
  issue: 2
  year: 1975
  ident: 10.1016/j.cageo.2024.105596_b15
  article-title: Three-dimensional induced polarization and electromagnetic modeling
  publication-title: Geophysics
  doi: 10.1190/1.1440527
– volume: 35
  start-page: 7
  year: 2014
  ident: 10.1016/j.cageo.2024.105596_b3
  article-title: The magnetotelluric phase tensor: A critical review
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-013-9234-2
– volume: 63
  start-page: 256
  issue: 01
  year: 2020
  ident: 10.1016/j.cageo.2024.105596_b9
  article-title: Characteristics of deep electrical structure and seismogenic structure beneath Anhui Huoshan earthquake area(in Chinese)
  publication-title: Chin. J. Geophys.
– volume: 454
  start-page: 78
  year: 2016
  ident: 10.1016/j.cageo.2024.105596_b10
  article-title: Extensional extrusion: Insights into south-eastward expansion of Tibetan Plateau from magnetotelluric array data
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2016.07.043
– year: 2006
  ident: 10.1016/j.cageo.2024.105596_b36
– year: 1984
  ident: 10.1016/j.cageo.2024.105596_b33
– start-page: 182
  year: 2012
  ident: 10.1016/j.cageo.2024.105596_b43
– volume: 115
  start-page: 215
  issue: 1
  year: 1993
  ident: 10.1016/j.cageo.2024.105596_b27
  article-title: Three-dimensional magnetotelluric inversion using conjugate gradients
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1993.tb05600.x
– volume: 460
  start-page: 733
  issue: 7256
  year: 2009
  ident: 10.1016/j.cageo.2024.105596_b48
  article-title: Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand
  publication-title: Nature
  doi: 10.1038/nature08204
– volume: 16
  start-page: 1297
  issue: 5
  year: 2000
  ident: 10.1016/j.cageo.2024.105596_b51
  article-title: 3D electromagnetic inversion based on quasi-analytical approximation
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/16/5/311
– volume: 51
  start-page: 1819
  issue: 9
  year: 1986
  ident: 10.1016/j.cageo.2024.105596_b24
  article-title: An analysis of the magnetotelluric impedance for three-dimensional conductivity structures
  publication-title: Geophysics
  doi: 10.1190/1.1442228
– volume: 220
  start-page: 541
  issue: 1
  year: 2020
  ident: 10.1016/j.cageo.2024.105596_b25
  article-title: Imaging the magmatic system beneath the Krafla geothermal field, Iceland: A new 3-D electrical resistivity model from inversion of magnetotelluric data
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggz427
– volume: 40
  start-page: 1139
  issue: 12
  year: 2012
  ident: 10.1016/j.cageo.2024.105596_b50
  article-title: Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 Earthquake Epicentral Area from magnetotelluric data
  publication-title: Geology
  doi: 10.1130/G33703.1
– volume: 47
  start-page: 1204
  issue: 8
  year: 1982
  ident: 10.1016/j.cageo.2024.105596_b12
  article-title: An eigenstate formulation of the magnetotelluric impedance tensor
  publication-title: Geophysics
  doi: 10.1190/1.1441383
– volume: 44
  issue: 3
  year: 2017
  ident: 10.1016/j.cageo.2024.105596_b4
  article-title: Rupture mechanism and seismotectonics of the Ms6.5 Ludian earthquake inferred from three-dimensional magnetotelluric imaging
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL071855
– volume: 182
  start-page: 168
  issue: 1
  year: 2010
  ident: 10.1016/j.cageo.2024.105596_b16
  article-title: Three-dimensional inversion of ZTEM data
  publication-title: Geophys. J. Int.
– volume: 40
  start-page: 447
  issue: 5
  year: 2012
  ident: 10.1016/j.cageo.2024.105596_b21
  article-title: Crust and upper mantle electrical conductivity beneath the Yellowstone Hotspot Track
  publication-title: Geology
  doi: 10.1130/G32655.1
– volume: 292
  start-page: 716
  issue: 5517
  year: 2001
  ident: 10.1016/j.cageo.2024.105596_b49
  article-title: Detection of widespread fluids in the Tibetan crust by magnetotelluric studies
  publication-title: Science
  doi: 10.1126/science.1010580
– volume: 77
  start-page: 318
  issue: 2
  year: 1989
  ident: 10.1016/j.cageo.2024.105596_b29
  article-title: Three-dimensional magnetotelluric modelling and inversion
  publication-title: Proc. IEEE
  doi: 10.1109/5.18628
– volume: 189
  start-page: 251
  issue: 1
  year: 2012
  ident: 10.1016/j.cageo.2024.105596_b11
  article-title: Computational recipes for electromagnetic inverse problems
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2011.05347.x
– volume: 144
  start-page: 65
  issue: 1
  year: 2001
  ident: 10.1016/j.cageo.2024.105596_b13
  article-title: On the stability of magnetotelluric transfer function estimates and the reliability of their variances
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246x.2001.00292.x
– volume: 46
  start-page: 705
  issue: 5
  year: 2003
  ident: 10.1016/j.cageo.2024.105596_b42
  article-title: Magnetotelluric three-dimensional modeling using the staggered-grid fnite difference method(in Chinese)
  publication-title: Chin. J. Geophys.
– volume: 43
  start-page: 9415
  issue: 18
  year: 2016
  ident: 10.1016/j.cageo.2024.105596_b26
  article-title: Geoelectric hazard maps for the continental United States
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL070469
– volume: 158
  start-page: 457
  issue: 2
  year: 2004
  ident: 10.1016/j.cageo.2024.105596_b5
  article-title: The magnetotelluric phase tensor
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2004.02281.x
– volume: 29
  start-page: 923
  issue: 4
  year: 1994
  ident: 10.1016/j.cageo.2024.105596_b28
  article-title: Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example
  publication-title: Radio Sci.
  doi: 10.1029/94RS00326
– year: 1969
  ident: 10.1016/j.cageo.2024.105596_b37
– year: 2011
  ident: 10.1016/j.cageo.2024.105596_b22
– volume: 41
  start-page: 115
  year: 2019
  ident: 10.1016/j.cageo.2024.105596_b19
  article-title: The role of global/regional earth conductivity models in natural geomagnetic hazard mitigation
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-019-09579-z
– volume: 66
  start-page: 40
  year: 2014
  ident: 10.1016/j.cageo.2024.105596_b23
  article-title: ModEM: A modular system for inversion of electromagnetic geophysical data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.01.010
– volume: 274
  start-page: 1684
  issue: 5293
  year: 1996
  ident: 10.1016/j.cageo.2024.105596_b31
  article-title: Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results
  publication-title: Science
  doi: 10.1126/science.274.5293.1684
– volume: 3
  start-page: 358
  issue: 5
  year: 2010
  ident: 10.1016/j.cageo.2024.105596_b1
  article-title: Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo830
– volume: 402
  start-page: 290
  year: 2014
  ident: 10.1016/j.cageo.2024.105596_b30
  article-title: Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2013.12.026
– ident: 10.1016/j.cageo.2024.105596_b40
– volume: 452
  start-page: 27
  year: 2016
  ident: 10.1016/j.cageo.2024.105596_b34
  article-title: Lithospheric reworking at the proterozoic–phanerozoic transition of Australia imaged using AusLAMP magnetotelluric data
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2016.07.036
– volume: 85
  start-page: F1
  issue: 1
  year: 2019
  ident: 10.1016/j.cageo.2024.105596_b18
  article-title: EMTF XML: New data interchange format and conversion tools for electromagnetic transfer functions
  publication-title: Geophysics
  doi: 10.1190/geo2018-0679.1
– start-page: 28
  year: 2003
  ident: 10.1016/j.cageo.2024.105596_b8
– volume: 173
  start-page: 317
  issue: 3
  year: 2009
  ident: 10.1016/j.cageo.2024.105596_b38
  article-title: WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2009.01.013
– start-page: 7
  year: 2012
  ident: 10.1016/j.cageo.2024.105596_b7
– volume: 11
  start-page: 865
  issue: 11
  year: 2018
  ident: 10.1016/j.cageo.2024.105596_b2
  article-title: Crustal inheritance and a top-down control on arc magmatism at Mount St Helens
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-018-0217-2
SSID ssj0002285
Score 2.4206436
Snippet The survey setup of 3D magnetotelluric inversion is typically chosen to best reflect the underlying geological structure. Typically, the individual observation...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105596
SubjectTerms 3D inversion
algorithms
computer software
Data functional
data quality
instrumentation
Jacobian matrix
magnetism
Magnetotellurics
surveys
Tensor rotation
Title 3D magnetotelluric inversion with arbitrary data orientation angles
URI https://dx.doi.org/10.1016/j.cageo.2024.105596
https://www.proquest.com/docview/3153633385
Volume 188
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwGA1DEbyIP3H-GBE8Wrc1adocx3ROxZ0c7BaSNB2V2Y6tE7z4t5svbRVFdvDYkpTymrzka773PoQuDQXK48RjPGEeTXjiRbGiHvVDBfbsvnRamKcRG47pwySYNFC_1sJAWmXF_SWnO7au7rQrNNvzNAWNL4-IO7qDhY6DopzSEEb59cd3mofvR0Htmwmta-chl-Ol7ZwFBaBPod5tAM79f69Ov3jaLT6DXbRT7Rpxr3yxPdQw2T7aunNVed8PUJ_c4Fc5zUyRgygEjIJwmr2Vv8Iw_GrFcqFSp7DHkBOK80VaiY4yLLPpzCwP0Xhw-9wfelV1BE-SgBcekxA7mK7hiQ4kiWkCZ2ZKKdmhCfE1DXTclYbGMZdcJcRONCKZZHb_oWMlDTlCG1memWOEu2GoaWIDm460kTLX3KIWq0iFlJGQGNpEfo2K0JV1OFSwmIk6R-xFOCgFQClKKJvo6qvTvHTOWN-c1XCLHwNAWG5f3_Gi_jjCTg0475CZyVdLQSybM2Jj8ODkvw8_RdtwVeaGnaGNYrEy53YXUqiWG2YttNm7fxyOPgGXJ9ri
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oRPRFvOLdCD5atjVpujzKdNbL9rTB3kLSpqMyW9k6wX9vTi8DRfbga9uU8jX5kpOc7zsAN4Yh5QnqcBFzh8UidjqRZg5zfY327K4qtDD9AQ9G7HnsjdegW2thMK2y4v6S0wu2rq40KzSbH0mCGl_RocXRHU50wl-HDXSn8hqwcff0EgyWhOy6Ha-2zsQGtflQkeYV2mGLIkCXYclbD837_56gflF1Mf_0dmGnWjiSu_Lb9mDNpPuw-VgU5v06gC69J-9qkpo8Q10IegWRJP0sd8MI7rYSNdNJIbInmBZKsllS6Y5SotLJ1MwPYdR7GHYDpyqQ4CjqidzhCsMH0zYiDj1FIxbjsZnWWrVYTN2QeWHUVoZFkVBCx9SONaq44nYJEkZaGXoEjTRLzTGQtu-HLLaxTUvZYFmEwqIW6Y72Gac-NewE3BoVGVbu4VjEYirrNLE3WUApEUpZQnkCt8tGH6V5xurHeQ23_NEHpKX31Q2v658j7ejAIw-Vmmwxl9QSOqc2DPdO__vyK9gKhv1X-fo0eDmDbbxTpoqdQyOfLcyFXZTk-rLqdN8kTN2T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+magnetotelluric+inversion+with+arbitrary+data+orientation+angles&rft.jtitle=Computers+%26+geosciences&rft.au=Liu%2C+Zhongyin&rft.au=Kelbert%2C+Anna&rft.au=Chen%2C+Xiaobin&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=0098-3004&rft.volume=188&rft_id=info:doi/10.1016%2Fj.cageo.2024.105596&rft.externalDocID=S0098300424000797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon