Resonance Coupling between Molecular Excitons and Nonradiating Anapole Modes in Silicon Nanodisk-J-Aggregate Heterostructures
The nonradiating nature of anapole modes owing to the compositions of electric and toroidal dipole moments makes them distinct from conversional radiative resonances, and they have been suggested for the design of nanophotonic devices such as nanolasers based on light–matter interactions tailor by n...
Saved in:
Published in | ACS photonics Vol. 5; no. 4; pp. 1628 - 1639 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
18.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The nonradiating nature of anapole modes owing to the compositions of electric and toroidal dipole moments makes them distinct from conversional radiative resonances, and they have been suggested for the design of nanophotonic devices such as nanolasers based on light–matter interactions tailor by nanodisks. Therefore, the investigation of resonance coupling between molecular excitons and anapole modes is not only of fundamental interest, but is also promising for practical applications. To this end, a heterostructure composed of a silicon nanodisk and a uniform molecular J-aggregate ring is used to achieve the resonance coupling between the exciton transition and the anapole mode. In contrast with that of the conversional resonances, the resonance coupling is evidenced by a scattering peak around the exciton transition frequency, and the anapole mode splits into a pair of eigenmodes characterized as pronounced scattering dips, which are termed as the formation of two hybrid anapole modes caused by the coherent energy exchange in the heterostructure, and it has been verified by the multipole decompositions and the near-field distributions. An anticrossing behavior with a mode splitting of 161 meV is observed on the energy diagram, indicating that the strong coupling regime is achieved. Furthermore, due to the unique near-field distribution associated with the anapole mode, there is a much larger upper limit value for the width of the J-aggregate ring to enhance the resonance coupling, and the molecules located around the apexes of the disk perpendicular to the incident polarization play the dominate role for the resonance coupling. |
---|---|
AbstractList | The nonradiating nature of anapole modes owing to the compositions of electric and toroidal dipole moments makes them distinct from conversional radiative resonances, and they have been suggested for the design of nanophotonic devices such as nanolasers based on light–matter interactions tailor by nanodisks. Therefore, the investigation of resonance coupling between molecular excitons and anapole modes is not only of fundamental interest, but is also promising for practical applications. To this end, a heterostructure composed of a silicon nanodisk and a uniform molecular J-aggregate ring is used to achieve the resonance coupling between the exciton transition and the anapole mode. In contrast with that of the conversional resonances, the resonance coupling is evidenced by a scattering peak around the exciton transition frequency, and the anapole mode splits into a pair of eigenmodes characterized as pronounced scattering dips, which are termed as the formation of two hybrid anapole modes caused by the coherent energy exchange in the heterostructure, and it has been verified by the multipole decompositions and the near-field distributions. An anticrossing behavior with a mode splitting of 161 meV is observed on the energy diagram, indicating that the strong coupling regime is achieved. Furthermore, due to the unique near-field distribution associated with the anapole mode, there is a much larger upper limit value for the width of the J-aggregate ring to enhance the resonance coupling, and the molecules located around the apexes of the disk perpendicular to the incident polarization play the dominate role for the resonance coupling. |
Author | Liu, Shao-Ding Fan, Jin-Li Chen, Zhi-Hui Wang, Wen-Jie Chen, Jing-Dong |
AuthorAffiliation | Department of Physics and Optoelectronics Taiyuan University of Technology Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education |
AuthorAffiliation_xml | – name: Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education – name: Taiyuan University of Technology – name: Department of Physics and Optoelectronics |
Author_xml | – sequence: 1 givenname: Shao-Ding orcidid: 0000-0003-4809-9815 surname: Liu fullname: Liu, Shao-Ding email: liushaoding@tyut.edu.cn – sequence: 2 givenname: Jin-Li surname: Fan fullname: Fan, Jin-Li – sequence: 3 givenname: Wen-Jie surname: Wang fullname: Wang, Wen-Jie – sequence: 4 givenname: Jing-Dong surname: Chen fullname: Chen, Jing-Dong – sequence: 5 givenname: Zhi-Hui surname: Chen fullname: Chen, Zhi-Hui |
BookMark | eNqFkMtOwzAQRS0EEqX0D1j4B1L8SPpgV1WFgkqReKyjiT0pLsGubEfAgn_HVbuoWMDqjjT3zOjeM3JsnUVCLjjrcyb4JaiweXXRWaNCf1gxXoxHR6QjpGRZzoQ4PphPSS-ENWOMs0IOBnmHfD9icBasQjp17aYxdkUrjB-Ilt67BlXbgKezT2XSh0DBarp01oM2ELfeiYVNsiWvxkCNpU-mMcpZugTrtAlv2V02Wa08riAinWNE70L0rYqtx3BOTmpoAvb22iUv17Pn6TxbPNzcTieLDGQxihlncqC1EnWuJFQg5LiCEUioQRRSjqRMmouC1XwIWAkcg9C8LlRVoeaoh7JLrnZ3VfoePNZlypMCOBs9mKbkrNx2WR52We67THD-C9548w7-6z-M7bC0Ldeu9TYl_Bv5AfrWlEE |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c03760 crossref_primary_10_1364_JOSAB_482596 crossref_primary_10_3390_nano12010054 crossref_primary_10_1088_1361_6463_ad316a crossref_primary_10_1038_s41565_019_0442_x crossref_primary_10_1103_PhysRevB_109_195425 crossref_primary_10_1364_PRJ_453099 crossref_primary_10_1016_j_optlastec_2024_111995 crossref_primary_10_1364_PRJ_514576 crossref_primary_10_1515_nanoph_2019_0371 crossref_primary_10_1021_acsaom_3c00071 crossref_primary_10_1002_adom_202302603 crossref_primary_10_1063_5_0212236 crossref_primary_10_1016_j_optlastec_2025_112564 crossref_primary_10_1063_5_0204011 crossref_primary_10_1016_j_jcis_2022_05_003 crossref_primary_10_1021_acs_jpcc_2c08466 crossref_primary_10_1021_acsphotonics_0c00179 crossref_primary_10_1002_adom_201801350 crossref_primary_10_1021_acsnano_1c02204 crossref_primary_10_1103_PhysRevB_100_195306 crossref_primary_10_1088_1367_2630_abde6c crossref_primary_10_1103_PhysRevApplied_18_014079 crossref_primary_10_1007_s40766_021_00015_w crossref_primary_10_1021_acs_jpclett_0c02286 crossref_primary_10_1088_1361_6463_ab79dd crossref_primary_10_1088_1674_1056_ac3bac crossref_primary_10_1364_PRJ_7_001142 crossref_primary_10_1039_D4NR00042K crossref_primary_10_1063_5_0180255 crossref_primary_10_1515_nanoph_2019_0505 crossref_primary_10_1021_acsphotonics_0c01470 crossref_primary_10_1109_JPHOT_2023_3324204 crossref_primary_10_1088_2040_8986_ac5cd7 crossref_primary_10_1088_1402_4896_ad3b51 crossref_primary_10_1364_OE_381648 crossref_primary_10_1088_1361_6463_ab373c crossref_primary_10_1364_OE_434586 crossref_primary_10_1002_adpr_202200129 crossref_primary_10_1515_nanoph_2021_0394 crossref_primary_10_1038_s41467_020_16845_x crossref_primary_10_1039_D4CP03142C crossref_primary_10_1088_1361_6528_ac2bc3 crossref_primary_10_1088_1361_6528_ab02b0 crossref_primary_10_1016_j_rinp_2022_105809 crossref_primary_10_1109_JPHOT_2023_3306745 crossref_primary_10_1364_OE_389968 crossref_primary_10_35848_1882_0786_ac10a8 crossref_primary_10_1088_1361_6463_acd85f crossref_primary_10_1364_OE_496305 crossref_primary_10_1021_acsanm_4c06648 crossref_primary_10_1039_D0NR01440K crossref_primary_10_1021_acs_jpcc_0c08240 crossref_primary_10_1364_AO_494702 crossref_primary_10_1016_j_revip_2020_100040 crossref_primary_10_1103_PhysRevB_98_155439 crossref_primary_10_1063_5_0053709 crossref_primary_10_1364_OE_473358 crossref_primary_10_1002_smll_202405140 crossref_primary_10_1364_OE_27_007196 crossref_primary_10_1063_1_5078576 crossref_primary_10_1021_acs_jpcc_3c07393 crossref_primary_10_1021_acs_jpclett_9b01844 crossref_primary_10_1360_SSPMA_2024_0181 crossref_primary_10_1007_s11468_025_02893_w crossref_primary_10_1364_OE_500058 crossref_primary_10_1088_2040_8986_ac8aa9 |
Cites_doi | 10.1038/nmat2810 10.1103/PhysRevLett.112.153002 10.1021/acs.nanolett.6b01958 10.1038/ncomms5424 10.1021/acs.nanolett.7b01488 10.1021/nl802509r 10.1126/science.275.5303.1102 10.1021/jp209754m 10.1021/acsphotonics.6b00556 10.1021/acs.nanolett.7b04354 10.1021/acsphotonics.7b00668 10.1021/acs.nanolett.5b02989 10.1103/PhysRevB.95.165134 10.1103/PhysRevA.93.053837 10.1364/OE.25.001495 10.1021/acsphotonics.7b00661 10.1364/OE.25.022375 10.1021/acsphotonics.7b00674 10.1021/acsnano.6b06611 10.1103/PhysRevLett.101.047401 10.1038/ncomms2538 10.1021/acs.nanolett.6b02759 10.1103/PhysRevLett.108.097402 10.1038/nature01937 10.1021/nl0488228 10.1103/PhysRevLett.119.177401 10.1021/acsphotonics.7b00320 10.1103/PhysRevB.95.035104 10.1103/PhysRevA.95.063820 10.1021/nn100585h 10.1103/PhysRevLett.118.126802 10.1021/nl104352j 10.1021/nl4035219 10.1021/acsphotonics.7b00616 10.1364/OE.19.004815 10.1103/PhysRevLett.118.173901 10.1038/ncomms15535 10.1021/nl303927q 10.1021/acsphotonics.7b00953 10.1021/acsphotonics.5b00146 10.1021/nl3000453 10.1021/acs.nanolett.6b04659 10.1021/nl4014887 10.1103/PhysRevB.82.045404 10.1021/nl200579f 10.1021/acsphotonics.7b00631 10.1126/science.1187949 10.1103/PhysRevLett.106.196405 10.1021/ph500032d 10.1021/acsphotonics.7b00437 10.1088/0034-4885/78/1/013901 10.1038/lsa.2016.197 10.1016/j.cplett.2008.04.126 10.1021/nl8024278 10.1103/PhysRevLett.114.157401 10.1126/science.aag2472 10.1364/OE.20.013636 10.1021/acs.nanolett.5b02802 10.1021/acsphotonics.7b00554 10.1038/ncomms9069 10.1364/OPTICA.3.000799 10.1103/PhysRevB.94.205434 10.1103/PhysRevLett.111.166802 10.1021/acs.nanolett.6b02076 10.1021/acs.nanolett.7b04200 10.1038/nature17974 10.1038/srep02967 10.1038/nphoton.2015.103 10.1021/acs.nanolett.7b00858 10.1021/acs.nanolett.6b03015 10.1038/s41598-017-01127-2 10.1021/acsphotonics.7b00538 10.1021/acs.nanolett.5b02584 10.1021/acs.nanolett.7b03248 10.1021/acs.nanolett.6b05128 10.1021/acsnano.5b07400 10.1038/ncomms11823 10.1021/acs.nanolett.7b03751 10.1021/acsphotonics.6b00727 10.1021/acsnano.6b07568 10.1021/acs.nanolett.5b01563 10.1364/OE.24.020373 10.1364/OE.24.027858 10.1021/jp4027018 10.1021/acsnano.6b03113 10.1021/acsphotonics.7b00650 10.1021/acsnano.5b06956 10.1103/PhysRevLett.118.237401 10.1021/jp512003b 10.1038/srep00492 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acsphotonics.7b01598 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2330-4022 |
EndPage | 1639 |
ExternalDocumentID | 10_1021_acsphotonics_7b01598 c510425877 |
GroupedDBID | 53G ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS EBS EJD GNL IH9 JG JG~ UI2 VF5 VG9 W1F XKZ AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a358t-1036ddc2f4c3aba239ba8a3afa2533833a254250f17aeb2e9a2d1f5cbbed1ed73 |
IEDL.DBID | ACS |
ISSN | 2330-4022 |
IngestDate | Tue Jul 01 04:16:35 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Thu Aug 27 13:41:53 EDT 2020 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | Rabi splitting J-aggregates silicon nanodisks anapole modes resonance coupling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a358t-1036ddc2f4c3aba239ba8a3afa2533833a254250f17aeb2e9a2d1f5cbbed1ed73 |
ORCID | 0000-0003-4809-9815 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1021_acsphotonics_7b01598 crossref_primary_10_1021_acsphotonics_7b01598 acs_journals_10_1021_acsphotonics_7b01598 |
ProviderPackageCode | JG~ GNL VF5 XKZ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-18 |
PublicationDateYYYYMMDD | 2018-04-18 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-18 day: 18 |
PublicationDecade | 2010 |
PublicationTitle | ACS photonics |
PublicationTitleAlternate | ACS Photonics |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref88/cit88 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref89/cit89 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref90/cit90 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 Palik E. D. (ref91/cit91) 1998 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref87/cit87 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref59/cit59 doi: 10.1038/nmat2810 – ident: ref25/cit25 doi: 10.1103/PhysRevLett.112.153002 – ident: ref80/cit80 doi: 10.1021/acs.nanolett.6b01958 – ident: ref70/cit70 doi: 10.1038/ncomms5424 – ident: ref48/cit48 doi: 10.1021/acs.nanolett.7b01488 – ident: ref60/cit60 doi: 10.1021/nl802509r – ident: ref1/cit1 doi: 10.1126/science.275.5303.1102 – ident: ref89/cit89 doi: 10.1021/jp209754m – ident: ref66/cit66 doi: 10.1021/acsphotonics.6b00556 – ident: ref17/cit17 doi: 10.1021/acs.nanolett.7b04354 – ident: ref20/cit20 doi: 10.1021/acsphotonics.7b00668 – ident: ref47/cit47 doi: 10.1021/acs.nanolett.5b02989 – ident: ref79/cit79 doi: 10.1103/PhysRevB.95.165134 – ident: ref90/cit90 doi: 10.1103/PhysRevA.93.053837 – ident: ref16/cit16 doi: 10.1364/OE.25.001495 – ident: ref28/cit28 doi: 10.1021/acsphotonics.7b00661 – ident: ref84/cit84 doi: 10.1364/OE.25.022375 – ident: ref2/cit2 doi: 10.1021/acsphotonics.7b00674 – ident: ref26/cit26 doi: 10.1021/acsnano.6b06611 – ident: ref61/cit61 doi: 10.1103/PhysRevLett.101.047401 – ident: ref49/cit49 doi: 10.1038/ncomms2538 – ident: ref57/cit57 doi: 10.1021/acs.nanolett.6b02759 – ident: ref43/cit43 doi: 10.1103/PhysRevLett.108.097402 – ident: ref10/cit10 doi: 10.1038/nature01937 – ident: ref4/cit4 doi: 10.1021/nl0488228 – ident: ref18/cit18 doi: 10.1103/PhysRevLett.119.177401 – ident: ref55/cit55 doi: 10.1021/acsphotonics.7b00320 – ident: ref83/cit83 doi: 10.1103/PhysRevB.95.035104 – ident: ref77/cit77 doi: 10.1103/PhysRevA.95.063820 – ident: ref39/cit39 doi: 10.1021/nn100585h – ident: ref30/cit30 doi: 10.1103/PhysRevLett.118.126802 – ident: ref5/cit5 doi: 10.1021/nl104352j – ident: ref24/cit24 doi: 10.1021/nl4035219 – ident: ref21/cit21 doi: 10.1021/acsphotonics.7b00616 – ident: ref46/cit46 doi: 10.1364/OE.19.004815 – ident: ref85/cit85 doi: 10.1103/PhysRevLett.118.173901 – ident: ref86/cit86 doi: 10.1038/ncomms15535 – ident: ref65/cit65 doi: 10.1021/nl303927q – ident: ref19/cit19 doi: 10.1021/acsphotonics.7b00953 – ident: ref71/cit71 doi: 10.1021/acsphotonics.5b00146 – ident: ref68/cit68 doi: 10.1021/nl3000453 – ident: ref34/cit34 doi: 10.1021/acs.nanolett.6b04659 – ident: ref31/cit31 doi: 10.1021/nl4014887 – ident: ref44/cit44 doi: 10.1103/PhysRevB.82.045404 – ident: ref11/cit11 doi: 10.1021/nl200579f – ident: ref82/cit82 doi: 10.1021/acsphotonics.7b00631 – ident: ref62/cit62 doi: 10.1126/science.1187949 – ident: ref6/cit6 doi: 10.1103/PhysRevLett.106.196405 – ident: ref13/cit13 doi: 10.1021/ph500032d – ident: ref33/cit33 doi: 10.1021/acsphotonics.7b00437 – ident: ref9/cit9 doi: 10.1088/0034-4885/78/1/013901 – ident: ref56/cit56 doi: 10.1038/lsa.2016.197 – ident: ref58/cit58 doi: 10.1016/j.cplett.2008.04.126 – ident: ref7/cit7 doi: 10.1021/nl8024278 – ident: ref35/cit35 doi: 10.1103/PhysRevLett.114.157401 – ident: ref42/cit42 doi: 10.1126/science.aag2472 – ident: ref50/cit50 doi: 10.1364/OE.20.013636 – ident: ref67/cit67 doi: 10.1021/acs.nanolett.5b02802 – ident: ref29/cit29 doi: 10.1021/acsphotonics.7b00554 – ident: ref73/cit73 doi: 10.1038/ncomms9069 – ident: ref75/cit75 doi: 10.1364/OPTICA.3.000799 – ident: ref87/cit87 doi: 10.1103/PhysRevB.94.205434 – ident: ref27/cit27 doi: 10.1103/PhysRevLett.111.166802 – ident: ref52/cit52 doi: 10.1021/acs.nanolett.6b02076 – ident: ref88/cit88 doi: 10.1021/acs.nanolett.7b04200 – ident: ref38/cit38 doi: 10.1038/nature17974 – ident: ref72/cit72 doi: 10.1038/srep02967 – ident: ref8/cit8 doi: 10.1038/nphoton.2015.103 – ident: ref36/cit36 doi: 10.1021/acs.nanolett.7b00858 – volume-title: Handbook of Optical Constants of Solids year: 1998 ident: ref91/cit91 – ident: ref32/cit32 doi: 10.1021/acs.nanolett.6b03015 – ident: ref76/cit76 doi: 10.1038/s41598-017-01127-2 – ident: ref23/cit23 doi: 10.1021/acsphotonics.7b00538 – ident: ref12/cit12 doi: 10.1021/acs.nanolett.5b02584 – ident: ref53/cit53 doi: 10.1021/acs.nanolett.7b03248 – ident: ref14/cit14 doi: 10.1021/acs.nanolett.6b05128 – ident: ref41/cit41 doi: 10.1021/acsnano.5b07400 – ident: ref37/cit37 doi: 10.1038/ncomms11823 – ident: ref22/cit22 doi: 10.1021/acs.nanolett.7b03751 – ident: ref64/cit64 doi: 10.1021/acsphotonics.6b00727 – ident: ref81/cit81 doi: 10.1021/acsnano.6b07568 – ident: ref69/cit69 doi: 10.1021/acs.nanolett.5b01563 – ident: ref15/cit15 doi: 10.1364/OE.24.020373 – ident: ref78/cit78 doi: 10.1364/OE.24.027858 – ident: ref51/cit51 doi: 10.1021/jp4027018 – ident: ref54/cit54 doi: 10.1021/acsnano.6b03113 – ident: ref3/cit3 doi: 10.1021/acsphotonics.7b00650 – ident: ref63/cit63 doi: 10.1021/acsnano.5b06956 – ident: ref40/cit40 doi: 10.1103/PhysRevLett.118.237401 – ident: ref74/cit74 doi: 10.1021/jp512003b – ident: ref45/cit45 doi: 10.1038/srep00492 |
SSID | ssj0001053664 |
Score | 2.4122114 |
Snippet | The nonradiating nature of anapole modes owing to the compositions of electric and toroidal dipole moments makes them distinct from conversional radiative... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1628 |
Title | Resonance Coupling between Molecular Excitons and Nonradiating Anapole Modes in Silicon Nanodisk-J-Aggregate Heterostructures |
URI | http://dx.doi.org/10.1021/acsphotonics.7b01598 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDDZbd9ll3ZN1L3zYZYd0iZ3nsZSWMmh36Aq9BdtxutKSFJLCGOy_T8pjLRt7nULADkaRLH229ImQWwhpbaWUNMBXeYatuW0EvguvgmknYFKaRYX3cOQOJvbD1JlugOLnG3xm3QuVrZ7THIlis7YnwX0F_i7ZYy7YMYZC3fHmTAU0yi0YoxjAdIRGrK6W--ZD6JNUtuWTtpxLv0ke6xKdMqdk0V7nsq1evzI2_nHdh-SgijNpp1SMI7Kjk2PSrGJOWll0dkLe8PweSTc07aZrLM-d0Sp3iw7r1rm096LA8pOMiiSiI-xIgA0-cGwnESsYRrGnWkbnCR3Pl6BcCYVtO43m2cJ4MDozAPV4XEcHmHyTlpy1awD6p2TS7z11B0bVksEQ3PFz2LS5G0WKxbbiQgrGAyl8wUUsmINgl8MTdgEztjwBmF0HgkVW7CgpdWTpyONnpJGkiT4n1OIRN7XJlOQ4RQaca2XHTmw6AlCdbJE7EGFYmVQWFrflzAq35RpWcm0RXv_AUFXc5thiY_nLLONj1qrk9vhx_MU_VnRJ9iG08vHeyfKvSAMEq68hfMnlTaGz702G8WQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6qHvTiW3y7By8eUpPdpE2OpVRqbXvxgbewu9loqSSFbUEE_7szafpAUPEUEnaXYTI7r935BuASXVpfa60ctFV1xzfCd6Kwhq-SmyDiSrlFhXevX2s_-p3n4LkCwawWBomwuJItDvEX6ALeNX4bveZjwou11bpCKxaFK7CG_ggnwW407xepFRSsWgEcxTFapwiJz4rmfliITJO2S6ZpycbcbMHTnLriasmwOhmrqv74Btz4b_K3YbP0OlljKiY7UDHZLmyVHigr97fdg0_K5hMEh2HNfELFui-svMnFerNGuqz1rlEPZJbJLGF96k9A7T5obCOTIxzGqMOaZYOM3Q_eUNQyhko8TwZ26HScxguG-JS8Y226ipNPEWwnGPbvw-NN66HZdsoGDY4UQThGFS5qSaJ56mshleQiUjKUQqaSBxT6CnyiTnBTry4xgjeR5ImXBlopk3gmqYsDWM3yzBwC80QiXONyrQRNUZEQRvtpkLqBxBhPHcEVsjAuN5iNi7Nz7sXLfI1Lvh6BmP3HWJdI59Rw4-2PWc581miK9PHr-ON_UHQB6-2HXjfu3vbvTmADna6QTqS88BRWkcnmDB2bsTovxPgLPzf5xQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58gHjxLb7dgxcPqclu0ibHUi21ahFqoXgJ-4oWJSlsCyL4351Jt1oEFT2FhN2wmczOzLez-w0hJxDShkop6YGvqnmh4aGXxFW4FcxECZPSL09433SqrV7Y7kf9mVJfMAgLb7JlEh9n9VBnjmEgOIPnw8dihJyxtlKT4MmSeJ4sYuYOlbve6H4ur4ByVUvyKAaIHVESmx6c--ZF6J6UnXFPM36muUruP0ZYbi95qoxHsqJev5A3_usT1siKiz5pfaIu62TO5Btk1UWi1M1zu0necFUfqTgMbRRjPLT7QN2OLnozLahLL14U2IPcUpFr2sE6BVj2A9vWczGEZhQrrVk6yGl38Awql1Mw5oUe2Cev7dUfAOrjIh5t4ZacYsJkOwb4v0V6zYu7RstzhRo8waN4BKacV7VWLAsVF1IwnkgRCy4ywSKEwByuYBv8LKgJQPImEUwHWaSkNDowusa3yUJe5GaH0IBr7hufKcmxi0w4NyrMosyPBGA9uUtOQYSpm2g2LXPoLEhn5Zo6ue4SPv2XqXKM51h44_mXXt5Hr-GE8ePH9nt_GNExWbo9b6bXl52rfbIMsVeMiakgPiALIGNzCPHNSB6VmvwOJEf8SA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resonance+Coupling+between+Molecular+Excitons+and+Nonradiating+Anapole+Modes+in+Silicon+Nanodisk-J-Aggregate+Heterostructures&rft.jtitle=ACS+photonics&rft.au=Liu%2C+Shao-Ding&rft.au=Fan%2C+Jin-Li&rft.au=Wang%2C+Wen-Jie&rft.au=Chen%2C+Jing-Dong&rft.date=2018-04-18&rft.pub=American+Chemical+Society&rft.issn=2330-4022&rft.eissn=2330-4022&rft.volume=5&rft.issue=4&rft.spage=1628&rft.epage=1639&rft_id=info:doi/10.1021%2Facsphotonics.7b01598&rft.externalDocID=c510425877 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2330-4022&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2330-4022&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2330-4022&client=summon |