Vertically Expanded Crystalline Porous Covalent Organic Frameworks
Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance to be only 3–6 Å, which is too small for guests to enter. As a result, COFs block access to the x–y space and limit guest entry/exit strictly...
Saved in:
Published in | Journal of the American Chemical Society Vol. 146; no. 47; pp. 32640 - 32650 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance to be only 3–6 Å, which is too small for guests to enter. As a result, COFs block access to the x–y space and limit guest entry/exit strictly to only the pores along the z direction. Therefore, the extended faces of each layer are hidden between layers, precluding any interactions with guest molecules. Here, we report a strategy for opening interlayer spaces of COFs to attain newly accessible nanospaces between layers. This becomes possible using coordination bonds to replace the conventional π–π stacks between layers. We demonstrate this concept by synthesizing two-dimensional covalent cobalt(II) porphyrin layers through topology-guided polymerization, which were piled up by bidentate axial pillars through coordination bonds with cobalt(II) porphyrin along the z direction, assembling vertically expanded COFs via a one-pot reaction. The resultant frameworks separate the layers with axial pillars and create discrete apertures between layers defined by the molecular length of the pillars. Consequently, the originally inaccessible interlayers are open for guest access, while the polygonal π planes are exposed to trigger various supramolecular interactions. Vapor sorption, breakthrough experiments, and computational studies mutually revealed that the vertically expanded frameworks with optimal interlayer slits induce additional interactions to discriminate benzene and cyclohexane and separate their mixtures efficiently under ambient conditions. |
---|---|
AbstractList | Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance to be only 3-6 Å, which is too small for guests to enter. As a result, COFs block access to the x-y space and limit guest entry/exit strictly to only the pores along the z direction. Therefore, the extended faces of each layer are hidden between layers, precluding any interactions with guest molecules. Here, we report a strategy for opening interlayer spaces of COFs to attain newly accessible nanospaces between layers. This becomes possible using coordination bonds to replace the conventional π-π stacks between layers. We demonstrate this concept by synthesizing two-dimensional covalent cobalt(II) porphyrin layers through topology-guided polymerization, which were piled up by bidentate axial pillars through coordination bonds with cobalt(II) porphyrin along the z direction, assembling vertically expanded COFs via a one-pot reaction. The resultant frameworks separate the layers with axial pillars and create discrete apertures between layers defined by the molecular length of the pillars. Consequently, the originally inaccessible interlayers are open for guest access, while the polygonal π planes are exposed to trigger various supramolecular interactions. Vapor sorption, breakthrough experiments, and computational studies mutually revealed that the vertically expanded frameworks with optimal interlayer slits induce additional interactions to discriminate benzene and cyclohexane and separate their mixtures efficiently under ambient conditions.Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance to be only 3-6 Å, which is too small for guests to enter. As a result, COFs block access to the x-y space and limit guest entry/exit strictly to only the pores along the z direction. Therefore, the extended faces of each layer are hidden between layers, precluding any interactions with guest molecules. Here, we report a strategy for opening interlayer spaces of COFs to attain newly accessible nanospaces between layers. This becomes possible using coordination bonds to replace the conventional π-π stacks between layers. We demonstrate this concept by synthesizing two-dimensional covalent cobalt(II) porphyrin layers through topology-guided polymerization, which were piled up by bidentate axial pillars through coordination bonds with cobalt(II) porphyrin along the z direction, assembling vertically expanded COFs via a one-pot reaction. The resultant frameworks separate the layers with axial pillars and create discrete apertures between layers defined by the molecular length of the pillars. Consequently, the originally inaccessible interlayers are open for guest access, while the polygonal π planes are exposed to trigger various supramolecular interactions. Vapor sorption, breakthrough experiments, and computational studies mutually revealed that the vertically expanded frameworks with optimal interlayer slits induce additional interactions to discriminate benzene and cyclohexane and separate their mixtures efficiently under ambient conditions. Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance to be only 3-6 Å, which is too small for guests to enter. As a result, COFs block access to the - space and limit guest entry/exit strictly to only the pores along the direction. Therefore, the extended faces of each layer are hidden between layers, precluding any interactions with guest molecules. Here, we report a strategy for opening interlayer spaces of COFs to attain newly accessible nanospaces between layers. This becomes possible using coordination bonds to replace the conventional π-π stacks between layers. We demonstrate this concept by synthesizing two-dimensional covalent cobalt(II) porphyrin layers through topology-guided polymerization, which were piled up by bidentate axial pillars through coordination bonds with cobalt(II) porphyrin along the direction, assembling vertically expanded COFs via a one-pot reaction. The resultant frameworks separate the layers with axial pillars and create discrete apertures between layers defined by the molecular length of the pillars. Consequently, the originally inaccessible interlayers are open for guest access, while the polygonal π planes are exposed to trigger various supramolecular interactions. Vapor sorption, breakthrough experiments, and computational studies mutually revealed that the vertically expanded frameworks with optimal interlayer slits induce additional interactions to discriminate benzene and cyclohexane and separate their mixtures efficiently under ambient conditions. Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance to be only 3–6 Å, which is too small for guests to enter. As a result, COFs block access to the x–y space and limit guest entry/exit strictly to only the pores along the z direction. Therefore, the extended faces of each layer are hidden between layers, precluding any interactions with guest molecules. Here, we report a strategy for opening interlayer spaces of COFs to attain newly accessible nanospaces between layers. This becomes possible using coordination bonds to replace the conventional π–π stacks between layers. We demonstrate this concept by synthesizing two-dimensional covalent cobalt(II) porphyrin layers through topology-guided polymerization, which were piled up by bidentate axial pillars through coordination bonds with cobalt(II) porphyrin along the z direction, assembling vertically expanded COFs via a one-pot reaction. The resultant frameworks separate the layers with axial pillars and create discrete apertures between layers defined by the molecular length of the pillars. Consequently, the originally inaccessible interlayers are open for guest access, while the polygonal π planes are exposed to trigger various supramolecular interactions. Vapor sorption, breakthrough experiments, and computational studies mutually revealed that the vertically expanded frameworks with optimal interlayer slits induce additional interactions to discriminate benzene and cyclohexane and separate their mixtures efficiently under ambient conditions. |
Author | Addicoat, Matthew A. Jiang, Donglin Xie, Shuailei |
AuthorAffiliation | Department of Chemistry, Faculty of Science Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University School of Science and Technology |
AuthorAffiliation_xml | – name: Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University – name: Department of Chemistry, Faculty of Science – name: School of Science and Technology |
Author_xml | – sequence: 1 givenname: Shuailei surname: Xie fullname: Xie, Shuailei organization: Department of Chemistry, Faculty of Science – sequence: 2 givenname: Matthew A. orcidid: 0000-0002-5406-7927 surname: Addicoat fullname: Addicoat, Matthew A. organization: School of Science and Technology – sequence: 3 givenname: Donglin orcidid: 0000-0002-3785-1330 surname: Jiang fullname: Jiang, Donglin email: chmjd@nus.edu.sg organization: Department of Chemistry, Faculty of Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39545613$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkb1PwzAQxS1URD9gY0YZGUjxVxJ7hKgFpEplAFbLsR2UktrFToH-97hquyCQmE53-t3d03tD0LPOGgDOERwjiNH1QqowpgohxuARGKAMwzRDOO-BAYQQpwXLSR8MQ1jElmKGTkCf8IxmOSIDcPtifNco2babZPK1klYbnZR-E7o4aqxJHp1365CU7kO2xnbJ3L9K26hk6uXSfDr_Fk7BcS3bYM72dQSep5On8j6dze8eyptZKklWdGnNdVSpOdesopLWtCJ5DjNaKZVDjaUqGK-41LzQBCnCC0KN0rXOpcmIqRUZgcvd3ZV372sTOrFsgjJtK62JEgVBGcU0_mL_QDHjBYOcRPRij66rpdFi5Zul9BtxsCgCeAco70Lwphaq6WTXONt52bQCQbHNQWxzEPsc4tLVj6XD3T_wvd7tcOHW3kYjf0e_ATv-lzQ |
CitedBy_id | crossref_primary_10_1002_adma_202419547 crossref_primary_10_1002_smtd_202402186 |
Cites_doi | 10.1002/9783527821099 10.1038/s41563-020-0682-z 10.1021/acs.accounts.0c00386 10.1016/j.jssc.2011.09.002 10.1039/C9CS00756C 10.1021/jacs.4c01097 10.1021/acs.jctc.7b00118 10.1002/chem.200401201 10.1021/ct400952t 10.1246/cl.1984.319 10.1021/acsami.2c09911 10.1002/anie.202217479 10.1021/ma501497c 10.1021/acsami.8b11657 10.1016/S0376-7388(99)00337-3 10.1002/anie.202104318 10.1021/ic801677y 10.1039/D0CS01569E 10.1039/D2NJ00727D 10.1021/jacs.0c01990 10.1002/jcc.23420 10.1021/jacs.0c11313 10.1021/ic301857h 10.1038/s41467-023-39126-9 10.1021/jacs.9b13824 10.1021/jacs.0c12499 10.1039/C7DT01126A 10.1039/C9CS00827F 10.1039/C8TA05070H 10.1038/s41467-024-45005-8 10.1002/chem.201001290 10.1021/jacs.0c07732 10.1021/jacs.2c02173 10.1021/jacs.8b13639 10.1016/j.chempr.2020.01.011 10.1016/j.inoche.2020.107995 10.1021/jacs.3c10511 10.1021/acs.iecr.9b03126 10.1016/j.ccr.2021.213852 10.1002/anie.201906890 10.1126/science.1139915 10.1021/jacs.2c11893 10.1038/s41557-023-01334-7 10.1021/jacs.4c08951 10.1126/science.adk8680 10.1126/science.aad4011 10.1021/ie000060d 10.1002/aic.690110125 10.1002/anie.202216751 10.1039/C8TA03306D 10.1038/nchem.2352 10.1038/s43586-022-00181-z 10.1038/532435a 10.1038/s41467-023-36710-x 10.1016/j.xcrp.2023.101378 10.1007/978-94-009-5376-5_39 10.1021/accountsmr.2c00108 10.1021/jacs.3c06764 10.1021/jacs.8b12177 10.1039/D0CS00620C 10.1021/acsami.0c18232 10.1021/jacs.8b08452 10.1021/ic9603520 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.4c11880 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 32650 |
ExternalDocumentID | 39545613 10_1021_jacs_4c11880 b090254300 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI AAHBH ABJNI ABMVS ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZCA ~02 AAYXX ABBLG ABLBI CITATION NPM YIN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a357t-f9d4c1d99d8b4a4f4b366054bcc60d2ac789b9ad97d31c39734ecdfd6ae53efc3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 06:22:05 EDT 2025 Fri Jul 11 16:32:09 EDT 2025 Wed Feb 19 02:03:16 EST 2025 Thu Apr 24 23:05:49 EDT 2025 Tue Jul 01 03:11:17 EDT 2025 Thu Nov 28 03:13:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-f9d4c1d99d8b4a4f4b366054bcc60d2ac789b9ad97d31c39734ecdfd6ae53efc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5406-7927 0000-0002-3785-1330 |
PMID | 39545613 |
PQID | 3128978093 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3154243578 proquest_miscellaneous_3128978093 pubmed_primary_39545613 crossref_citationtrail_10_1021_jacs_4c11880 crossref_primary_10_1021_jacs_4c11880 acs_journals_10_1021_jacs_4c11880 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-27 |
PublicationDateYYYYMMDD | 2024-11-27 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref31/cit31 ref59/cit59 ref2/cit2 Dreisbach R. R. (ref4/cit4) 1961 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 Angelini P. (ref8/cit8) 2005 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 Bu X. H. (ref9/cit9) 2020 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 Speight J. G. (ref5/cit5) 2019 ref22/cit22 Yaghi O. M. (ref44/cit44) 2019 ref33/cit33 ref30/cit30 ref47/cit47 ref1/cit1 ref7/cit7 |
References_xml | – volume-title: Introduction to Reticular Chemistry: Metal-organic Frameworks and Covalent Organic Frameworks year: 2019 ident: ref44/cit44 doi: 10.1002/9783527821099 – ident: ref17/cit17 doi: 10.1038/s41563-020-0682-z – ident: ref31/cit31 doi: 10.1021/acs.accounts.0c00386 – ident: ref61/cit61 doi: 10.1016/j.jssc.2011.09.002 – ident: ref11/cit11 doi: 10.1039/C9CS00756C – ident: ref28/cit28 doi: 10.1021/jacs.4c01097 – ident: ref67/cit67 doi: 10.1021/acs.jctc.7b00118 – ident: ref48/cit48 doi: 10.1002/chem.200401201 – volume-title: Handbook of Industrial Hydrocarbon Processes year: 2019 ident: ref5/cit5 – ident: ref66/cit66 doi: 10.1021/ct400952t – ident: ref45/cit45 doi: 10.1246/cl.1984.319 – ident: ref52/cit52 doi: 10.1021/acsami.2c09911 – ident: ref27/cit27 doi: 10.1002/anie.202217479 – ident: ref57/cit57 doi: 10.1021/ma501497c – ident: ref59/cit59 doi: 10.1021/acsami.8b11657 – ident: ref3/cit3 doi: 10.1016/S0376-7388(99)00337-3 – ident: ref7/cit7 doi: 10.1002/anie.202104318 – ident: ref49/cit49 doi: 10.1021/ic801677y – ident: ref15/cit15 doi: 10.1039/D0CS01569E – ident: ref55/cit55 doi: 10.1039/D2NJ00727D – ident: ref42/cit42 doi: 10.1021/jacs.0c01990 – ident: ref65/cit65 doi: 10.1002/jcc.23420 – ident: ref37/cit37 doi: 10.1021/jacs.0c11313 – ident: ref62/cit62 doi: 10.1021/ic301857h – ident: ref26/cit26 doi: 10.1038/s41467-023-39126-9 – ident: ref35/cit35 doi: 10.1021/jacs.9b13824 – ident: ref38/cit38 doi: 10.1021/jacs.0c12499 – ident: ref63/cit63 doi: 10.1039/C7DT01126A – volume-title: Metal-Organic Framework: From Design to Applications year: 2020 ident: ref9/cit9 – ident: ref10/cit10 doi: 10.1039/C9CS00827F – ident: ref53/cit53 doi: 10.1039/C8TA05070H – ident: ref54/cit54 doi: 10.1038/s41467-024-45005-8 – ident: ref24/cit24 doi: 10.1002/chem.201001290 – ident: ref36/cit36 doi: 10.1021/jacs.0c07732 – ident: ref23/cit23 doi: 10.1021/jacs.2c02173 – ident: ref60/cit60 doi: 10.1021/jacs.8b13639 – ident: ref20/cit20 doi: 10.1016/j.chempr.2020.01.011 – volume-title: Advances in Chemistry year: 1961 ident: ref4/cit4 – ident: ref50/cit50 doi: 10.1016/j.inoche.2020.107995 – volume-title: Materials for Separation Technologies: Energy and Emission Reduction Opportunities year: 2005 ident: ref8/cit8 – ident: ref16/cit16 doi: 10.1021/jacs.3c10511 – ident: ref56/cit56 doi: 10.1021/acs.iecr.9b03126 – ident: ref2/cit2 doi: 10.1016/j.ccr.2021.213852 – ident: ref19/cit19 doi: 10.1002/anie.201906890 – ident: ref33/cit33 doi: 10.1126/science.1139915 – ident: ref18/cit18 doi: 10.1021/jacs.2c11893 – ident: ref13/cit13 