Plasma-Induced Catalytic Conversion of Nitrogen and Hydrogen to Ammonia over Zeolitic Imidazolate Frameworks ZIF‑8 and ZIF-67
Microporous crystals have emerged as highly appealing catalytic materials for the plasma catalytic synthesis of ammonia. Herein, we demonstrate that zeolitic imidazolate frameworks (ZIFs) can be employed as efficient catalysts for the cold plasma ammonia synthesis using an atmospheric dielectric bar...
Saved in:
Published in | ACS applied materials & interfaces Vol. 13; no. 18; pp. 21338 - 21348 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
12.05.2021
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microporous crystals have emerged as highly appealing catalytic materials for the plasma catalytic synthesis of ammonia. Herein, we demonstrate that zeolitic imidazolate frameworks (ZIFs) can be employed as efficient catalysts for the cold plasma ammonia synthesis using an atmospheric dielectric barrier discharge reactor. We studied two prototypical ZIFs denoted as ZIF-8 and ZIF-67, with a uniform window pore aperture of 3.4 Å. The resultant ZIFs displayed ammonia synthesis rates as high as 42.16 μmol NH3/min gcat. ZIF-8 displayed remarkable stability upon recycling. The dipole–dipole interactions between the polar ammonia molecules and the polar walls of the studied ZIFs led to relatively low ammonia uptakes, low storage capacity, and high observed ammonia synthesis rates. Both ZIFs outperform other microporous crystals including zeolites and conventional oxides in terms of ammonia production. Furthermore, we demonstrate that the addition of argon to the reactor chamber can be an effective strategy to improve the plasma environment. Specifically, the presence of argon helped to improve the plasma uniformity, making the reaction system more energy efficient by operating at a low specific energy input range allowing abundant formation of nitrogen vibrational species. |
---|---|
AbstractList | Microporous crystals have emerged as highly appealing catalytic materials for the plasma catalytic synthesis of ammonia. Herein, we demonstrate that zeolitic imidazolate frameworks (ZIFs) can be employed as efficient catalysts for the cold plasma ammonia synthesis using an atmospheric dielectric barrier discharge reactor. We studied two prototypical ZIFs denoted as ZIF-8 and ZIF-67, with a uniform window pore aperture of 3.4 Å. The resultant ZIFs displayed ammonia synthesis rates as high as 42.16 μmol NH3/min gcat. ZIF-8 displayed remarkable stability upon recycling. The dipole–dipole interactions between the polar ammonia molecules and the polar walls of the studied ZIFs led to relatively low ammonia uptakes, low storage capacity, and high observed ammonia synthesis rates. Both ZIFs outperform other microporous crystals including zeolites and conventional oxides in terms of ammonia production. Furthermore, we demonstrate that the addition of argon to the reactor chamber can be an effective strategy to improve the plasma environment. Specifically, the presence of argon helped to improve the plasma uniformity, making the reaction system more energy efficient by operating at a low specific energy input range allowing abundant formation of nitrogen vibrational species. Not provided. Microporous crystals have emerged as highly appealing catalytic materials for the plasma catalytic synthesis of ammonia. Herein, we demonstrate that zeolitic imidazolate frameworks (ZIFs) can be employed as efficient catalysts for the cold plasma ammonia synthesis using an atmospheric dielectric barrier discharge reactor. We studied two prototypical ZIFs denoted as ZIF-8 and ZIF-67, with a uniform window pore aperture of 3.4 Å. The resultant ZIFs displayed ammonia synthesis rates as high as 42.16 μmol NH /min gcat. ZIF-8 displayed remarkable stability upon recycling. The dipole-dipole interactions between the polar ammonia molecules and the polar walls of the studied ZIFs led to relatively low ammonia uptakes, low storage capacity, and high observed ammonia synthesis rates. Both ZIFs outperform other microporous crystals including zeolites and conventional oxides in terms of ammonia production. Furthermore, we demonstrate that the addition of argon to the reactor chamber can be an effective strategy to improve the plasma environment. Specifically, the presence of argon helped to improve the plasma uniformity, making the reaction system more energy efficient by operating at a low specific energy input range allowing abundant formation of nitrogen vibrational species. |
Author | Gorky, Fnu Lucero, Jolie M Crawford, James M Carreon, Moises A Carreon, Maria L Blake, Beth |
AuthorAffiliation | Chemical and Biological Engineering Department South Dakota School of Mines & Technology |
AuthorAffiliation_xml | – name: Chemical and Biological Engineering Department – name: South Dakota School of Mines & Technology |
Author_xml | – sequence: 1 givenname: Fnu surname: Gorky fullname: Gorky, Fnu organization: South Dakota School of Mines & Technology – sequence: 2 givenname: Jolie M orcidid: 0000-0002-4606-7118 surname: Lucero fullname: Lucero, Jolie M organization: Chemical and Biological Engineering Department – sequence: 3 givenname: James M orcidid: 0000-0003-3614-6055 surname: Crawford fullname: Crawford, James M organization: Chemical and Biological Engineering Department – sequence: 4 givenname: Beth surname: Blake fullname: Blake, Beth organization: South Dakota School of Mines & Technology – sequence: 5 givenname: Moises A orcidid: 0000-0001-6391-2478 surname: Carreon fullname: Carreon, Moises A organization: Chemical and Biological Engineering Department – sequence: 6 givenname: Maria L orcidid: 0000-0002-2717-1577 surname: Carreon fullname: Carreon, Maria L email: Maria.CarreonGarciduenas@sdsmt.edu organization: South Dakota School of Mines & Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33908750$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1853775$$D View this record in Osti.gov |
BookMark | eNp1kb1uFDEUhS2UiPxAS4ksKoQ0i39nZstoxZKVoiQFNGksr-caHMZ2sD1BSwOvwCvyJDjMko7qnit950j3nhN0EGIAhF5QsqCE0bfaZO3dghrCKZVP0DFdCtH0TLKDRy3EETrJ-ZaQljMin6Ijzpek7yQ5Rj-uR529bjZhmAwMeKWLHnfFGbyK4R5SdjHgaPGlKyl-goB1GPD5bpiXEvGZ9zE4jWOF8Q3E0T2YN94N-nscdQG8TtrDt5i-ZHyzWf_--av_G1J103bP0KHVY4bn-3mKPq7ffVidNxdX7zers4tGc9mVBrTt7NZCC1LWM6A1hnLbdz2AbCVlzBjeLoUUpgcrtsIOmgrLiWWUdD1r-Sl6NefGXJzKxhUwn00MAUxRtJe862SFXs_QXYpfJ8hFeZcNjKMOEKesmKRLThnvSUUXM2pSzDmBVXfJeZ12ihL10Iyam1H7Zqrh5T572noYHvF_VVTgzQxUo7qNUwr1H_9L-wN3E5rl |
CitedBy_id | crossref_primary_10_1021_acs_jpca_2c05023 crossref_primary_10_1007_s11090_022_10282_y crossref_primary_10_1002_andp_202300188 crossref_primary_10_1021_acsami_3c09698 crossref_primary_10_1016_j_memsci_2024_123069 crossref_primary_10_1016_j_cjche_2023_03_028 crossref_primary_10_1021_acs_iecr_1c04968 crossref_primary_10_1016_j_enconman_2023_117082 crossref_primary_10_1134_S1070427222050019 crossref_primary_10_1016_j_jechem_2024_04_018 crossref_primary_10_1016_j_hydromet_2022_106011 crossref_primary_10_1021_acs_iecr_2c02216 crossref_primary_10_2139_ssrn_4060684 crossref_primary_10_1016_j_xcrp_2023_101618 crossref_primary_10_1021_acsami_1c12695 crossref_primary_10_1021_acs_iecr_3c02403 crossref_primary_10_1039_D1CY00729G crossref_primary_10_1007_s11708_024_0949_1 crossref_primary_10_1039_D3RA05580A crossref_primary_10_1039_D4CC00042K crossref_primary_10_1021_acsaem_3c00426 crossref_primary_10_1002_cssc_202300783 crossref_primary_10_1002_ppap_202200244 crossref_primary_10_3390_bios13020284 crossref_primary_10_1021_acs_jpca_3c06841 crossref_primary_10_1021_acsami_1c21550 crossref_primary_10_1021_acs_energyfuels_4c00702 crossref_primary_10_1021_acssuschemeng_2c04715 crossref_primary_10_1002_adma_202303455 crossref_primary_10_1016_j_ijhydene_2024_02_123 crossref_primary_10_1016_j_cclet_2022_107841 crossref_primary_10_1021_acsami_2c00259 crossref_primary_10_1016_j_cattod_2023_114141 crossref_primary_10_1016_j_cattod_2023_114144 crossref_primary_10_1016_j_jelechem_2021_115932 crossref_primary_10_1016_j_joei_2022_02_014 crossref_primary_10_1021_acssuschemeng_2c05877 crossref_primary_10_1021_acssuschemeng_1c04031 crossref_primary_10_1016_j_apcata_2022_118983 crossref_primary_10_1016_j_saa_2023_123091 crossref_primary_10_1007_s11090_023_10397_w crossref_primary_10_1021_acssuschemeng_2c04740 crossref_primary_10_1063_5_0173110 crossref_primary_10_1016_j_cep_2023_109608 crossref_primary_10_1016_j_ceja_2022_100340 crossref_primary_10_1016_j_esci_2024_100253 crossref_primary_10_1002_aenm_202300722 crossref_primary_10_1007_s11090_022_10258_y crossref_primary_10_1016_j_jcou_2021_101642 crossref_primary_10_1021_jacs_2c01950 crossref_primary_10_1021_acssuschemeng_2c01959 |
Cites_doi | 10.1021/acscatal.7b01624 10.1088/1361-6463/ab4b37 10.1021/acs.iecr.6b02053 10.1126/science.aba4997 10.1088/1361-6463/ab3b2c 10.1039/d0gc02058c 10.1088/1361-6463/ab0c58 10.1021/acscatal.0c00684 10.1016/j.micromeso.2015.11.014 10.1038/ngeo325 10.1016/j.ssi.2009.08.001 10.1016/j.gee.2020.04.006 10.1088/2633-1357/aba1f8 10.1002/9783527610044.hetcat0129 10.1073/pnas.0602439103 10.1021/acscatal.8b02585 10.2172/1395932 10.1088/1361-6595/ab7a8a 10.1016/j.cej.2016.02.047 10.1007/s11090-016-9713-6 10.1021/acs.chemrev.5b00362 10.1021/acssuschemeng.9b00406 10.1007/s11090-006-9034-2 10.1021/jacs.6b06515 10.1021/acs.iecr.9b05220 10.1016/j.jcrysgro.2015.02.064 10.1038/s41929-018-0045-1 10.1016/j.nanoen.2018.03.059 10.1016/j.jcat.2020.11.030 10.1021/acsaem.8b00898 10.1088/1361-6463/ab6a36 10.1021/acssuschemeng.7b02381 10.1002/adma.201704303 10.1021/acssuschemeng.8b03705 10.1021/acscatal.9b02538 10.1016/j.ccr.2013.02.010 10.1109/tps.2014.2323077 10.1002/cctc.201901769 |
ContentType | Journal Article |
Copyright | 2021 American
Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
CorporateAuthor | Colorado School of Mines, Golden, CO (United States) |
CorporateAuthor_xml | – name: Colorado School of Mines, Golden, CO (United States) |
DBID | NPM AAYXX CITATION 7X8 OTOTI |
DOI | 10.1021/acsami.1c03115 |
DatabaseName | PubMed CrossRef MEDLINE - Academic OSTI.GOV |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 21348 |
ExternalDocumentID | 1853775 10_1021_acsami_1c03115 33908750 b455546636 |
Genre | Journal Article |
GroupedDBID | - .K2 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ F5P GGK GNL IH9 JG JG~ K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- 5ZA 6J9 AAHBH ABJNI ABQRX ADHLV BAANH CUPRZ NPM AAYXX CITATION 7X8 OTOTI |
ID | FETCH-LOGICAL-a357t-eaf7fbfe6e55006e6cc13f878ee565122cc369454c8ef4b4fda14f30f21078263 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Fri May 19 00:47:06 EDT 2023 Fri Aug 16 07:39:03 EDT 2024 Fri Aug 23 02:40:55 EDT 2024 Sat Sep 28 08:37:16 EDT 2024 Fri May 14 13:05:55 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | plasma catalysis zeolitic imidazolate frameworks nonthermal plasma ammonia synthesis ammonia adsorption effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-eaf7fbfe6e55006e6cc13f878ee565122cc369454c8ef4b4fda14f30f21078263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SC0021357 USDOE Office of Science (SC) |
ORCID | 0000-0002-4606-7118 0000-0003-3614-6055 0000-0002-2717-1577 0000-0001-6391-2478 0000000163912478 0000000246067118 0000000336146055 0000000227171577 |
PMID | 33908750 |
PQID | 2519312380 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1853775 proquest_miscellaneous_2519312380 crossref_primary_10_1021_acsami_1c03115 pubmed_primary_33908750 acs_journals_10_1021_acsami_1c03115 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2021-05-12 |
PublicationDateYYYYMMDD | 2021-05-12 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2021 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 Schlögl R. (ref4/cit4) 2008 ref27/cit27 ref18/cit18 Gorky F. (ref31/cit31) 2020; 393 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 van‘t Veer K. (ref16/cit16) 2020; 29 ref8/cit8 ref5/cit5 ref2/cit2 Duan C. (ref24/cit24) 2021 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref30/cit30 ref1/cit1 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref34/cit34 doi: 10.1021/acscatal.7b01624 – ident: ref2/cit2 – ident: ref38/cit38 doi: 10.1088/1361-6463/ab4b37 – ident: ref22/cit22 doi: 10.1021/acs.iecr.6b02053 – ident: ref28/cit28 doi: 10.1126/science.aba4997 – ident: ref12/cit12 doi: 10.1088/1361-6463/ab3b2c – ident: ref11/cit11 doi: 10.1039/d0gc02058c – start-page: 1 year: 2021 ident: ref24/cit24 publication-title: Sci. China Mater. contributor: fullname: Duan C. – ident: ref17/cit17 doi: 10.1088/1361-6463/ab0c58 – ident: ref36/cit36 doi: 10.1021/acscatal.0c00684 – ident: ref33/cit33 doi: 10.1016/j.micromeso.2015.11.014 – ident: ref3/cit3 doi: 10.1038/ngeo325 – ident: ref7/cit7 doi: 10.1016/j.ssi.2009.08.001 – ident: ref23/cit23 doi: 10.1016/j.gee.2020.04.006 – ident: ref27/cit27 doi: 10.1088/2633-1357/aba1f8 – start-page: 2501 volume-title: Handbook of heterogeneous catalysis year: 2008 ident: ref4/cit4 doi: 10.1002/9783527610044.hetcat0129 contributor: fullname: Schlögl R. – ident: ref32/cit32 doi: 10.1073/pnas.0602439103 – ident: ref10/cit10 doi: 10.1021/acscatal.8b02585 – ident: ref9/cit9 doi: 10.2172/1395932 – volume: 29 start-page: 045020 year: 2020 ident: ref16/cit16 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/1361-6595/ab7a8a contributor: fullname: van‘t Veer K. – ident: ref39/cit39 doi: 10.1016/j.cej.2016.02.047 – ident: ref21/cit21 doi: 10.1007/s11090-016-9713-6 – ident: ref13/cit13 doi: 10.1021/acs.chemrev.5b00362 – ident: ref15/cit15 doi: 10.1021/acssuschemeng.9b00406 – ident: ref6/cit6 doi: 10.1007/s11090-006-9034-2 – ident: ref29/cit29 doi: 10.1021/jacs.6b06515 – ident: ref26/cit26 doi: 10.1021/acs.iecr.9b05220 – ident: ref30/cit30 doi: 10.1016/j.jcrysgro.2015.02.064 – ident: ref14/cit14 doi: 10.1038/s41929-018-0045-1 – ident: ref5/cit5 – ident: ref8/cit8 doi: 10.1016/j.nanoen.2018.03.059 – volume: 393 start-page: 369 year: 2020 ident: ref31/cit31 publication-title: J. Catal. doi: 10.1016/j.jcat.2020.11.030 contributor: fullname: Gorky F. – ident: ref35/cit35 doi: 10.1021/acsaem.8b00898 – ident: ref20/cit20 doi: 10.1088/1361-6463/ab6a36 – ident: ref18/cit18 doi: 10.1021/acssuschemeng.7b02381 – ident: ref37/cit37 doi: 10.1002/adma.201704303 – ident: ref25/cit25 doi: 10.1021/acssuschemeng.8b03705 – ident: ref40/cit40 doi: 10.1021/acscatal.9b02538 – ident: ref1/cit1 doi: 10.1016/j.ccr.2013.02.010 – ident: ref19/cit19 doi: 10.1109/tps.2014.2323077 – ident: ref41/cit41 doi: 10.1002/cctc.201901769 |
SSID | ssj0063205 |
Score | 2.5730748 |
Snippet | Microporous crystals have emerged as highly appealing catalytic materials for the plasma catalytic synthesis of ammonia. Herein, we demonstrate that zeolitic... Not provided. |
SourceID | osti proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 21338 |
SubjectTerms | Energy, Environmental, and Catalysis Applications Materials Science Science & Technology - Other Topics |
Title | Plasma-Induced Catalytic Conversion of Nitrogen and Hydrogen to Ammonia over Zeolitic Imidazolate Frameworks ZIF‑8 and ZIF-67 |
URI | http://dx.doi.org/10.1021/acsami.1c03115 https://www.ncbi.nlm.nih.gov/pubmed/33908750 https://search.proquest.com/docview/2519312380 https://www.osti.gov/biblio/1853775 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgucCBN3RbqIxA4uQSP2I7x2rFaotEhVQqVb1YjmNLK9SkarKH9gJ_gb_YX8JMsqFAVdFbojgvZybzefz5G0LeecVN5gvDIuABpoLMmfcCE_mcB15WPihcKPx5Xy8O1aej_Ogq3_HvDL7gH3xosRQODxkKw9wl94QBz0AQNDsY_7laip6sCCNyxSxErFGe8dr5GIRC-1cQmjTgTDcDzD7QzB8Nqkdtr0-I_JJvO6uu3AkX19Ub__sOj8nDNdqku4N5PCF3Yv2UPPhDg_AZ-f4F8POJZ1jDI8SKzjCfcw7t6QwJ6X02jTaJ7i-7swasjfq6oovzatjpGrqLlrz0FLmg9DgOfDq6d7Ks_AWMm7tI5yMBrKXHe_PLHz9tfxHYZto8J4fzj19nC7auysC8zE3Hok8mlSnqCIObTEcdApfJGhsjgEMuRAhSFypXwcakSpUqz1WSWYLBJcARLV-QSd3UcYNQnpJP0RamVEJB0ChSWXjBU5GM1XmyU_IWes6tvap1_YS54G7oTrfuzil5P35MdzpIdNzYcgu_tQNwgQq5AalEoXMIWYyBo29GE3DgYzhx4uvYrFqHq3slhHibTcnLwTZ-30nKAosCZJu3etYtcl8gKQblX8UrMunOVvE1oJqu3O4N-hcmcvHc |
link.rule.ids | 230,315,783,787,888,2772,27088,27936,27937,57070,57120 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLXKsAAWvKFDeRiBxMpt_EjsLKsRoxloR5Vopaoby3FsaYSaVE1m0W7gF_hFvoR7k0l5qRLs8nAcx77OPdc-PibkrVNcJy7XLAAeYMrLlDkncCCfc8-L0nmFC4X3F9nsSH04To83yM6wFgYK0UBOTTeJ_1NdgO_ANdwRh_sE9WFukJupBmtFLDT5NPx6Myk6ziIE5ooZcFyDSuNfz6Mv8s1vvmhUQ5-6Hmd2_mZ6jxxclbSjmXzeXrXFtr_8Q8TxPz7lPrm7xp50tzeWB2QjVA_JnV8UCR-RLweApk8dwx09fCjpBEd3LiA9nSA9vRtbo3Wki2V7XoPtUVeVdHZR9idtTXfRrpeOIjOUnoSeXUfnp8vSXUIU3QY6HehgDT2ZT79__Wa6TOCYZfoxOZq-P5zM2HqPBuZkqlsWXNSxiCELEOokWci85zIabUIAqMiF8F5muUqVNyGqQsXScRVlEiHUBHCSySdkVNVV2CSUx-hiMLkulFDgQvJY5E7wmEdtsjSaMXkDNWfXfayx3fS54LavTruuzjF5N7SpPesFO65NuYVNbgFqoF6uR2KRby0CGK3h7uvBEiz0OJxGcVWoV43Ftb4SHL5JxuRpbyJXb5Iyxy0Ckmf_VNZX5NbscH_P7s0XH7fIbYF0GRSGFc_JqD1fhReAd9riZWfjPwCJg_o8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZgkRA8lJsu5TACiae08ZHYeVwtRLscq0q0UtUXy3FsaYWaVE32oX2Bv8Bf5Jcwk6PiUCV4y-E4jj3OfGPPfEPIayuZim2mIg94IJJOJJG1HBfyGXOsKK2TGCj8aZUuDuX7o-RoiOPGWBhoRAM1Nd0mPs7q0zIMDANsD65jVhzmYuSIuU5uJIpxzNcwm38ef7-p4J3fIhjnMtKgvEamxr-eR33kmt_00aSGeXU11ux0Tn6HHFy2tnM1-bK7aYtdd_EHkeN_fs5dsjVgUDrrheYeuear--T2L8yED8jXfUDVJzbCzB7Ol3SOqzznUJ7O0U29W2OjdaCrdXtWgwxSW5V0cV72J21NZyjfa0vRQ5Qe-97Lji5P1qW9AGu69TQf3cIaerzMf3z7rrtK4DhK1UNymL87mC-iIVdDZEWi2sjboEIRfOrB5IlTnzrHRNBKew-QkXHunEgzmUinfZCFDKVlMog4gMkJICUVj8ikqiu_TSgLwQavM1VILkGVZKHILGchC0qnSdBT8gp6zgxzrTHdNjpnpu9OM3TnlLwZx9Wc9sQdV5bcwWE3ADmQN9ehg5FrDQIZpeDuy1EaDMw83E6xla83jcGYXwGKX8dT8rgXk8s3CZFhqoD4yT-19QW5uf82Nx-Xqw875BZHrxnkh-VPyaQ92_hnAHva4nkn5j8Bjqr8tg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma-Induced+Catalytic+Conversion+of+Nitrogen+and+Hydrogen+to+Ammonia+over+Zeolitic+Imidazolate+Frameworks+ZIF-8+and+ZIF-67&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Gorky%2C+Fnu&rft.au=Lucero%2C+Jolie+M.&rft.au=Crawford%2C+James+M.&rft.au=Blake%2C+Beth&rft.date=2021-05-12&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=13&rft.issue=18&rft.spage=21338&rft.epage=21348&rft_id=info:doi/10.1021%2Facsami.1c03115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_1c03115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |