Ancient Sea Level as Key to the Future

Studies of ancient sea levels provide insights into the mechanisms and rates of sea level changes due to tectonic processes (e.g., ocean crust production) and climatic variations (e.g., insolation due to Earth’s orbital changes and atmospheric CO₂). Global mean sea level (GMSL) changes since the Mid...

Full description

Saved in:
Bibliographic Details
Published inOceanography (Washington, D.C.) Vol. 33; no. 2; pp. 32 - 41
Main Authors Miller, Kenneth G., Schmelz, W. John, Browning, James V., Kopp, Robert E., Mountain, Gregory S., Wright, James D.
Format Journal Article
LanguageEnglish
Published Rockville Oceanography Society 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Studies of ancient sea levels provide insights into the mechanisms and rates of sea level changes due to tectonic processes (e.g., ocean crust production) and climatic variations (e.g., insolation due to Earth’s orbital changes and atmospheric CO₂). Global mean sea level (GMSL) changes since the Middle Eocene (ca. 48 million years ago [Ma]) have been primarily driven by ice volume changes paced on astronomical timescales (2400, 1200, 95/125, 41, and 19/23 thousand years [kyr]), modulated by changes in atmospheric CO₂. During peak warm intervals (e.g., Early Eocene Climatic Optimum 56–48 Ma and the early Late Cretaceous ca. 100–80 Ma), atmospheric CO₂ was high and Earth was more than 5°C warmer and mostly ice-free, contributing ~66 m of GMSL rise from ice alone. However, even in the warmest times (e.g., Early Eocene, ca 50 Ma), growth and decay of small ice sheets (25 m sea level equivalent) likely drove sea level changes that inundated continents and controlled the record of shallow-water deposits. Ice sheets were confined to the interior of Antarctica prior to the Oligocene and first reached the Antarctic coast at 34 Ma, with the lowest sea levels –20±10 m relative to modern GMSL. Following a near ice-free Miocene Climatic Optimum (17–13.8 Ma), a permanent East Antarctic Ice Sheet (EAIS) developed in the Middle Miocene (ca. 13.8 Ma). During the Pliocene (4–3 Ma), CO₂ was similar to 2020 CE (Common Era) and sea levels stood ~22±10 m above present, requiring significant loss of the Greenland Ice Sheet (~7 m of sea level), West Antarctic Ice Sheet (~5 m after isostatic compensation), and vulnerable portions of the EAIS. The small Northern Hemisphere ice sheets of the Eocene to Pliocene expanded into continental scale in the Quaternary (past 2.55 million years). Sea level reached its lowest point (~130 m below present) during the Last Glacial Maximum (ca. 27–20 thousand years before 1950 [ka]), episodically rose during the deglaciation (ca. 20–11 ka) at rates that at times were in excess of 47 mm yr–1 (vs. modern rates of 3.2 mm yr–1), and progressively slowed during the Early to Middle Holocene from ca. 11 ka until ~4 ka. During the Late Holocene (last 4.2 kyr, including the CE), GMSL only exhibited multi-centennial variability of ±0.1 m. The modern episode of GMSL rise began in the late nineteenth century, with most of the twentieth century rise attributable to global warming and ice melt. Under moderate emissions scenarios, GMSL is likely to rise 0.4–1.0 m in this century, with ancient analogs suggesting a longer term (centennial to millennial scale) equilibrium rise of ~10 m. Under higher emissions scenarios, twenty-first century GMSL will rise greater than 2 m, and in the long term, tens of meters cannot be excluded.
AbstractList Studies of ancient sea levels provide insights into the mechanisms and rates of sea level changes due to tectonic processes (e.g., ocean crust production) and climatic variations (e.g., insolation due to Earth's orbital changes and atmospheric CO2). Global mean sea level (GMSL) changes since the Middle Eocene (ca. 48 million years ago [Ma]) have been primarily driven by ice volume changes paced on astronomical timescales (2400, 1200, 95/125, 41, and 19/23 thousand years [kyr]), modulated by changes in atmospheric CO2. During peak warm intervals (e.g., Early Eocene Climatic Optimum 56–48 Ma and the early Late Cretaceous ca. 100–80 Ma), atmospheric CO2 was high and Earth was more than 5°C warmer and mostly ice-free, contributing ~66 m of GMSL rise from ice alone. However, even in the warmest times (e.g., Early Eocene, ca 50 Ma), growth and decay of small ice sheets (<25 m sea level equivalent) likely drove sea level changes that inundated continents and controlled the record of shallow-water deposits. Ice sheets were confined to the interior of Antarctica prior to the Oligocene and first reached the Antarctic coast at 34 Ma, with the lowest sea levels –20±10 m relative to modern GMSL. Following a near ice-free Miocene Climatic Optimum (17–13.8 Ma), a permanent East Antarctic Ice Sheet (EAIS) developed in the Middle Miocene (ca. 13.8 Ma). During the Pliocene (4–3 Ma), CO2 was similar to 2020 CE (Common Era) and sea levels stood ~22±10 m above present, requiring significant loss of the Greenland Ice Sheet (~7 m of sea level), West Antarctic Ice Sheet (~5 m after isostatic compensation), and vulnerable portions of the EAIS. The small Northern Hemisphere ice sheets of the Eocene to Pliocene expanded into continental scale in the Quaternary (past 2.55 million years). Sea level reached its lowest point (~130 m below present) during the Last Glacial Maximum (ca. 27–20 thousand years before 1950 [ka]), episodically rose during the deglaciation (ca. 20–11 ka) at rates that at times were in excess of 47 mm yr–1 (vs. modern rates of 3.2 mm yr–1), and progressively slowed during the Early to Middle Holocene from ca. 11 ka until ~4 ka. During the Late Holocene (last 4.2 kyr, including the CE), GMSL only exhibited multi-centennial variability of ±0.1 m. The modern episode of GMSL rise began in the late nineteenth century, with most of the twentieth century rise attributable to global warming and ice melt. Under moderate emissions scenarios, GMSL is likely to rise 0.4–1.0 m in this century, with ancient analogs suggesting a longer term (centennial to millennial scale) equilibrium rise of ~10 m. Under higher emissions scenarios, twenty-first century GMSL will rise greater than 2 m, and in the long term, tens of meters cannot be excluded.
Studies of ancient sea levels provide insights into the mechanisms and rates of sea level changes due to tectonic processes (e.g., ocean crust production) and climatic variations (e.g., insolation due to Earth’s orbital changes and atmospheric CO₂). Global mean sea level (GMSL) changes since the Middle Eocene (ca. 48 million years ago [Ma]) have been primarily driven by ice volume changes paced on astronomical timescales (2400, 1200, 95/125, 41, and 19/23 thousand years [kyr]), modulated by changes in atmospheric CO₂. During peak warm intervals (e.g., Early Eocene Climatic Optimum 56–48 Ma and the early Late Cretaceous ca. 100–80 Ma), atmospheric CO₂ was high and Earth was more than 5°C warmer and mostly ice-free, contributing ~66 m of GMSL rise from ice alone. However, even in the warmest times (e.g., Early Eocene, ca 50 Ma), growth and decay of small ice sheets (25 m sea level equivalent) likely drove sea level changes that inundated continents and controlled the record of shallow-water deposits. Ice sheets were confined to the interior of Antarctica prior to the Oligocene and first reached the Antarctic coast at 34 Ma, with the lowest sea levels –20±10 m relative to modern GMSL. Following a near ice-free Miocene Climatic Optimum (17–13.8 Ma), a permanent East Antarctic Ice Sheet (EAIS) developed in the Middle Miocene (ca. 13.8 Ma). During the Pliocene (4–3 Ma), CO₂ was similar to 2020 CE (Common Era) and sea levels stood ~22±10 m above present, requiring significant loss of the Greenland Ice Sheet (~7 m of sea level), West Antarctic Ice Sheet (~5 m after isostatic compensation), and vulnerable portions of the EAIS. The small Northern Hemisphere ice sheets of the Eocene to Pliocene expanded into continental scale in the Quaternary (past 2.55 million years). Sea level reached its lowest point (~130 m below present) during the Last Glacial Maximum (ca. 27–20 thousand years before 1950 [ka]), episodically rose during the deglaciation (ca. 20–11 ka) at rates that at times were in excess of 47 mm yr–1 (vs. modern rates of 3.2 mm yr–1), and progressively slowed during the Early to Middle Holocene from ca. 11 ka until ~4 ka. During the Late Holocene (last 4.2 kyr, including the CE), GMSL only exhibited multi-centennial variability of ±0.1 m. The modern episode of GMSL rise began in the late nineteenth century, with most of the twentieth century rise attributable to global warming and ice melt. Under moderate emissions scenarios, GMSL is likely to rise 0.4–1.0 m in this century, with ancient analogs suggesting a longer term (centennial to millennial scale) equilibrium rise of ~10 m. Under higher emissions scenarios, twenty-first century GMSL will rise greater than 2 m, and in the long term, tens of meters cannot be excluded.
Author Browning, James V.
Miller, Kenneth G.
Schmelz, W. John
Mountain, Gregory S.
Wright, James D.
Kopp, Robert E.
Author_xml – sequence: 1
  givenname: Kenneth G.
  surname: Miller
  fullname: Miller, Kenneth G.
– sequence: 2
  givenname: W. John
  surname: Schmelz
  fullname: Schmelz, W. John
– sequence: 3
  givenname: James V.
  surname: Browning
  fullname: Browning, James V.
– sequence: 4
  givenname: Robert E.
  surname: Kopp
  fullname: Kopp, Robert E.
– sequence: 5
  givenname: Gregory S.
  surname: Mountain
  fullname: Mountain, Gregory S.
– sequence: 6
  givenname: James D.
  surname: Wright
  fullname: Wright, James D.
BookMark eNo9j89LwzAUx4NMcKsevHkRBp5bX16Spj2O4VQoeFDBW0jTVFZmMpNO8L83o8PTg-_7_uCzIDPnnSXkhkIhSgn33ljt_GeBgFAg8jMyRyZlXlL5MSNzChzzCqW4IIsYBwAh03dOrlfObK0bl69WLxv7Y3eX5LzXu2ivTjcj75uHt_VT3rw8Pq9XTa6ZqMa81doyLGka6W1LBfCuNR1jnHVta5LOUYJOOoW6QtYZLUXJwEje0xprYBm5m3r3wX8fbBzV4A_BpUmFXFS1FDKVZwQmlwk-xmB7tQ_bLx1-FQV1BFcncHUEVwk8RW6nyBBHH_79WNaJmEn2BwvkVSM
CitedBy_id crossref_primary_10_1016_j_epsl_2023_118312
crossref_primary_10_1002_gj_4679
crossref_primary_10_1111_brv_13050
crossref_primary_10_1016_j_chemgeo_2022_121183
crossref_primary_10_1016_j_seares_2023_102390
crossref_primary_10_1016_j_jseaes_2023_106003
crossref_primary_10_1016_j_palaeo_2023_111513
crossref_primary_10_1029_2020GL090521
crossref_primary_10_1016_j_margeo_2024_107254
crossref_primary_10_3389_feart_2021_678189
crossref_primary_10_1080_08120099_2023_2139756
crossref_primary_10_1007_s10040_023_02716_4
crossref_primary_10_1016_j_geomorph_2022_108262
crossref_primary_10_1088_1755_1315_1271_1_012005
crossref_primary_10_1111_zsc_12563
crossref_primary_10_1186_s40562_021_00184_w
crossref_primary_10_1134_S0016793222070088
crossref_primary_10_3390_geosciences13110351
crossref_primary_10_1002_dep2_264
Cites_doi 10.1029/2007PA001483
10.1016/j.gloplacha.2018.04.004
10.1126/sciadv.aaz1346
10.1038/ncomms14845
10.1080/01490419.2010.491031
10.1038/nature11300
10.1029/2011JC007255
10.1038/s41467-019-13792-0
10.1038/nature10902
10.1007/s10712-019-09525-z
10.1038/ngeo2616
10.1146/annurev.earth.32.082503.144359
10.1016/j.quascirev.2015.04.015
10.1073/pnas.1517056113
10.1016/j.margeo.2005.02.007
10.1073/pnas.1817205116
10.1029/2006PA001340
10.1038/nature04668
10.1016/j.epsl.2018.04.054
10.1073/pnas.1411762111
10.1029/2019PA003835
10.1029/90JB02015
10.2110/pec.83.06.0041
10.1126/science.235.4793.1156
10.1038/nclimate2923
10.5194/essd-10-1551-2018
10.1002/2015PA002847
10.1146/annurev.ea.22.050194.002033
10.1002/2014PA002653
10.1016/j.quascirev.2018.10.012
10.1016/S0031-0182(03)00393-6
10.1126/science.aaa4019
10.1038/nature25026
10.1126/science.287.5451.269
10.1146/annurev-environ-102017-025826
10.1126/sciadv.aat8223
10.1016/j.earscirev.2019.102901
10.1038/s41561-019-0510-8
10.1088/1748-9326/aaac87
10.22498/pages.27.1.4
10.1073/pnas.1616007114
10.1130/GES01241.1
10.1130/G32869.1
10.1144/TMS002.21
10.1029/GM032p0455
10.1016/j.earscirev.2011.09.003
10.5670/oceanog.2020.208
10.1130/G19800.1
10.1126/science.289.5486.1897
10.1130/G20580.1
10.1073/pnas.0802501105
10.1016/j.earscirev.2017.11.022
10.1016/0012-821X(83)90162-0
10.1016/j.epsl.2013.10.030
10.1002/2014EF000239
10.1130/GSAT01802A.1
10.1038/342637a0
10.1016/j.quascirev.2006.04.010
10.1016/j.cretres.2020.104445
10.5194/gmd-13-3571-2020
10.1029/2010PA002055
ContentType Journal Article
Copyright Copyright Oceanography Society Jun 2020
Copyright_xml – notice: Copyright Oceanography Society Jun 2020
CorporateAuthor Rutgers University
CorporateAuthor_xml – name: Rutgers University
DBID AAYXX
CITATION
7TN
F1W
DOI 10.5670/oceanog.2020.224
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitle CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Oceanic Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2377-617X
EndPage 41
ExternalDocumentID 10_5670_oceanog_2020_224
26937737
GroupedDBID -~X
123
2WC
6TJ
ABBHK
ABDBF
ABXSQ
ADBBV
ADULT
AENEX
AEUPB
AIFVT
AIRJO
ALMA_UNASSIGNED_HOLDINGS
BBORY
BCNDV
EBD
EBS
EJD
EQZMY
FRP
GROUPED_DOAJ
IZHOT
JAAYA
JENOY
JKQEH
JLEZI
JLXEF
JPL
JSODD
JST
OK1
P2P
RNS
SA0
SWMRO
~02
AAYXX
ADACV
AEKFB
CITATION
7TN
F1W
ID FETCH-LOGICAL-a358t-baae3261237feb1504dbcd3343dbbc6124270a150109823dca75630c74f192903
ISSN 1042-8275
IngestDate Fri Sep 13 03:13:36 EDT 2024
Fri Aug 23 04:51:54 EDT 2024
Fri Feb 02 07:54:34 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a358t-baae3261237feb1504dbcd3343dbbc6124270a150109823dca75630c74f192903
OpenAccessLink https://tos.org/oceanography/assets/docs/33-2_miller.pdf
PQID 2458975712
PQPubID 2049004
PageCount 10
ParticipantIDs proquest_journals_2458975712
crossref_primary_10_5670_oceanog_2020_224
jstor_primary_26937737
PublicationCentury 2000
PublicationDate 20200601
2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200601
  day: 1
PublicationDecade 2020
PublicationPlace Rockville
PublicationPlace_xml – name: Rockville
PublicationTitle Oceanography (Washington, D.C.)
PublicationYear 2020
Publisher Oceanography Society
Publisher_xml – name: Oceanography Society
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
Fairbanks (ref16) 1989
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref0
ref2
ref1
ref39
ref38
ref24
ref68
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref63
  doi: 10.1029/2007PA001483
– ident: ref26
  doi: 10.1016/j.gloplacha.2018.04.004
– ident: ref44
  doi: 10.1126/sciadv.aaz1346
– ident: ref17
  doi: 10.1038/ncomms14845
– ident: ref46
  doi: 10.1080/01490419.2010.491031
– ident: ref51
  doi: 10.1038/nature11300
– ident: ref9
  doi: 10.1029/2011JC007255
– ident: ref61
  doi: 10.1038/s41467-019-13792-0
– ident: ref13
  doi: 10.1038/nature10902
– ident: ref21
  doi: 10.1007/s10712-019-09525-z
– ident: ref37
  doi: 10.1038/ngeo2616
– ident: ref48
  doi: 10.1146/annurev.earth.32.082503.144359
– ident: ref67
  doi: 10.1016/j.quascirev.2015.04.015
– ident: ref33
  doi: 10.1073/pnas.1517056113
– ident: ref41
  doi: 10.1016/j.margeo.2005.02.007
– ident: ref1
  doi: 10.1073/pnas.1817205116
– ident: ref62
  doi: 10.1029/2006PA001340
– ident: ref60
  doi: 10.1038/nature04668
– ident: ref4
  doi: 10.1016/j.epsl.2018.04.054
– ident: ref34
  doi: 10.1073/pnas.1411762111
– ident: ref40
– ident: ref24
  doi: 10.1029/2019PA003835
– ident: ref39
  doi: 10.1029/90JB02015
– ident: ref47
– ident: ref50
  doi: 10.2110/pec.83.06.0041
– ident: ref23
  doi: 10.1126/science.235.4793.1156
– ident: ref8
  doi: 10.1038/nclimate2923
– ident: ref66
  doi: 10.5194/essd-10-1551-2018
– ident: ref0
  doi: 10.1002/2015PA002847
– ident: ref54
  doi: 10.1146/annurev.ea.22.050194.002033
– ident: ref20
  doi: 10.1002/2014PA002653
– ident: ref30
  doi: 10.1016/j.quascirev.2018.10.012
– ident: ref12
  doi: 10.1016/S0031-0182(03)00393-6
– ident: ref64
– ident: ref3
– ident: ref15
  doi: 10.1126/science.aaa4019
– ident: ref7
– ident: ref22
  doi: 10.1038/nature25026
– ident: ref35
  doi: 10.1126/science.287.5451.269
– ident: ref25
  doi: 10.1146/annurev-environ-102017-025826
– ident: ref28
  doi: 10.1126/sciadv.aat8223
– ident: ref29
– ident: ref53
  doi: 10.1016/j.earscirev.2019.102901
– ident: ref45
  doi: 10.1038/s41561-019-0510-8
– ident: ref52
  doi: 10.1088/1748-9326/aaac87
– ident: ref43
  doi: 10.22498/pages.27.1.4
– ident: ref10
  doi: 10.1073/pnas.1616007114
– ident: ref31
  doi: 10.1130/GES01241.1
– ident: ref42
  doi: 10.1130/G32869.1
– ident: ref19
– ident: ref14
  doi: 10.1144/TMS002.21
– ident: ref65
  doi: 10.1029/GM032p0455
– ident: ref6
  doi: 10.1016/j.earscirev.2011.09.003
– ident: ref18
  doi: 10.5670/oceanog.2020.208
– ident: ref5
  doi: 10.1130/G19800.1
– ident: ref59
  doi: 10.1126/science.289.5486.1897
– ident: ref27
  doi: 10.1130/G20580.1
– ident: ref36
  doi: 10.1073/pnas.0802501105
– ident: ref55
  doi: 10.1016/j.earscirev.2017.11.022
– ident: ref58
  doi: 10.1016/0012-821X(83)90162-0
– ident: ref57
  doi: 10.1016/j.epsl.2013.10.030
– ident: ref32
  doi: 10.1002/2014EF000239
– ident: ref68
  doi: 10.1130/GSAT01802A.1
– issue: 0
  year: 1989
  ident: ref16
  article-title: . A 17,000-year glacio-​eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637-642
  publication-title: https
  doi: 10.1038/342637a0
  contributor:
    fullname: Fairbanks
– ident: ref49
  doi: 10.1016/j.quascirev.2006.04.010
– ident: ref11
  doi: 10.1016/j.cretres.2020.104445
– ident: ref56
– ident: ref38
  doi: 10.5194/gmd-13-3571-2020
– ident: ref2
  doi: 10.1029/2010PA002055
SSID ssj0057377
Score 2.4138043
Snippet Studies of ancient sea levels provide insights into the mechanisms and rates of sea level changes due to tectonic processes (e.g., ocean crust production) and...
SourceID proquest
crossref
jstor
SourceType Aggregation Database
Publisher
StartPage 32
SubjectTerms Analogs
Carbon dioxide
Climate change
Cretaceous
Deglaciation
Emissions
Eocene
Glaciation
Holocene
Ice
Ice melting
Ice sheets
Ice volume
Mean sea level
Meltwater
Miocene
Oceanic crust
Oligocene
Pliocene
Polar environments
Quaternary
Sea level
Sea level changes
Shallow water
SPECIAL ISSUE ON PALEOCEANOGRAPHY: LESSONS FOR A CHANGING WORLD
Subtitle as Key to the Future
Title Ancient Sea Level
URI https://www.jstor.org/stable/26937737
https://www.proquest.com/docview/2458975712/abstract/
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcYvEyTpo0NrRtDfkBIaEpI_VEnj4CoEBQqba3WPVm244oHllYje9lfv_NHk5QhxHiJqmtVO3eX893lfncI7StiGCk5SwpObMJEPkhypmmiNFH9MqOK-2bVV9eD8ym7mPFZiz3x6JJap-bPg7iS50gVaCBXh5L9D8k2fwoE-AzyhStIGK5PkvFx5eGM8MCrLyNX_eOmxlzaxqEcNg1DVv7n2FhVxS7VzrlsZikF45Oepp3UQIsTjOiddhDXN3Pz09765PP3tXJeH9bHOSm-Aretor1cLJdtMXeEQMSEA8nawqgQnnY3GktLOwbUwX1yEqahpNbTCBUeijjrWt3Q_iJqF-mY0JDuvG_Z-UC4UshFWDx1-0pJQF-vN9G-HsvhdDSSk7PZ5AXaIqLgEJNvnZyMv_5YHdFcUD-Ss9lseH_t1ji6v8KavxJKVv85tr0vMnmDXscgAh8HjXiLNmy1jV51WfYOHUTlwKAc2CsHVncYlAPXCwzKgYNyvEfT4dnk9DyJQzESRXleJ1opS13fNyrmcM7yjJXalJQyWmptgM6IyBTQ-1mRE1oaJVwLOCPYHJz5IqM7aLNaVPYDwkYYzq0RfYeiNabUwr2FKwzJcqFFqXvocHXrchl6n0iIGR2bZGSTdGySwKYe2vG8aX5IBuD4Ap97aHfFLBkfnTtJGM8LwWHlj49__Qm9bFVwF23Wv37bz-AF1novynTPZ1H-AnQVWi8
link.rule.ids 315,786,790,870,27957,27958
linkProvider American Geosciences Institute
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ancient+Sea+Level+as+Key+to+the+Future&rft.jtitle=Oceanography+%28Washington%2C+D.C.%29&rft.au=Miller%2C+Kenneth+G&rft.au=Schmelz%2C+W+John&rft.au=Browning%2C+James+V&rft.au=Kopp%2C+Robert+E&rft.date=2020-06-01&rft.pub=Oceanography+Society&rft.issn=1042-8275&rft.eissn=2377-617X&rft.volume=33&rft.issue=2&rft.spage=32&rft_id=info:doi/10.5670%2Foceanog.2020.224&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-8275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-8275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-8275&client=summon