doi: 10.1038/s41557-023-01334-7 – ident: ref41/cit41 doi: 10.1021/jacs.4c08951 – ident: ref30/cit30 doi: 10.1126/science.adk8680 – ident: ref40/cit40 doi: 10.1126/science.aad4011 – ident: ref6/cit6 doi: 10.1021/ie000060d – ident: ref64/cit64 doi: 10.1002/aic.690110125 – ident: ref39/cit39 doi: 10.1002/anie.202216751 – ident: ref47/cit47 doi: 10.1039/C8TA03306D – ident: ref22/cit22 doi: 10.1038/nchem.2352 – ident: ref12/cit12 doi: 10.1038/s43586-022-00181-z – ident: ref1/cit1 doi: 10.1038/532435a – ident: ref21/cit21 doi: 10.1038/s41467-023-36710-x – ident: ref51/cit51 doi: 10.1016/j.xcrp.2023.101378 – ident: ref43/cit43 doi: 10.1007/978-94-009-5376-5_39 – ident: ref32/cit32 doi: 10.1021/accountsmr.2c00108 – ident: ref29/cit29 doi: 10.1021/jacs.3c06764 – ident: ref34/cit34 doi: 10.1021/jacs.8b12177 – ident: ref14/cit14 doi: 10.1039/D0CS00620C – ident: ref58/cit58 doi: 10.1021/acsami.0c18232 – ident: ref25/cit25 doi: 10.1021/jacs.8b08452 – ident: ref46/cit46 doi: 10.1021/ic9603520 |
SSID | ssj0004281 |
Score | 2.4915001 |
Snippet | Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 32640 |
SubjectTerms | benzene cyclohexanes polymerization porphyrins sorption vapors |
Title | Vertically Expanded Crystalline Porous Covalent Organic Frameworks |
URI | http://dx.doi.org/10.1021/jacs.4c11880 https://www.ncbi.nlm.nih.gov/pubmed/39545613 https://www.proquest.com/docview/3128978093 https://www.proquest.com/docview/3154243578 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpRNqQQnlIrYThwfS9RSIYGQoKi3yFsuVE3VtBLl6xlnaUVRgWs0cbxM9N7YM88IXXkYFt0jLM8Sd6nxfDfUwrgJw0EopAFEtvuQj09Bt0cf-n5_kSC7fIKPrT6QyppUeVY4bB1tQBPMBlmt6GVR_4hDr6K5LAxImeC-_LYFIJV9B6AVrDJHl84Ouq9qdIqkkvfmdCKb6vOnZOMfHd9F2yXBdFqFR-yhNTPcR5tRda_bAbp7y1OpxWAwc9ofI7uJrJ1oPAOaaPW5jfOcjtNp5kQpOCFAklOUayqnU-VxZYeo12m_Rl23vEnBFcRnEzfhGjqiOdehpIImVJIA4hgqlQpuNRaKhVxyoTnTxFNAUQg1Sic6EMYnJlHkCNWG6dCcIIcbyQHStGFADHjoSyNCDUERCZJAG2LqqAHjjss_IYvzQ24MQYZ9Ws5GHd1USxCrUorc3ogxWGF9PbceFRIcK-wa1WrGMKX24EMMDUxYTACErdISJ7_Z-BRTq_1TR8eFK8y_RnjOM8npP8Z2hrYw8B5brojZOapNxlNzAbxlIi9zp_0CVWPmrg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHODCvpQ1leCEgojtLD6WqFVZWiGxqLfIWy5UbdW0EvD1jLMUgVTUqzVJxuOJ5o098wxw4RFcdI-GeZW4y4znu5EWxk1DEkRCGozIdh-y0w3ar-y-5_fKZnXbC4NKZPimLD_E_2EXsDRBOMiUZ_nDlmEVcQixuVYjfv5pgySRV6HdMApoWef-92kbh1T2Ow7NAZd5kGltQnemXl5b8n49nchr9fWHuXFh_bdgo4SbTqPwj21YMoMdWIurW9524fYtL6wW_f6n0_wY2S1l7cTjTwSNlq3bOE_D8XCaOfEQXRIDlFM0byqnVVV1ZXvw2mq-xG23vFfBFdQPJ27KNSqiOdeRZIKlTNIAsxomlQpuNBEqjLjkQvNQU08hYKHMKJ3qQBifmlTRfVgZDAfmEBxuJMcAp02IMIFHvjQi0pgi0SANtKGmBnWcd1L-F1mSH3kTTDnsaGmNGlxVK5Gokpjc3o_RnyN9OZMeFYQcc-Tq1aImaFJ7DCIGBg2WUAzJlneJ0_9kfEaYZQKqwUHhEbOvUZ6jTnq0wNzOYa390nlMHu-6D8ewThAR2UZGEp7AymQ8NaeIaCbyLPfjb47q7w8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB48QH3xPuoZQZ8kYrKbYx9rtHiWolb6FvbKi6UtTQrWX-9sjopCRV-T2WSPWeabnZlvAU4cFxfdIUGeJW5T7Xh2qLi2k8D1Qy40WmRzDvnY9G_a9K7jdWbAqWphsBMpfinNg_hmVw9UUjIMGKogfEGlYzjEZmHeROyMv1WPnr9KId3QqRBvEPqkzHX_2drYIpl-t0VTAGZuaBor8DTpYp5f8nY-ysS5_PjB3vivMazCcgk7rXqhJ2swo3vrsBhVt71twOVrnmDNu92xdf0-MEfLyoqGYwSPhrVbW63-sD9KraiPqomGyiqKOKXVqLK70k1oN65fohu7vF_B5sQLMjthCjuiGFOhoJwmVBAfvRsqpPQvlMtlEDLBuGKBIo5E4EKolipRPtce0YkkWzDX6_f0DlhMC4aGTukA4QILPaF5qNBVIn7iK010DY5x3HG5P9I4D3276HqYp-Vs1OCsWo1YlgTl5p6M7hTp04n0oCDmmCJ3XC1sjFNqwiG8p3HCYoKm2fAvMfKbjEddahiBarBdaMXkb4Tl6JPs_mFsR7DQumrED7fN-z1YchEYmXpGN9iHuWw40gcIbDJxmKvyJ2Dt8ZI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vertically+Expanded+Crystalline+Porous+Covalent+Organic+Frameworks&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Xie%2C+Shuailei&rft.au=Addicoat%2C+Matthew+A.&rft.au=Jiang%2C+Donglin&rft.date=2024-11-27&rft.issn=1520-5126&rft.volume=146&rft.issue=47+p.32640-32650&rft.spage=32640&rft.epage=32650&rft_id=info:doi/10.1021%2Fjacs.4c11880&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |