Vertically Expanded Crystalline Porous Covalent Organic Frameworks

Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance to be only 3–6 Å, which is too small for guests to enter. As a result, COFs block access to the x–y space and limit guest entry/exit strictly...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 146; no. 47; pp. 32640 - 32650
Main Authors Xie, Shuailei, Addicoat, Matthew A., Jiang, Donglin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance to be only 3–6 Å, which is too small for guests to enter. As a result, COFs block access to the x–y space and limit guest entry/exit strictly to only the pores along the z direction. Therefore, the extended faces of each layer are hidden between layers, precluding any interactions with guest molecules. Here, we report a strategy for opening interlayer spaces of COFs to attain newly accessible nanospaces between layers. This becomes possible using coordination bonds to replace the conventional π–π stacks between layers. We demonstrate this concept by synthesizing two-dimensional covalent cobalt­(II) porphyrin layers through topology-guided polymerization, which were piled up by bidentate axial pillars through coordination bonds with cobalt­(II) porphyrin along the z direction, assembling vertically expanded COFs via a one-pot reaction. The resultant frameworks separate the layers with axial pillars and create discrete apertures between layers defined by the molecular length of the pillars. Consequently, the originally inaccessible interlayers are open for guest access, while the polygonal π planes are exposed to trigger various supramolecular interactions. Vapor sorption, breakthrough experiments, and computational studies mutually revealed that the vertically expanded frameworks with optimal interlayer slits induce additional interactions to discriminate benzene and cyclohexane and separate their mixtures efficiently under ambient conditions.
AbstractList Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance to be only 3-6 Å, which is too small for guests to enter. As a result, COFs block access to the x-y space and limit guest entry/exit strictly to only the pores along the z direction. Therefore, the extended faces of each layer are hidden between layers, precluding any interactions with guest molecules. Here, we report a strategy for opening interlayer spaces of COFs to attain newly accessible nanospaces between layers. This becomes possible using coordination bonds to replace the conventional π-π stacks between layers. We demonstrate this concept by synthesizing two-dimensional covalent cobalt(II) porphyrin layers through topology-guided polymerization, which were piled up by bidentate axial pillars through coordination bonds with cobalt(II) porphyrin along the z direction, assembling vertically expanded COFs via a one-pot reaction. The resultant frameworks separate the layers with axial pillars and create discrete apertures between layers defined by the molecular length of the pillars. Consequently, the originally inaccessible interlayers are open for guest access, while the polygonal π planes are exposed to trigger various supramolecular interactions. Vapor sorption, breakthrough experiments, and computational studies mutually revealed that the vertically expanded frameworks with optimal interlayer slits induce additional interactions to discriminate benzene and cyclohexane and separate their mixtures efficiently under ambient conditions.Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance to be only 3-6 Å, which is too small for guests to enter. As a result, COFs block access to the x-y space and limit guest entry/exit strictly to only the pores along the z direction. Therefore, the extended faces of each layer are hidden between layers, precluding any interactions with guest molecules. Here, we report a strategy for opening interlayer spaces of COFs to attain newly accessible nanospaces between layers. This becomes possible using coordination bonds to replace the conventional π-π stacks between layers. We demonstrate this concept by synthesizing two-dimensional covalent cobalt(II) porphyrin layers through topology-guided polymerization, which were piled up by bidentate axial pillars through coordination bonds with cobalt(II) porphyrin along the z direction, assembling vertically expanded COFs via a one-pot reaction. The resultant frameworks separate the layers with axial pillars and create discrete apertures between layers defined by the molecular length of the pillars. Consequently, the originally inaccessible interlayers are open for guest access, while the polygonal π planes are exposed to trigger various supramolecular interactions. Vapor sorption, breakthrough experiments, and computational studies mutually revealed that the vertically expanded frameworks with optimal interlayer slits induce additional interactions to discriminate benzene and cyclohexane and separate their mixtures efficiently under ambient conditions.
Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance to be only 3-6 Å, which is too small for guests to enter. As a result, COFs block access to the - space and limit guest entry/exit strictly to only the pores along the direction. Therefore, the extended faces of each layer are hidden between layers, precluding any interactions with guest molecules. Here, we report a strategy for opening interlayer spaces of COFs to attain newly accessible nanospaces between layers. This becomes possible using coordination bonds to replace the conventional π-π stacks between layers. We demonstrate this concept by synthesizing two-dimensional covalent cobalt(II) porphyrin layers through topology-guided polymerization, which were piled up by bidentate axial pillars through coordination bonds with cobalt(II) porphyrin along the direction, assembling vertically expanded COFs via a one-pot reaction. The resultant frameworks separate the layers with axial pillars and create discrete apertures between layers defined by the molecular length of the pillars. Consequently, the originally inaccessible interlayers are open for guest access, while the polygonal π planes are exposed to trigger various supramolecular interactions. Vapor sorption, breakthrough experiments, and computational studies mutually revealed that the vertically expanded frameworks with optimal interlayer slits induce additional interactions to discriminate benzene and cyclohexane and separate their mixtures efficiently under ambient conditions.
Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance to be only 3–6 Å, which is too small for guests to enter. As a result, COFs block access to the x–y space and limit guest entry/exit strictly to only the pores along the z direction. Therefore, the extended faces of each layer are hidden between layers, precluding any interactions with guest molecules. Here, we report a strategy for opening interlayer spaces of COFs to attain newly accessible nanospaces between layers. This becomes possible using coordination bonds to replace the conventional π–π stacks between layers. We demonstrate this concept by synthesizing two-dimensional covalent cobalt­(II) porphyrin layers through topology-guided polymerization, which were piled up by bidentate axial pillars through coordination bonds with cobalt­(II) porphyrin along the z direction, assembling vertically expanded COFs via a one-pot reaction. The resultant frameworks separate the layers with axial pillars and create discrete apertures between layers defined by the molecular length of the pillars. Consequently, the originally inaccessible interlayers are open for guest access, while the polygonal π planes are exposed to trigger various supramolecular interactions. Vapor sorption, breakthrough experiments, and computational studies mutually revealed that the vertically expanded frameworks with optimal interlayer slits induce additional interactions to discriminate benzene and cyclohexane and separate their mixtures efficiently under ambient conditions.
Author Addicoat, Matthew A.
Jiang, Donglin
Xie, Shuailei
AuthorAffiliation Department of Chemistry, Faculty of Science
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University
School of Science and Technology
AuthorAffiliation_xml – name: Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University
– name: Department of Chemistry, Faculty of Science
– name: School of Science and Technology
Author_xml – sequence: 1
  givenname: Shuailei
  surname: Xie
  fullname: Xie, Shuailei
  organization: Department of Chemistry, Faculty of Science
– sequence: 2
  givenname: Matthew A.
  orcidid: 0000-0002-5406-7927
  surname: Addicoat
  fullname: Addicoat, Matthew A.
  organization: School of Science and Technology
– sequence: 3
  givenname: Donglin
  orcidid: 0000-0002-3785-1330
  surname: Jiang
  fullname: Jiang, Donglin
  email: chmjd@nus.edu.sg
  organization: Department of Chemistry, Faculty of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39545613$$D View this record in MEDLINE/PubMed
BookMark eNqNkb1PwzAQxS1URD9gY0YZGUjxVxJ7hKgFpEplAFbLsR2UktrFToH-97hquyCQmE53-t3d03tD0LPOGgDOERwjiNH1QqowpgohxuARGKAMwzRDOO-BAYQQpwXLSR8MQ1jElmKGTkCf8IxmOSIDcPtifNco2babZPK1klYbnZR-E7o4aqxJHp1365CU7kO2xnbJ3L9K26hk6uXSfDr_Fk7BcS3bYM72dQSep5On8j6dze8eyptZKklWdGnNdVSpOdesopLWtCJ5DjNaKZVDjaUqGK-41LzQBCnCC0KN0rXOpcmIqRUZgcvd3ZV372sTOrFsgjJtK62JEgVBGcU0_mL_QDHjBYOcRPRij66rpdFi5Zul9BtxsCgCeAco70Lwphaq6WTXONt52bQCQbHNQWxzEPsc4tLVj6XD3T_wvd7tcOHW3kYjf0e_ATv-lzQ
CitedBy_id crossref_primary_10_1002_adma_202419547
crossref_primary_10_1002_smtd_202402186
Cites_doi 10.1002/9783527821099
10.1038/s41563-020-0682-z
10.1021/acs.accounts.0c00386
10.1016/j.jssc.2011.09.002
10.1039/C9CS00756C
10.1021/jacs.4c01097
10.1021/acs.jctc.7b00118
10.1002/chem.200401201
10.1021/ct400952t
10.1246/cl.1984.319
10.1021/acsami.2c09911
10.1002/anie.202217479
10.1021/ma501497c
10.1021/acsami.8b11657
10.1016/S0376-7388(99)00337-3
10.1002/anie.202104318
10.1021/ic801677y
10.1039/D0CS01569E
10.1039/D2NJ00727D
10.1021/jacs.0c01990
10.1002/jcc.23420
10.1021/jacs.0c11313
10.1021/ic301857h
10.1038/s41467-023-39126-9
10.1021/jacs.9b13824
10.1021/jacs.0c12499
10.1039/C7DT01126A
10.1039/C9CS00827F
10.1039/C8TA05070H
10.1038/s41467-024-45005-8
10.1002/chem.201001290
10.1021/jacs.0c07732
10.1021/jacs.2c02173
10.1021/jacs.8b13639
10.1016/j.chempr.2020.01.011
10.1016/j.inoche.2020.107995
10.1021/jacs.3c10511
10.1021/acs.iecr.9b03126
10.1016/j.ccr.2021.213852
10.1002/anie.201906890
10.1126/science.1139915
10.1021/jacs.2c11893
10.1038/s41557-023-01334-7
10.1021/jacs.4c08951
10.1126/science.adk8680
10.1126/science.aad4011
10.1021/ie000060d
10.1002/aic.690110125
10.1002/anie.202216751
10.1039/C8TA03306D
10.1038/nchem.2352
10.1038/s43586-022-00181-z
10.1038/532435a
10.1038/s41467-023-36710-x
10.1016/j.xcrp.2023.101378
10.1007/978-94-009-5376-5_39
10.1021/accountsmr.2c00108
10.1021/jacs.3c06764
10.1021/jacs.8b12177
10.1039/D0CS00620C
10.1021/acsami.0c18232
10.1021/jacs.8b08452
10.1021/ic9603520
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.4c11880
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 32650
ExternalDocumentID 39545613
10_1021_jacs_4c11880
b090254300
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
AAYXX
ABBLG
ABLBI
CITATION
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-a357t-f9d4c1d99d8b4a4f4b366054bcc60d2ac789b9ad97d31c39734ecdfd6ae53efc3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 06:22:05 EDT 2025
Fri Jul 11 16:32:09 EDT 2025
Wed Feb 19 02:03:16 EST 2025
Thu Apr 24 23:05:49 EDT 2025
Tue Jul 01 03:11:17 EDT 2025
Thu Nov 28 03:13:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-f9d4c1d99d8b4a4f4b366054bcc60d2ac789b9ad97d31c39734ecdfd6ae53efc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5406-7927
0000-0002-3785-1330
PMID 39545613
PQID 3128978093
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_3154243578
proquest_miscellaneous_3128978093
pubmed_primary_39545613
crossref_citationtrail_10_1021_jacs_4c11880
crossref_primary_10_1021_jacs_4c11880
acs_journals_10_1021_jacs_4c11880
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-27
PublicationDateYYYYMMDD 2024-11-27
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref31/cit31
ref59/cit59
ref2/cit2
Dreisbach R. R. (ref4/cit4) 1961
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
Angelini P. (ref8/cit8) 2005
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
Bu X. H. (ref9/cit9) 2020
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
Speight J. G. (ref5/cit5) 2019
ref22/cit22
Yaghi O. M. (ref44/cit44) 2019
ref33/cit33
ref30/cit30
ref47/cit47
ref1/cit1
ref7/cit7
References_xml – volume-title: Introduction to Reticular Chemistry: Metal-organic Frameworks and Covalent Organic Frameworks
  year: 2019
  ident: ref44/cit44
  doi: 10.1002/9783527821099
– ident: ref17/cit17
  doi: 10.1038/s41563-020-0682-z
– ident: ref31/cit31
  doi: 10.1021/acs.accounts.0c00386
– ident: ref61/cit61
  doi: 10.1016/j.jssc.2011.09.002
– ident: ref11/cit11
  doi: 10.1039/C9CS00756C
– ident: ref28/cit28
  doi: 10.1021/jacs.4c01097
– ident: ref67/cit67
  doi: 10.1021/acs.jctc.7b00118
– ident: ref48/cit48
  doi: 10.1002/chem.200401201
– volume-title: Handbook of Industrial Hydrocarbon Processes
  year: 2019
  ident: ref5/cit5
– ident: ref66/cit66
  doi: 10.1021/ct400952t
– ident: ref45/cit45
  doi: 10.1246/cl.1984.319
– ident: ref52/cit52
  doi: 10.1021/acsami.2c09911
– ident: ref27/cit27
  doi: 10.1002/anie.202217479
– ident: ref57/cit57
  doi: 10.1021/ma501497c
– ident: ref59/cit59
  doi: 10.1021/acsami.8b11657
– ident: ref3/cit3
  doi: 10.1016/S0376-7388(99)00337-3
– ident: ref7/cit7
  doi: 10.1002/anie.202104318
– ident: ref49/cit49
  doi: 10.1021/ic801677y
– ident: ref15/cit15
  doi: 10.1039/D0CS01569E
– ident: ref55/cit55
  doi: 10.1039/D2NJ00727D
– ident: ref42/cit42
  doi: 10.1021/jacs.0c01990
– ident: ref65/cit65
  doi: 10.1002/jcc.23420
– ident: ref37/cit37
  doi: 10.1021/jacs.0c11313
– ident: ref62/cit62
  doi: 10.1021/ic301857h
– ident: ref26/cit26
  doi: 10.1038/s41467-023-39126-9
– ident: ref35/cit35
  doi: 10.1021/jacs.9b13824
– ident: ref38/cit38
  doi: 10.1021/jacs.0c12499
– ident: ref63/cit63
  doi: 10.1039/C7DT01126A
– volume-title: Metal-Organic Framework: From Design to Applications
  year: 2020
  ident: ref9/cit9
– ident: ref10/cit10
  doi: 10.1039/C9CS00827F
– ident: ref53/cit53
  doi: 10.1039/C8TA05070H
– ident: ref54/cit54
  doi: 10.1038/s41467-024-45005-8
– ident: ref24/cit24
  doi: 10.1002/chem.201001290
– ident: ref36/cit36
  doi: 10.1021/jacs.0c07732
– ident: ref23/cit23
  doi: 10.1021/jacs.2c02173
– ident: ref60/cit60
  doi: 10.1021/jacs.8b13639
– ident: ref20/cit20
  doi: 10.1016/j.chempr.2020.01.011
– volume-title: Advances in Chemistry
  year: 1961
  ident: ref4/cit4
– ident: ref50/cit50
  doi: 10.1016/j.inoche.2020.107995
– volume-title: Materials for Separation Technologies: Energy and Emission Reduction Opportunities
  year: 2005
  ident: ref8/cit8
– ident: ref16/cit16
  doi: 10.1021/jacs.3c10511
– ident: ref56/cit56
  doi: 10.1021/acs.iecr.9b03126
– ident: ref2/cit2
  doi: 10.1016/j.ccr.2021.213852
– ident: ref19/cit19
  doi: 10.1002/anie.201906890
– ident: ref33/cit33
  doi: 10.1126/science.1139915
– ident: ref18/cit18
  doi: 10.1021/jacs.2c11893
– ident: ref13/cit13
  doi: 10.1038/s41557-023-01334-7
– ident: ref41/cit41
  doi: 10.1021/jacs.4c08951
– ident: ref30/cit30
  doi: 10.1126/science.adk8680
– ident: ref40/cit40
  doi: 10.1126/science.aad4011
– ident: ref6/cit6
  doi: 10.1021/ie000060d
– ident: ref64/cit64
  doi: 10.1002/aic.690110125
– ident: ref39/cit39
  doi: 10.1002/anie.202216751
– ident: ref47/cit47
  doi: 10.1039/C8TA03306D
– ident: ref22/cit22
  doi: 10.1038/nchem.2352
– ident: ref12/cit12
  doi: 10.1038/s43586-022-00181-z
– ident: ref1/cit1
  doi: 10.1038/532435a
– ident: ref21/cit21
  doi: 10.1038/s41467-023-36710-x
– ident: ref51/cit51
  doi: 10.1016/j.xcrp.2023.101378
– ident: ref43/cit43
  doi: 10.1007/978-94-009-5376-5_39
– ident: ref32/cit32
  doi: 10.1021/accountsmr.2c00108
– ident: ref29/cit29
  doi: 10.1021/jacs.3c06764
– ident: ref34/cit34
  doi: 10.1021/jacs.8b12177
– ident: ref14/cit14
  doi: 10.1039/D0CS00620C
– ident: ref58/cit58
  doi: 10.1021/acsami.0c18232
– ident: ref25/cit25
  doi: 10.1021/jacs.8b08452
– ident: ref46/cit46
  doi: 10.1021/ic9603520
SSID ssj0004281
Score 2.4915001
Snippet Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 32640
SubjectTerms benzene
cyclohexanes
polymerization
porphyrins
sorption
vapors
Title Vertically Expanded Crystalline Porous Covalent Organic Frameworks
URI http://dx.doi.org/10.1021/jacs.4c11880
https://www.ncbi.nlm.nih.gov/pubmed/39545613
https://www.proquest.com/docview/3128978093
https://www.proquest.com/docview/3154243578
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpRNqQQnlIrYThwfS9RSIYGQoKi3yFsuVE3VtBLl6xlnaUVRgWs0cbxM9N7YM88IXXkYFt0jLM8Sd6nxfDfUwrgJw0EopAFEtvuQj09Bt0cf-n5_kSC7fIKPrT6QyppUeVY4bB1tQBPMBlmt6GVR_4hDr6K5LAxImeC-_LYFIJV9B6AVrDJHl84Ouq9qdIqkkvfmdCKb6vOnZOMfHd9F2yXBdFqFR-yhNTPcR5tRda_bAbp7y1OpxWAwc9ofI7uJrJ1oPAOaaPW5jfOcjtNp5kQpOCFAklOUayqnU-VxZYeo12m_Rl23vEnBFcRnEzfhGjqiOdehpIImVJIA4hgqlQpuNRaKhVxyoTnTxFNAUQg1Sic6EMYnJlHkCNWG6dCcIIcbyQHStGFADHjoSyNCDUERCZJAG2LqqAHjjss_IYvzQ24MQYZ9Ws5GHd1USxCrUorc3ogxWGF9PbceFRIcK-wa1WrGMKX24EMMDUxYTACErdISJ7_Z-BRTq_1TR8eFK8y_RnjOM8npP8Z2hrYw8B5brojZOapNxlNzAbxlIi9zp_0CVWPmrg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHODCvpQ1leCEgojtLD6WqFVZWiGxqLfIWy5UbdW0EvD1jLMUgVTUqzVJxuOJ5o098wxw4RFcdI-GeZW4y4znu5EWxk1DEkRCGozIdh-y0w3ar-y-5_fKZnXbC4NKZPimLD_E_2EXsDRBOMiUZ_nDlmEVcQixuVYjfv5pgySRV6HdMApoWef-92kbh1T2Ow7NAZd5kGltQnemXl5b8n49nchr9fWHuXFh_bdgo4SbTqPwj21YMoMdWIurW9524fYtL6wW_f6n0_wY2S1l7cTjTwSNlq3bOE_D8XCaOfEQXRIDlFM0byqnVVV1ZXvw2mq-xG23vFfBFdQPJ27KNSqiOdeRZIKlTNIAsxomlQpuNBEqjLjkQvNQU08hYKHMKJ3qQBifmlTRfVgZDAfmEBxuJMcAp02IMIFHvjQi0pgi0SANtKGmBnWcd1L-F1mSH3kTTDnsaGmNGlxVK5Gokpjc3o_RnyN9OZMeFYQcc-Tq1aImaFJ7DCIGBg2WUAzJlneJ0_9kfEaYZQKqwUHhEbOvUZ6jTnq0wNzOYa390nlMHu-6D8ewThAR2UZGEp7AymQ8NaeIaCbyLPfjb47q7w8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB48QH3xPuoZQZ8kYrKbYx9rtHiWolb6FvbKi6UtTQrWX-9sjopCRV-T2WSPWeabnZlvAU4cFxfdIUGeJW5T7Xh2qLi2k8D1Qy40WmRzDvnY9G_a9K7jdWbAqWphsBMpfinNg_hmVw9UUjIMGKogfEGlYzjEZmHeROyMv1WPnr9KId3QqRBvEPqkzHX_2drYIpl-t0VTAGZuaBor8DTpYp5f8nY-ysS5_PjB3vivMazCcgk7rXqhJ2swo3vrsBhVt71twOVrnmDNu92xdf0-MEfLyoqGYwSPhrVbW63-sD9KraiPqomGyiqKOKXVqLK70k1oN65fohu7vF_B5sQLMjthCjuiGFOhoJwmVBAfvRsqpPQvlMtlEDLBuGKBIo5E4EKolipRPtce0YkkWzDX6_f0DlhMC4aGTukA4QILPaF5qNBVIn7iK010DY5x3HG5P9I4D3276HqYp-Vs1OCsWo1YlgTl5p6M7hTp04n0oCDmmCJ3XC1sjFNqwiG8p3HCYoKm2fAvMfKbjEddahiBarBdaMXkb4Tl6JPs_mFsR7DQumrED7fN-z1YchEYmXpGN9iHuWw40gcIbDJxmKvyJ2Dt8ZI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vertically+Expanded+Crystalline+Porous+Covalent+Organic+Frameworks&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Xie%2C+Shuailei&rft.au=Addicoat%2C+Matthew+A.&rft.au=Jiang%2C+Donglin&rft.date=2024-11-27&rft.issn=1520-5126&rft.volume=146&rft.issue=47+p.32640-32650&rft.spage=32640&rft.epage=32650&rft_id=info:doi/10.1021%2Fjacs.4c11880&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon