Pair-Soil-Spectra: An Approach for NIRS-Based Soil Total Nitrogen Content Detection with Feature Metrics in Cases of Small Sample Sizes

Soil total nitrogen (STN) plays an important role in plant growth, and rapid and nondestructive detection of STN content is essential for agricultural production. Near-infrared spectroscopy (NIRS) takes advantage of the fast detection speed, low cost, and nondestructiveness, and it can be used for S...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 97; no. 1; pp. 454 - 463
Main Authors Wang, Yueting, Zhao, Chunjiang, Xing, Zhen, Zhu, Mingyan, Hao, Lianglin, Wang, Ke, Bai, Juekun, Tian, Hongwu, Dong, Daming
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil total nitrogen (STN) plays an important role in plant growth, and rapid and nondestructive detection of STN content is essential for agricultural production. Near-infrared spectroscopy (NIRS) takes advantage of the fast detection speed, low cost, and nondestructiveness, and it can be used for STN content detection. Typically, NIRS-based approaches require a large number of samples for detection model training. However, it is difficult to collect sufficient samples due to various causes (e.g., time-varying state, high assay costs, etc.) in practical application. To tackle this problem, a feature metric approach is introduced to detect the STN content based on NIRS in this work, and a new approach (named Pair-Soil-Spectra) is proposed to mine fine-grained features by contrasting different soil sample pairs, which takes full advantage of soil particle heterogeneity and NIRS penetration. For the validation of this study, three different soil datasets with various collection sources are selected as research subjects, and the performance of Pair-Soil-Spectra is analyzed from different perspectives. According to the results, Pair-Soil-Spectra has significantly improved the performance of STN content detection models (e.g., partial least-squares (PLS), Cubist, extreme learning machine (ELM), and random forest (RF)) in small sample cases. Of these, the coefficient of determination of RF has improved by 0.13, 0.42, and 0.10, and the root-mean-square of prediction has decreased by 0.15, 0.52, and 0.01 g/kg with different datasets, which has gained the greatest improvement. Meanwhile, this approach can be easily expanded to cover other domains.
AbstractList Soil total nitrogen (STN) plays an important role in plant growth, and rapid and nondestructive detection of STN content is essential for agricultural production. Near-infrared spectroscopy (NIRS) takes advantage of the fast detection speed, low cost, and nondestructiveness, and it can be used for STN content detection. Typically, NIRS-based approaches require a large number of samples for detection model training. However, it is difficult to collect sufficient samples due to various causes (e.g., time-varying state, high assay costs, etc.) in practical application. To tackle this problem, a feature metric approach is introduced to detect the STN content based on NIRS in this work, and a new approach (named Pair-Soil-Spectra) is proposed to mine fine-grained features by contrasting different soil sample pairs, which takes full advantage of soil particle heterogeneity and NIRS penetration. For the validation of this study, three different soil datasets with various collection sources are selected as research subjects, and the performance of Pair-Soil-Spectra is analyzed from different perspectives. According to the results, Pair-Soil-Spectra has significantly improved the performance of STN content detection models (e.g., partial least-squares (PLS), Cubist, extreme learning machine (ELM), and random forest (RF)) in small sample cases. Of these, the coefficient of determination of RF has improved by 0.13, 0.42, and 0.10, and the root-mean-square of prediction has decreased by 0.15, 0.52, and 0.01 g/kg with different datasets, which has gained the greatest improvement. Meanwhile, this approach can be easily expanded to cover other domains.
Soil total nitrogen (STN) plays an important role in plant growth, and rapid and nondestructive detection of STN content is essential for agricultural production. Near-infrared spectroscopy (NIRS) takes advantage of the fast detection speed, low cost, and nondestructiveness, and it can be used for STN content detection. Typically, NIRS-based approaches require a large number of samples for detection model training. However, it is difficult to collect sufficient samples due to various causes (e.g., time-varying state, high assay costs, etc.) in practical application. To tackle this problem, a feature metric approach is introduced to detect the STN content based on NIRS in this work, and a new approach (named Pair-Soil-Spectra) is proposed to mine fine-grained features by contrasting different soil sample pairs, which takes full advantage of soil particle heterogeneity and NIRS penetration. For the validation of this study, three different soil datasets with various collection sources are selected as research subjects, and the performance of Pair-Soil-Spectra is analyzed from different perspectives. According to the results, Pair-Soil-Spectra has significantly improved the performance of STN content detection models (e.g., partial least-squares (PLS), Cubist, extreme learning machine (ELM), and random forest (RF)) in small sample cases. Of these, the coefficient of determination of RF has improved by 0.13, 0.42, and 0.10, and the root-mean-square of prediction has decreased by 0.15, 0.52, and 0.01 g/kg with different datasets, which has gained the greatest improvement. Meanwhile, this approach can be easily expanded to cover other domains.Soil total nitrogen (STN) plays an important role in plant growth, and rapid and nondestructive detection of STN content is essential for agricultural production. Near-infrared spectroscopy (NIRS) takes advantage of the fast detection speed, low cost, and nondestructiveness, and it can be used for STN content detection. Typically, NIRS-based approaches require a large number of samples for detection model training. However, it is difficult to collect sufficient samples due to various causes (e.g., time-varying state, high assay costs, etc.) in practical application. To tackle this problem, a feature metric approach is introduced to detect the STN content based on NIRS in this work, and a new approach (named Pair-Soil-Spectra) is proposed to mine fine-grained features by contrasting different soil sample pairs, which takes full advantage of soil particle heterogeneity and NIRS penetration. For the validation of this study, three different soil datasets with various collection sources are selected as research subjects, and the performance of Pair-Soil-Spectra is analyzed from different perspectives. According to the results, Pair-Soil-Spectra has significantly improved the performance of STN content detection models (e.g., partial least-squares (PLS), Cubist, extreme learning machine (ELM), and random forest (RF)) in small sample cases. Of these, the coefficient of determination of RF has improved by 0.13, 0.42, and 0.10, and the root-mean-square of prediction has decreased by 0.15, 0.52, and 0.01 g/kg with different datasets, which has gained the greatest improvement. Meanwhile, this approach can be easily expanded to cover other domains.
Author Hao, Lianglin
Zhao, Chunjiang
Xing, Zhen
Bai, Juekun
Dong, Daming
Wang, Ke
Zhu, Mingyan
Wang, Yueting
Tian, Hongwu
AuthorAffiliation National Research Center of Intelligent Equipment for Agriculture
Beijing Academy of Agriculture and Forestry Sciences
Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs
AuthorAffiliation_xml – name: National Research Center of Intelligent Equipment for Agriculture
– name: Beijing Academy of Agriculture and Forestry Sciences
– name: Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs
Author_xml – sequence: 1
  givenname: Yueting
  orcidid: 0000-0001-5506-8828
  surname: Wang
  fullname: Wang, Yueting
  organization: Beijing Academy of Agriculture and Forestry Sciences
– sequence: 2
  givenname: Chunjiang
  surname: Zhao
  fullname: Zhao, Chunjiang
  organization: Beijing Academy of Agriculture and Forestry Sciences
– sequence: 3
  givenname: Zhen
  surname: Xing
  fullname: Xing, Zhen
  organization: Beijing Academy of Agriculture and Forestry Sciences
– sequence: 4
  givenname: Mingyan
  surname: Zhu
  fullname: Zhu, Mingyan
  organization: Beijing Academy of Agriculture and Forestry Sciences
– sequence: 5
  givenname: Lianglin
  surname: Hao
  fullname: Hao, Lianglin
  organization: Beijing Academy of Agriculture and Forestry Sciences
– sequence: 6
  givenname: Ke
  surname: Wang
  fullname: Wang, Ke
  organization: Beijing Academy of Agriculture and Forestry Sciences
– sequence: 7
  givenname: Juekun
  surname: Bai
  fullname: Bai, Juekun
  organization: Beijing Academy of Agriculture and Forestry Sciences
– sequence: 8
  givenname: Hongwu
  surname: Tian
  fullname: Tian, Hongwu
  email: tianhw@nercita.org.cn
  organization: Beijing Academy of Agriculture and Forestry Sciences
– sequence: 9
  givenname: Daming
  orcidid: 0000-0003-1684-3072
  surname: Dong
  fullname: Dong, Daming
  email: damingdong@hotmail.com
  organization: Beijing Academy of Agriculture and Forestry Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39699010$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAQhi1URLeFN0DIEhcuWcZx4nW4LQuFSqUgUs7RrDNhXSVxsB0heAFeGy-77YED4uTDfP8_8nxn7GR0IzH2VMBSQC5eoglLHLE3OxqWhYGiLPQDthBlDpnSOj9hCwCQWb4COGVnIdwCCAFCPWKnslJVBQIW7NcntD6rne2zeiITPb7i65Gvp8k7NDveOc-vLz_X2WsM1PI9yG9cxJ5f2-jdVxr5xo2RxsjfUEwF1o38u407fkEYZ0_8A0VvTeA2kakjcNfxesC-5zUOU0-8tj8pPGYPO-wDPTm-5-zLxdubzfvs6uO7y836KkNZ6pi1UG2h022rW9lqoap8tSXdomzzSqMgkIXMq0okWpmONMotCiOwXK26EqpOnrMXh970v28zhdgMNhjqexzJzaGRQpVaqVKq_0CLlZBFLsuEPv8LvXWzT3L-FKZDl0rmiXp2pObtQG0zeTug_9Hc2UhAcQCMdyF46u4RAc1eepOkN3fSm6P0FINDbD-9X_zPyG_nubEh
Cites_doi 10.1038/s41893-024-01385-9
10.1007/s11694-023-02320-w
10.1016/j.foodres.2024.114564
10.1016/j.compag.2023.108427
10.1016/j.geoderma.2023.116752
10.1016/j.still.2021.105109
10.1016/j.geoderma.2009.04.010
10.1109/TIM.2021.3115212
10.1016/j.aca.2019.06.012
10.1016/j.still.2024.106250
10.1021/acs.analchem.3c02002
10.1021/acs.analchem.2c01398
10.1038/s41467-024-49665-4
10.1016/j.compag.2023.108350
10.1038/s41467-024-53753-w
10.1007/s11119-021-09792-0
10.1016/j.compag.2019.03.016
10.1016/j.geoderma.2009.12.025
10.1016/j.still.2024.106247
10.1016/j.aca.2019.01.002
10.1021/acs.analchem.4c00563
10.1016/j.talanta.2024.125910
10.1016/j.compag.2021.106624
10.1021/acs.analchem.6b03101
10.1016/j.postharvbio.2021.111741
10.1021/acs.analchem.1c03250
10.1038/s41467-024-50674-6
10.1038/s41467-024-50382-1
10.1016/j.scitotenv.2018.06.319
10.1021/acs.analchem.1c00354
10.1038/s41467-024-53216-2
10.1021/acs.analchem.3c05311
10.1021/acs.analchem.3c00260
10.1038/s41467-024-52511-2
10.1016/j.saa.2022.121707
10.1109/CVPR.2014.242
10.1038/s41467-023-41504-2
10.1016/j.compag.2023.108385
10.1016/j.compag.2024.108760
10.1016/j.geoderma.2018.12.031
10.1016/j.geoderma.2020.114306
10.1021/acs.analchem.1c04307
10.1016/j.algal.2023.103352
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright American Chemical Society Jan 14, 2025
Copyright_xml – notice: 2024 American Chemical Society
– notice: Copyright American Chemical Society Jan 14, 2025
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/acs.analchem.4c04548
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 463
ExternalDocumentID 39699010
10_1021_acs_analchem_4c04548
d220865968
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.DC
.K2
23M
4.4
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
AAHBH
ABHFT
ABHMW
ABJNI
ABMVS
ABOCM
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACKOT
ACNCT
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
D0L
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
KZ1
LMP
P2P
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X6Y
XSW
YZZ
ZCA
~02
AAYXX
ABBLG
ABLBI
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
53G
7X8
7S9
L.6
ID FETCH-LOGICAL-a358t-d09b0f8dd8d3d816927be8da3d298a1e03432991a356cfe8a3ba1c1a577f509f3
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Thu Jul 10 18:51:22 EDT 2025
Thu Jul 10 20:41:31 EDT 2025
Mon Jun 30 10:13:45 EDT 2025
Thu Apr 03 06:54:43 EDT 2025
Tue Jul 01 04:12:44 EDT 2025
Thu Jan 16 03:20:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a358t-d09b0f8dd8d3d816927be8da3d298a1e03432991a356cfe8a3ba1c1a577f509f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5506-8828
0000-0003-1684-3072
PMID 39699010
PQID 3160105632
PQPubID 45400
PageCount 10
ParticipantIDs proquest_miscellaneous_3165866536
proquest_miscellaneous_3147134235
proquest_journals_3160105632
pubmed_primary_39699010
crossref_primary_10_1021_acs_analchem_4c04548
acs_journals_10_1021_acs_analchem_4c04548
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-14
PublicationDateYYYYMMDD 2025-01-14
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1038/s41893-024-01385-9
– ident: ref11/cit11
  doi: 10.1007/s11694-023-02320-w
– ident: ref21/cit21
  doi: 10.1016/j.foodres.2024.114564
– ident: ref13/cit13
  doi: 10.1016/j.compag.2023.108427
– ident: ref41/cit41
  doi: 10.1016/j.geoderma.2023.116752
– ident: ref37/cit37
  doi: 10.1016/j.still.2021.105109
– ident: ref44/cit44
  doi: 10.1016/j.geoderma.2009.04.010
– ident: ref25/cit25
  doi: 10.1109/TIM.2021.3115212
– ident: ref43/cit43
  doi: 10.1016/j.aca.2019.06.012
– ident: ref8/cit8
  doi: 10.1016/j.still.2024.106250
– ident: ref22/cit22
  doi: 10.1021/acs.analchem.3c02002
– ident: ref24/cit24
  doi: 10.1021/acs.analchem.2c01398
– ident: ref3/cit3
  doi: 10.1038/s41467-024-49665-4
– ident: ref30/cit30
  doi: 10.1016/j.compag.2023.108350
– ident: ref39/cit39
  doi: 10.1038/s41467-024-53753-w
– ident: ref33/cit33
  doi: 10.1007/s11119-021-09792-0
– ident: ref45/cit45
  doi: 10.1016/j.compag.2019.03.016
– ident: ref18/cit18
– ident: ref6/cit6
  doi: 10.1016/j.geoderma.2009.12.025
– ident: ref34/cit34
  doi: 10.1016/j.still.2024.106247
– ident: ref42/cit42
  doi: 10.1016/j.aca.2019.01.002
– ident: ref15/cit15
  doi: 10.1021/acs.analchem.4c00563
– ident: ref19/cit19
  doi: 10.1016/j.talanta.2024.125910
– ident: ref7/cit7
  doi: 10.1016/j.compag.2021.106624
– ident: ref4/cit4
  doi: 10.1021/acs.analchem.6b03101
– ident: ref12/cit12
  doi: 10.1016/j.postharvbio.2021.111741
– ident: ref17/cit17
– ident: ref14/cit14
  doi: 10.1021/acs.analchem.1c03250
– ident: ref2/cit2
  doi: 10.1038/s41467-024-50674-6
– ident: ref31/cit31
  doi: 10.1038/s41467-024-50382-1
– ident: ref35/cit35
  doi: 10.1016/j.scitotenv.2018.06.319
– ident: ref29/cit29
  doi: 10.1021/acs.analchem.1c00354
– ident: ref38/cit38
  doi: 10.1038/s41467-024-53216-2
– ident: ref5/cit5
  doi: 10.1021/acs.analchem.3c05311
– ident: ref27/cit27
  doi: 10.1021/acs.analchem.3c00260
– ident: ref40/cit40
  doi: 10.1038/s41467-024-52511-2
– ident: ref36/cit36
  doi: 10.1016/j.saa.2022.121707
– ident: ref26/cit26
  doi: 10.1109/CVPR.2014.242
– ident: ref1/cit1
  doi: 10.1038/s41467-023-41504-2
– ident: ref16/cit16
  doi: 10.1016/j.compag.2023.108385
– ident: ref20/cit20
  doi: 10.1016/j.compag.2024.108760
– ident: ref9/cit9
  doi: 10.1016/j.geoderma.2018.12.031
– ident: ref10/cit10
  doi: 10.1016/j.geoderma.2020.114306
– ident: ref28/cit28
  doi: 10.1021/acs.analchem.1c04307
– ident: ref23/cit23
  doi: 10.1016/j.algal.2023.103352
SSID ssj0011016
Score 2.4682243
Snippet Soil total nitrogen (STN) plays an important role in plant growth, and rapid and nondestructive detection of STN content is essential for agricultural...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 454
SubjectTerms Agricultural production
analytical chemistry
data collection
Datasets
Heterogeneity
Infrared spectra
Infrared spectroscopy
least squares
Machine learning
Near infrared radiation
near-infrared spectroscopy
Nitrogen
Plant growth
prediction
soil
Soil analysis
Soil improvement
Soils
Spectrum analysis
total nitrogen
Title Pair-Soil-Spectra: An Approach for NIRS-Based Soil Total Nitrogen Content Detection with Feature Metrics in Cases of Small Sample Sizes
URI http://dx.doi.org/10.1021/acs.analchem.4c04548
https://www.ncbi.nlm.nih.gov/pubmed/39699010
https://www.proquest.com/docview/3160105632
https://www.proquest.com/docview/3147134235
https://www.proquest.com/docview/3165866536
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHIADj_LoQkFG4sLBS2wnjpfbslAVpC6ItFJvkV-RIrZJlWQv_QP8bWayyZaHyuOajJ3MeKz5xuOZIeSl0856xz3e8_MsVollxgrOwBaEwgZVFP1R9tFSHZ7EH0-T00tH8dcIvuCvjWunBoQKPJxNY4cl4_R1ckMonaKzNV9k26gBeqJjhzwMqI6pclfMggbJtT8bpCtQZm9tDu6ST2POzuaSydfpurNTd_F7Ccd_ZOQeuTMATzrfaMp9ci1Uu-TmYuz3tktu_1Ca8AH59tmUDcvqcsWwRX3XmDd0XtH5UIKcAtalyw9fMvYWzKCnSEiPa0DydFl2TQ1qSfvCV1VH34Wuv-9VUTz0pQg6102gR9jLy7W0BEqYo6V1QbMzs1rRzGDJYpqVF6F9SE4O3h8vDtnQtIEZmeiO-Whmo0J7r730mquZSG3Q3kgvZtrwEGEmK4BSoFauCNpIa7jjJknTAsBLIR-Rnaquwh6hhUrA1Q9SSidjQDYwOnVOGKtgvObxhLwCmebDpmvzPp4ueI4PR0Hng6AnhI2rnJ9v6nj8hX5_VIXLD0iO7muipJiQF9vXsEwYZDFVqNdIE2N6rpDJn2gA9ymVSDUhjzdqtv0pOVMYqoye_AdzT8ktgW2JI854vE92umYdngFW6uzzfoN8B5tMD4c
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKORQOPMqjCwWMxIWDlzhOvF5uy0K1he4KkS3qLfIrUtRtgpLspX-Av81MNtkCUkG9OmPHHo8133g8M4S8scoaZ7nDd36ORTI2TJuQM9AFPjNeZll7lT1fyNlp9PksPtshcR8LA5OoYaS6deJfZRfg77BNA29hKRfDyGLmOHWL3AY8EqLNNZkmW-cBGqR9oTz0q_YRc9eMgnrJ1n_qpWvAZqt0ju6T79vptm9Nzofrxgzt5V-ZHG-8ngfkXgdD6WQjNw_Jji_2yd60r_62T-7-lqjwEfn5VecVS8p8xbBgfVPp93RS0EmXkJwC8qWL428J-wBK0VEkpMsScD1d5E1VgpDSNg1W0dCPvmlffxUUr4ApQtB15ekcK3vZmuZACWPUtMxocqFXK5poTGBMk_zS14_J6dGn5XTGuhIOTItYNcwFYxNkyjnlhFNcjsOR8cpp4cKx0twHGNcKEBWopc280sJobrmOR6MMoEwmnpDdoiz8AaGZjMHw90IIKyLAOdB7ZG2ojYT-ikcD8hZ4mnZHsE5b73rIU2zsGZ12jB4Q1m92-mOT1eM_9Ie9RFz9QHA0ZmMpwgF5vf0M24QuF134co00EQbrhiL-Fw2gQCljIQfk6UbatpMSY4mOy-DZDRb3iuzNlvOT9OR48eU5uRNiweKAMx4dkt2mWvsXgKIa87I9M78AStQX6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSDwOPAqUhQJG4sLBSxwnrpfbsmXVAl1VpJWqXiI_pajbpNpkL_0D_G1msslSkAqCqzN27PFY89ljf0PIW6uscZY7vOfnWCJTw7SJOQNf4IPxMoT2KPtgJveOk88n6cmVVF_QiRpaqtsgPq7qCxc6hgH-Hss16BeGcz5MLLLHqZvkFkbucN81nmTrAAJuSvtkeRhb7V_NXdMK-iZb_-qbrgGcreOZPiCn6y63903OhsvGDO3lb2yO_zWmh-R-B0fpeGU_j8gNX26SO5M-C9wmuXeFsPAx-X6oiwXLqmLOMHF9s9Af6Lik446YnAICprP9bxn7CM7RURSkRxXgezormkUFxkpbOqyyobu-aW-BlRSPgilC0eXC0wPM8GVrWoAktFHTKtDsXM_nNNNIZEyz4tLXT8jx9NPRZI91qRyYFqlqmItGJgrKOeWEU1yO4h3jldPCxSOluY_wfStAVZCWNnilhdHccg0TGwDSBPGUbJRV6Z8RGmTqjfBCCCsSwDtQe8faWBsJ9RVPBuQd6DTvlmKdt1H2mOdY2Cs67xQ9IKyf8Pxixe7xF_nt3ip-_kBw3NSmUsQD8mb9GaYJQy-69NUSZRJ8tBuL9E8ygAalTIUckK2Vxa07JUYSA5jR838Y3Gty-3B3mn_dn315Qe7GmLc44own22SjWSz9SwBTjXnVLpsfTYQaaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pair-Soil-Spectra%3A+An+Approach+for+NIRS-Based+Soil+Total+Nitrogen+Content+Detection+with+Feature+Metrics+in+Cases+of+Small+Sample+Sizes&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Wang%2C+Yueting&rft.au=Zhao%2C+Chunjiang&rft.au=Xing%2C+Zhen&rft.au=Zhu%2C+Mingyan&rft.date=2025-01-14&rft.eissn=1520-6882&rft.volume=97&rft.issue=1&rft.spage=454&rft_id=info:doi/10.1021%2Facs.analchem.4c04548&rft_id=info%3Apmid%2F39699010&rft.externalDocID=39699010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon