Resonance Coupling between Molecular Excitons and Nonradiating Anapole Modes in Silicon Nanodisk-J-Aggregate Heterostructures

The nonradiating nature of anapole modes owing to the compositions of electric and toroidal dipole moments makes them distinct from conversional radiative resonances, and they have been suggested for the design of nanophotonic devices such as nanolasers based on light–matter interactions tailor by n...

Full description

Saved in:
Bibliographic Details
Published inACS photonics Vol. 5; no. 4; pp. 1628 - 1639
Main Authors Liu, Shao-Ding, Fan, Jin-Li, Wang, Wen-Jie, Chen, Jing-Dong, Chen, Zhi-Hui
Format Journal Article
LanguageEnglish
Published American Chemical Society 18.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The nonradiating nature of anapole modes owing to the compositions of electric and toroidal dipole moments makes them distinct from conversional radiative resonances, and they have been suggested for the design of nanophotonic devices such as nanolasers based on light–matter interactions tailor by nanodisks. Therefore, the investigation of resonance coupling between molecular excitons and anapole modes is not only of fundamental interest, but is also promising for practical applications. To this end, a heterostructure composed of a silicon nanodisk and a uniform molecular J-aggregate ring is used to achieve the resonance coupling between the exciton transition and the anapole mode. In contrast with that of the conversional resonances, the resonance coupling is evidenced by a scattering peak around the exciton transition frequency, and the anapole mode splits into a pair of eigenmodes characterized as pronounced scattering dips, which are termed as the formation of two hybrid anapole modes caused by the coherent energy exchange in the heterostructure, and it has been verified by the multipole decompositions and the near-field distributions. An anticrossing behavior with a mode splitting of 161 meV is observed on the energy diagram, indicating that the strong coupling regime is achieved. Furthermore, due to the unique near-field distribution associated with the anapole mode, there is a much larger upper limit value for the width of the J-aggregate ring to enhance the resonance coupling, and the molecules located around the apexes of the disk perpendicular to the incident polarization play the dominate role for the resonance coupling.
AbstractList The nonradiating nature of anapole modes owing to the compositions of electric and toroidal dipole moments makes them distinct from conversional radiative resonances, and they have been suggested for the design of nanophotonic devices such as nanolasers based on light–matter interactions tailor by nanodisks. Therefore, the investigation of resonance coupling between molecular excitons and anapole modes is not only of fundamental interest, but is also promising for practical applications. To this end, a heterostructure composed of a silicon nanodisk and a uniform molecular J-aggregate ring is used to achieve the resonance coupling between the exciton transition and the anapole mode. In contrast with that of the conversional resonances, the resonance coupling is evidenced by a scattering peak around the exciton transition frequency, and the anapole mode splits into a pair of eigenmodes characterized as pronounced scattering dips, which are termed as the formation of two hybrid anapole modes caused by the coherent energy exchange in the heterostructure, and it has been verified by the multipole decompositions and the near-field distributions. An anticrossing behavior with a mode splitting of 161 meV is observed on the energy diagram, indicating that the strong coupling regime is achieved. Furthermore, due to the unique near-field distribution associated with the anapole mode, there is a much larger upper limit value for the width of the J-aggregate ring to enhance the resonance coupling, and the molecules located around the apexes of the disk perpendicular to the incident polarization play the dominate role for the resonance coupling.
Author Liu, Shao-Ding
Fan, Jin-Li
Chen, Zhi-Hui
Wang, Wen-Jie
Chen, Jing-Dong
AuthorAffiliation Department of Physics and Optoelectronics
Taiyuan University of Technology
Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education
AuthorAffiliation_xml – name: Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education
– name: Taiyuan University of Technology
– name: Department of Physics and Optoelectronics
Author_xml – sequence: 1
  givenname: Shao-Ding
  orcidid: 0000-0003-4809-9815
  surname: Liu
  fullname: Liu, Shao-Ding
  email: liushaoding@tyut.edu.cn
– sequence: 2
  givenname: Jin-Li
  surname: Fan
  fullname: Fan, Jin-Li
– sequence: 3
  givenname: Wen-Jie
  surname: Wang
  fullname: Wang, Wen-Jie
– sequence: 4
  givenname: Jing-Dong
  surname: Chen
  fullname: Chen, Jing-Dong
– sequence: 5
  givenname: Zhi-Hui
  surname: Chen
  fullname: Chen, Zhi-Hui
BookMark eNqFkMtOwzAQRS0EEqX0D1j4B1L8SPpgV1WFgkqReKyjiT0pLsGubEfAgn_HVbuoWMDqjjT3zOjeM3JsnUVCLjjrcyb4JaiweXXRWaNCf1gxXoxHR6QjpGRZzoQ4PphPSS-ENWOMs0IOBnmHfD9icBasQjp17aYxdkUrjB-Ilt67BlXbgKezT2XSh0DBarp01oM2ELfeiYVNsiWvxkCNpU-mMcpZugTrtAlv2V02Wa08riAinWNE70L0rYqtx3BOTmpoAvb22iUv17Pn6TxbPNzcTieLDGQxihlncqC1EnWuJFQg5LiCEUioQRRSjqRMmouC1XwIWAkcg9C8LlRVoeaoh7JLrnZ3VfoePNZlypMCOBs9mKbkrNx2WR52We67THD-C9548w7-6z-M7bC0Ldeu9TYl_Bv5AfrWlEE
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c03760
crossref_primary_10_1364_JOSAB_482596
crossref_primary_10_3390_nano12010054
crossref_primary_10_1088_1361_6463_ad316a
crossref_primary_10_1038_s41565_019_0442_x
crossref_primary_10_1103_PhysRevB_109_195425
crossref_primary_10_1364_PRJ_453099
crossref_primary_10_1016_j_optlastec_2024_111995
crossref_primary_10_1364_PRJ_514576
crossref_primary_10_1515_nanoph_2019_0371
crossref_primary_10_1021_acsaom_3c00071
crossref_primary_10_1002_adom_202302603
crossref_primary_10_1063_5_0212236
crossref_primary_10_1016_j_optlastec_2025_112564
crossref_primary_10_1063_5_0204011
crossref_primary_10_1016_j_jcis_2022_05_003
crossref_primary_10_1021_acs_jpcc_2c08466
crossref_primary_10_1021_acsphotonics_0c00179
crossref_primary_10_1002_adom_201801350
crossref_primary_10_1021_acsnano_1c02204
crossref_primary_10_1103_PhysRevB_100_195306
crossref_primary_10_1088_1367_2630_abde6c
crossref_primary_10_1103_PhysRevApplied_18_014079
crossref_primary_10_1007_s40766_021_00015_w
crossref_primary_10_1021_acs_jpclett_0c02286
crossref_primary_10_1088_1361_6463_ab79dd
crossref_primary_10_1088_1674_1056_ac3bac
crossref_primary_10_1364_PRJ_7_001142
crossref_primary_10_1039_D4NR00042K
crossref_primary_10_1063_5_0180255
crossref_primary_10_1515_nanoph_2019_0505
crossref_primary_10_1021_acsphotonics_0c01470
crossref_primary_10_1109_JPHOT_2023_3324204
crossref_primary_10_1088_2040_8986_ac5cd7
crossref_primary_10_1088_1402_4896_ad3b51
crossref_primary_10_1364_OE_381648
crossref_primary_10_1088_1361_6463_ab373c
crossref_primary_10_1364_OE_434586
crossref_primary_10_1002_adpr_202200129
crossref_primary_10_1515_nanoph_2021_0394
crossref_primary_10_1038_s41467_020_16845_x
crossref_primary_10_1039_D4CP03142C
crossref_primary_10_1088_1361_6528_ac2bc3
crossref_primary_10_1088_1361_6528_ab02b0
crossref_primary_10_1016_j_rinp_2022_105809
crossref_primary_10_1109_JPHOT_2023_3306745
crossref_primary_10_1364_OE_389968
crossref_primary_10_35848_1882_0786_ac10a8
crossref_primary_10_1088_1361_6463_acd85f
crossref_primary_10_1364_OE_496305
crossref_primary_10_1021_acsanm_4c06648
crossref_primary_10_1039_D0NR01440K
crossref_primary_10_1021_acs_jpcc_0c08240
crossref_primary_10_1364_AO_494702
crossref_primary_10_1016_j_revip_2020_100040
crossref_primary_10_1103_PhysRevB_98_155439
crossref_primary_10_1063_5_0053709
crossref_primary_10_1364_OE_473358
crossref_primary_10_1002_smll_202405140
crossref_primary_10_1364_OE_27_007196
crossref_primary_10_1063_1_5078576
crossref_primary_10_1021_acs_jpcc_3c07393
crossref_primary_10_1021_acs_jpclett_9b01844
crossref_primary_10_1360_SSPMA_2024_0181
crossref_primary_10_1007_s11468_025_02893_w
crossref_primary_10_1364_OE_500058
crossref_primary_10_1088_2040_8986_ac8aa9
Cites_doi 10.1038/nmat2810
10.1103/PhysRevLett.112.153002
10.1021/acs.nanolett.6b01958
10.1038/ncomms5424
10.1021/acs.nanolett.7b01488
10.1021/nl802509r
10.1126/science.275.5303.1102
10.1021/jp209754m
10.1021/acsphotonics.6b00556
10.1021/acs.nanolett.7b04354
10.1021/acsphotonics.7b00668
10.1021/acs.nanolett.5b02989
10.1103/PhysRevB.95.165134
10.1103/PhysRevA.93.053837
10.1364/OE.25.001495
10.1021/acsphotonics.7b00661
10.1364/OE.25.022375
10.1021/acsphotonics.7b00674
10.1021/acsnano.6b06611
10.1103/PhysRevLett.101.047401
10.1038/ncomms2538
10.1021/acs.nanolett.6b02759
10.1103/PhysRevLett.108.097402
10.1038/nature01937
10.1021/nl0488228
10.1103/PhysRevLett.119.177401
10.1021/acsphotonics.7b00320
10.1103/PhysRevB.95.035104
10.1103/PhysRevA.95.063820
10.1021/nn100585h
10.1103/PhysRevLett.118.126802
10.1021/nl104352j
10.1021/nl4035219
10.1021/acsphotonics.7b00616
10.1364/OE.19.004815
10.1103/PhysRevLett.118.173901
10.1038/ncomms15535
10.1021/nl303927q
10.1021/acsphotonics.7b00953
10.1021/acsphotonics.5b00146
10.1021/nl3000453
10.1021/acs.nanolett.6b04659
10.1021/nl4014887
10.1103/PhysRevB.82.045404
10.1021/nl200579f
10.1021/acsphotonics.7b00631
10.1126/science.1187949
10.1103/PhysRevLett.106.196405
10.1021/ph500032d
10.1021/acsphotonics.7b00437
10.1088/0034-4885/78/1/013901
10.1038/lsa.2016.197
10.1016/j.cplett.2008.04.126
10.1021/nl8024278
10.1103/PhysRevLett.114.157401
10.1126/science.aag2472
10.1364/OE.20.013636
10.1021/acs.nanolett.5b02802
10.1021/acsphotonics.7b00554
10.1038/ncomms9069
10.1364/OPTICA.3.000799
10.1103/PhysRevB.94.205434
10.1103/PhysRevLett.111.166802
10.1021/acs.nanolett.6b02076
10.1021/acs.nanolett.7b04200
10.1038/nature17974
10.1038/srep02967
10.1038/nphoton.2015.103
10.1021/acs.nanolett.7b00858
10.1021/acs.nanolett.6b03015
10.1038/s41598-017-01127-2
10.1021/acsphotonics.7b00538
10.1021/acs.nanolett.5b02584
10.1021/acs.nanolett.7b03248
10.1021/acs.nanolett.6b05128
10.1021/acsnano.5b07400
10.1038/ncomms11823
10.1021/acs.nanolett.7b03751
10.1021/acsphotonics.6b00727
10.1021/acsnano.6b07568
10.1021/acs.nanolett.5b01563
10.1364/OE.24.020373
10.1364/OE.24.027858
10.1021/jp4027018
10.1021/acsnano.6b03113
10.1021/acsphotonics.7b00650
10.1021/acsnano.5b06956
10.1103/PhysRevLett.118.237401
10.1021/jp512003b
10.1038/srep00492
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acsphotonics.7b01598
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2330-4022
EndPage 1639
ExternalDocumentID 10_1021_acsphotonics_7b01598
c510425877
GroupedDBID 53G
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
GNL
IH9
JG
JG~
UI2
VF5
VG9
W1F
XKZ
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a358t-1036ddc2f4c3aba239ba8a3afa2533833a254250f17aeb2e9a2d1f5cbbed1ed73
IEDL.DBID ACS
ISSN 2330-4022
IngestDate Tue Jul 01 04:16:35 EDT 2025
Thu Apr 24 23:12:44 EDT 2025
Thu Aug 27 13:41:53 EDT 2020
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Rabi splitting
J-aggregates
silicon nanodisks
anapole modes
resonance coupling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a358t-1036ddc2f4c3aba239ba8a3afa2533833a254250f17aeb2e9a2d1f5cbbed1ed73
ORCID 0000-0003-4809-9815
PageCount 12
ParticipantIDs crossref_citationtrail_10_1021_acsphotonics_7b01598
crossref_primary_10_1021_acsphotonics_7b01598
acs_journals_10_1021_acsphotonics_7b01598
ProviderPackageCode JG~
GNL
VF5
XKZ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-18
PublicationDateYYYYMMDD 2018-04-18
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-18
  day: 18
PublicationDecade 2010
PublicationTitle ACS photonics
PublicationTitleAlternate ACS Photonics
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref88/cit88
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref89/cit89
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref90/cit90
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
Palik E. D. (ref91/cit91) 1998
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref59/cit59
  doi: 10.1038/nmat2810
– ident: ref25/cit25
  doi: 10.1103/PhysRevLett.112.153002
– ident: ref80/cit80
  doi: 10.1021/acs.nanolett.6b01958
– ident: ref70/cit70
  doi: 10.1038/ncomms5424
– ident: ref48/cit48
  doi: 10.1021/acs.nanolett.7b01488
– ident: ref60/cit60
  doi: 10.1021/nl802509r
– ident: ref1/cit1
  doi: 10.1126/science.275.5303.1102
– ident: ref89/cit89
  doi: 10.1021/jp209754m
– ident: ref66/cit66
  doi: 10.1021/acsphotonics.6b00556
– ident: ref17/cit17
  doi: 10.1021/acs.nanolett.7b04354
– ident: ref20/cit20
  doi: 10.1021/acsphotonics.7b00668
– ident: ref47/cit47
  doi: 10.1021/acs.nanolett.5b02989
– ident: ref79/cit79
  doi: 10.1103/PhysRevB.95.165134
– ident: ref90/cit90
  doi: 10.1103/PhysRevA.93.053837
– ident: ref16/cit16
  doi: 10.1364/OE.25.001495
– ident: ref28/cit28
  doi: 10.1021/acsphotonics.7b00661
– ident: ref84/cit84
  doi: 10.1364/OE.25.022375
– ident: ref2/cit2
  doi: 10.1021/acsphotonics.7b00674
– ident: ref26/cit26
  doi: 10.1021/acsnano.6b06611
– ident: ref61/cit61
  doi: 10.1103/PhysRevLett.101.047401
– ident: ref49/cit49
  doi: 10.1038/ncomms2538
– ident: ref57/cit57
  doi: 10.1021/acs.nanolett.6b02759
– ident: ref43/cit43
  doi: 10.1103/PhysRevLett.108.097402
– ident: ref10/cit10
  doi: 10.1038/nature01937
– ident: ref4/cit4
  doi: 10.1021/nl0488228
– ident: ref18/cit18
  doi: 10.1103/PhysRevLett.119.177401
– ident: ref55/cit55
  doi: 10.1021/acsphotonics.7b00320
– ident: ref83/cit83
  doi: 10.1103/PhysRevB.95.035104
– ident: ref77/cit77
  doi: 10.1103/PhysRevA.95.063820
– ident: ref39/cit39
  doi: 10.1021/nn100585h
– ident: ref30/cit30
  doi: 10.1103/PhysRevLett.118.126802
– ident: ref5/cit5
  doi: 10.1021/nl104352j
– ident: ref24/cit24
  doi: 10.1021/nl4035219
– ident: ref21/cit21
  doi: 10.1021/acsphotonics.7b00616
– ident: ref46/cit46
  doi: 10.1364/OE.19.004815
– ident: ref85/cit85
  doi: 10.1103/PhysRevLett.118.173901
– ident: ref86/cit86
  doi: 10.1038/ncomms15535
– ident: ref65/cit65
  doi: 10.1021/nl303927q
– ident: ref19/cit19
  doi: 10.1021/acsphotonics.7b00953
– ident: ref71/cit71
  doi: 10.1021/acsphotonics.5b00146
– ident: ref68/cit68
  doi: 10.1021/nl3000453
– ident: ref34/cit34
  doi: 10.1021/acs.nanolett.6b04659
– ident: ref31/cit31
  doi: 10.1021/nl4014887
– ident: ref44/cit44
  doi: 10.1103/PhysRevB.82.045404
– ident: ref11/cit11
  doi: 10.1021/nl200579f
– ident: ref82/cit82
  doi: 10.1021/acsphotonics.7b00631
– ident: ref62/cit62
  doi: 10.1126/science.1187949
– ident: ref6/cit6
  doi: 10.1103/PhysRevLett.106.196405
– ident: ref13/cit13
  doi: 10.1021/ph500032d
– ident: ref33/cit33
  doi: 10.1021/acsphotonics.7b00437
– ident: ref9/cit9
  doi: 10.1088/0034-4885/78/1/013901
– ident: ref56/cit56
  doi: 10.1038/lsa.2016.197
– ident: ref58/cit58
  doi: 10.1016/j.cplett.2008.04.126
– ident: ref7/cit7
  doi: 10.1021/nl8024278
– ident: ref35/cit35
  doi: 10.1103/PhysRevLett.114.157401
– ident: ref42/cit42
  doi: 10.1126/science.aag2472
– ident: ref50/cit50
  doi: 10.1364/OE.20.013636
– ident: ref67/cit67
  doi: 10.1021/acs.nanolett.5b02802
– ident: ref29/cit29
  doi: 10.1021/acsphotonics.7b00554
– ident: ref73/cit73
  doi: 10.1038/ncomms9069
– ident: ref75/cit75
  doi: 10.1364/OPTICA.3.000799
– ident: ref87/cit87
  doi: 10.1103/PhysRevB.94.205434
– ident: ref27/cit27
  doi: 10.1103/PhysRevLett.111.166802
– ident: ref52/cit52
  doi: 10.1021/acs.nanolett.6b02076
– ident: ref88/cit88
  doi: 10.1021/acs.nanolett.7b04200
– ident: ref38/cit38
  doi: 10.1038/nature17974
– ident: ref72/cit72
  doi: 10.1038/srep02967
– ident: ref8/cit8
  doi: 10.1038/nphoton.2015.103
– ident: ref36/cit36
  doi: 10.1021/acs.nanolett.7b00858
– volume-title: Handbook of Optical Constants of Solids
  year: 1998
  ident: ref91/cit91
– ident: ref32/cit32
  doi: 10.1021/acs.nanolett.6b03015
– ident: ref76/cit76
  doi: 10.1038/s41598-017-01127-2
– ident: ref23/cit23
  doi: 10.1021/acsphotonics.7b00538
– ident: ref12/cit12
  doi: 10.1021/acs.nanolett.5b02584
– ident: ref53/cit53
  doi: 10.1021/acs.nanolett.7b03248
– ident: ref14/cit14
  doi: 10.1021/acs.nanolett.6b05128
– ident: ref41/cit41
  doi: 10.1021/acsnano.5b07400
– ident: ref37/cit37
  doi: 10.1038/ncomms11823
– ident: ref22/cit22
  doi: 10.1021/acs.nanolett.7b03751
– ident: ref64/cit64
  doi: 10.1021/acsphotonics.6b00727
– ident: ref81/cit81
  doi: 10.1021/acsnano.6b07568
– ident: ref69/cit69
  doi: 10.1021/acs.nanolett.5b01563
– ident: ref15/cit15
  doi: 10.1364/OE.24.020373
– ident: ref78/cit78
  doi: 10.1364/OE.24.027858
– ident: ref51/cit51
  doi: 10.1021/jp4027018
– ident: ref54/cit54
  doi: 10.1021/acsnano.6b03113
– ident: ref3/cit3
  doi: 10.1021/acsphotonics.7b00650
– ident: ref63/cit63
  doi: 10.1021/acsnano.5b06956
– ident: ref40/cit40
  doi: 10.1103/PhysRevLett.118.237401
– ident: ref74/cit74
  doi: 10.1021/jp512003b
– ident: ref45/cit45
  doi: 10.1038/srep00492
SSID ssj0001053664
Score 2.4122114
Snippet The nonradiating nature of anapole modes owing to the compositions of electric and toroidal dipole moments makes them distinct from conversional radiative...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 1628
Title Resonance Coupling between Molecular Excitons and Nonradiating Anapole Modes in Silicon Nanodisk-J-Aggregate Heterostructures
URI http://dx.doi.org/10.1021/acsphotonics.7b01598
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDDZbd9ll3ZN1L3zYZYd0iZ3nsZSWMmh36Aq9BdtxutKSFJLCGOy_T8pjLRt7nULADkaRLH229ImQWwhpbaWUNMBXeYatuW0EvguvgmknYFKaRYX3cOQOJvbD1JlugOLnG3xm3QuVrZ7THIlis7YnwX0F_i7ZYy7YMYZC3fHmTAU0yi0YoxjAdIRGrK6W--ZD6JNUtuWTtpxLv0ke6xKdMqdk0V7nsq1evzI2_nHdh-SgijNpp1SMI7Kjk2PSrGJOWll0dkLe8PweSTc07aZrLM-d0Sp3iw7r1rm096LA8pOMiiSiI-xIgA0-cGwnESsYRrGnWkbnCR3Pl6BcCYVtO43m2cJ4MDozAPV4XEcHmHyTlpy1awD6p2TS7z11B0bVksEQ3PFz2LS5G0WKxbbiQgrGAyl8wUUsmINgl8MTdgEztjwBmF0HgkVW7CgpdWTpyONnpJGkiT4n1OIRN7XJlOQ4RQaca2XHTmw6AlCdbJE7EGFYmVQWFrflzAq35RpWcm0RXv_AUFXc5thiY_nLLONj1qrk9vhx_MU_VnRJ9iG08vHeyfKvSAMEq68hfMnlTaGz702G8WQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6qHvTiW3y7By8eUpPdpE2OpVRqbXvxgbewu9loqSSFbUEE_7szafpAUPEUEnaXYTI7r935BuASXVpfa60ctFV1xzfCd6Kwhq-SmyDiSrlFhXevX2s_-p3n4LkCwawWBomwuJItDvEX6ALeNX4bveZjwou11bpCKxaFK7CG_ggnwW407xepFRSsWgEcxTFapwiJz4rmfliITJO2S6ZpycbcbMHTnLriasmwOhmrqv74Btz4b_K3YbP0OlljKiY7UDHZLmyVHigr97fdg0_K5hMEh2HNfELFui-svMnFerNGuqz1rlEPZJbJLGF96k9A7T5obCOTIxzGqMOaZYOM3Q_eUNQyhko8TwZ26HScxguG-JS8Y226ipNPEWwnGPbvw-NN66HZdsoGDY4UQThGFS5qSaJ56mshleQiUjKUQqaSBxT6CnyiTnBTry4xgjeR5ImXBlopk3gmqYsDWM3yzBwC80QiXONyrQRNUZEQRvtpkLqBxBhPHcEVsjAuN5iNi7Nz7sXLfI1Lvh6BmP3HWJdI59Rw4-2PWc581miK9PHr-ON_UHQB6-2HXjfu3vbvTmADna6QTqS88BRWkcnmDB2bsTovxPgLPzf5xQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58gHjxLb7dgxcPqclu0ibHUi21ahFqoXgJ-4oWJSlsCyL4351Jt1oEFT2FhN2wmczOzLez-w0hJxDShkop6YGvqnmh4aGXxFW4FcxECZPSL09433SqrV7Y7kf9mVJfMAgLb7JlEh9n9VBnjmEgOIPnw8dihJyxtlKT4MmSeJ4sYuYOlbve6H4ur4ByVUvyKAaIHVESmx6c--ZF6J6UnXFPM36muUruP0ZYbi95qoxHsqJev5A3_usT1siKiz5pfaIu62TO5Btk1UWi1M1zu0necFUfqTgMbRRjPLT7QN2OLnozLahLL14U2IPcUpFr2sE6BVj2A9vWczGEZhQrrVk6yGl38Awql1Mw5oUe2Cev7dUfAOrjIh5t4ZacYsJkOwb4v0V6zYu7RstzhRo8waN4BKacV7VWLAsVF1IwnkgRCy4ywSKEwByuYBv8LKgJQPImEUwHWaSkNDowusa3yUJe5GaH0IBr7hufKcmxi0w4NyrMosyPBGA9uUtOQYSpm2g2LXPoLEhn5Zo6ue4SPv2XqXKM51h44_mXXt5Hr-GE8ePH9nt_GNExWbo9b6bXl52rfbIMsVeMiakgPiALIGNzCPHNSB6VmvwOJEf8SA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resonance+Coupling+between+Molecular+Excitons+and+Nonradiating+Anapole+Modes+in+Silicon+Nanodisk-J-Aggregate+Heterostructures&rft.jtitle=ACS+photonics&rft.au=Liu%2C+Shao-Ding&rft.au=Fan%2C+Jin-Li&rft.au=Wang%2C+Wen-Jie&rft.au=Chen%2C+Jing-Dong&rft.date=2018-04-18&rft.pub=American+Chemical+Society&rft.issn=2330-4022&rft.eissn=2330-4022&rft.volume=5&rft.issue=4&rft.spage=1628&rft.epage=1639&rft_id=info:doi/10.1021%2Facsphotonics.7b01598&rft.externalDocID=c510425877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2330-4022&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2330-4022&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2330-4022&client=summon