Plasma-Induced Catalytic Conversion of Nitrogen and Hydrogen to Ammonia over Zeolitic Imidazolate Frameworks ZIF‑8 and ZIF-67

Microporous crystals have emerged as highly appealing catalytic materials for the plasma catalytic synthesis of ammonia. Herein, we demonstrate that zeolitic imidazolate frameworks (ZIFs) can be employed as efficient catalysts for the cold plasma ammonia synthesis using an atmospheric dielectric bar...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 13; no. 18; pp. 21338 - 21348
Main Authors Gorky, Fnu, Lucero, Jolie M, Crawford, James M, Blake, Beth, Carreon, Moises A, Carreon, Maria L
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.05.2021
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microporous crystals have emerged as highly appealing catalytic materials for the plasma catalytic synthesis of ammonia. Herein, we demonstrate that zeolitic imidazolate frameworks (ZIFs) can be employed as efficient catalysts for the cold plasma ammonia synthesis using an atmospheric dielectric barrier discharge reactor. We studied two prototypical ZIFs denoted as ZIF-8 and ZIF-67, with a uniform window pore aperture of 3.4 Å. The resultant ZIFs displayed ammonia synthesis rates as high as 42.16 μmol NH3/min gcat. ZIF-8 displayed remarkable stability upon recycling. The dipole–dipole interactions between the polar ammonia molecules and the polar walls of the studied ZIFs led to relatively low ammonia uptakes, low storage capacity, and high observed ammonia synthesis rates. Both ZIFs outperform other microporous crystals including zeolites and conventional oxides in terms of ammonia production. Furthermore, we demonstrate that the addition of argon to the reactor chamber can be an effective strategy to improve the plasma environment. Specifically, the presence of argon helped to improve the plasma uniformity, making the reaction system more energy efficient by operating at a low specific energy input range allowing abundant formation of nitrogen vibrational species.
AbstractList Microporous crystals have emerged as highly appealing catalytic materials for the plasma catalytic synthesis of ammonia. Herein, we demonstrate that zeolitic imidazolate frameworks (ZIFs) can be employed as efficient catalysts for the cold plasma ammonia synthesis using an atmospheric dielectric barrier discharge reactor. We studied two prototypical ZIFs denoted as ZIF-8 and ZIF-67, with a uniform window pore aperture of 3.4 Å. The resultant ZIFs displayed ammonia synthesis rates as high as 42.16 μmol NH3/min gcat. ZIF-8 displayed remarkable stability upon recycling. The dipole–dipole interactions between the polar ammonia molecules and the polar walls of the studied ZIFs led to relatively low ammonia uptakes, low storage capacity, and high observed ammonia synthesis rates. Both ZIFs outperform other microporous crystals including zeolites and conventional oxides in terms of ammonia production. Furthermore, we demonstrate that the addition of argon to the reactor chamber can be an effective strategy to improve the plasma environment. Specifically, the presence of argon helped to improve the plasma uniformity, making the reaction system more energy efficient by operating at a low specific energy input range allowing abundant formation of nitrogen vibrational species.
Not provided.
Microporous crystals have emerged as highly appealing catalytic materials for the plasma catalytic synthesis of ammonia. Herein, we demonstrate that zeolitic imidazolate frameworks (ZIFs) can be employed as efficient catalysts for the cold plasma ammonia synthesis using an atmospheric dielectric barrier discharge reactor. We studied two prototypical ZIFs denoted as ZIF-8 and ZIF-67, with a uniform window pore aperture of 3.4 Å. The resultant ZIFs displayed ammonia synthesis rates as high as 42.16 μmol NH /min gcat. ZIF-8 displayed remarkable stability upon recycling. The dipole-dipole interactions between the polar ammonia molecules and the polar walls of the studied ZIFs led to relatively low ammonia uptakes, low storage capacity, and high observed ammonia synthesis rates. Both ZIFs outperform other microporous crystals including zeolites and conventional oxides in terms of ammonia production. Furthermore, we demonstrate that the addition of argon to the reactor chamber can be an effective strategy to improve the plasma environment. Specifically, the presence of argon helped to improve the plasma uniformity, making the reaction system more energy efficient by operating at a low specific energy input range allowing abundant formation of nitrogen vibrational species.
Author Gorky, Fnu
Lucero, Jolie M
Crawford, James M
Carreon, Moises A
Carreon, Maria L
Blake, Beth
AuthorAffiliation Chemical and Biological Engineering Department
South Dakota School of Mines & Technology
AuthorAffiliation_xml – name: Chemical and Biological Engineering Department
– name: South Dakota School of Mines & Technology
Author_xml – sequence: 1
  givenname: Fnu
  surname: Gorky
  fullname: Gorky, Fnu
  organization: South Dakota School of Mines & Technology
– sequence: 2
  givenname: Jolie M
  orcidid: 0000-0002-4606-7118
  surname: Lucero
  fullname: Lucero, Jolie M
  organization: Chemical and Biological Engineering Department
– sequence: 3
  givenname: James M
  orcidid: 0000-0003-3614-6055
  surname: Crawford
  fullname: Crawford, James M
  organization: Chemical and Biological Engineering Department
– sequence: 4
  givenname: Beth
  surname: Blake
  fullname: Blake, Beth
  organization: South Dakota School of Mines & Technology
– sequence: 5
  givenname: Moises A
  orcidid: 0000-0001-6391-2478
  surname: Carreon
  fullname: Carreon, Moises A
  organization: Chemical and Biological Engineering Department
– sequence: 6
  givenname: Maria L
  orcidid: 0000-0002-2717-1577
  surname: Carreon
  fullname: Carreon, Maria L
  email: Maria.CarreonGarciduenas@sdsmt.edu
  organization: South Dakota School of Mines & Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33908750$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1853775$$D View this record in Osti.gov
BookMark eNp1kb1uFDEUhS2UiPxAS4ksKoQ0i39nZstoxZKVoiQFNGksr-caHMZ2sD1BSwOvwCvyJDjMko7qnit950j3nhN0EGIAhF5QsqCE0bfaZO3dghrCKZVP0DFdCtH0TLKDRy3EETrJ-ZaQljMin6Ijzpek7yQ5Rj-uR529bjZhmAwMeKWLHnfFGbyK4R5SdjHgaPGlKyl-goB1GPD5bpiXEvGZ9zE4jWOF8Q3E0T2YN94N-nscdQG8TtrDt5i-ZHyzWf_--av_G1J103bP0KHVY4bn-3mKPq7ffVidNxdX7zers4tGc9mVBrTt7NZCC1LWM6A1hnLbdz2AbCVlzBjeLoUUpgcrtsIOmgrLiWWUdD1r-Sl6NefGXJzKxhUwn00MAUxRtJe862SFXs_QXYpfJ8hFeZcNjKMOEKesmKRLThnvSUUXM2pSzDmBVXfJeZ12ihL10Iyam1H7Zqrh5T572noYHvF_VVTgzQxUo7qNUwr1H_9L-wN3E5rl
CitedBy_id crossref_primary_10_1021_acs_jpca_2c05023
crossref_primary_10_1007_s11090_022_10282_y
crossref_primary_10_1002_andp_202300188
crossref_primary_10_1021_acsami_3c09698
crossref_primary_10_1016_j_memsci_2024_123069
crossref_primary_10_1016_j_cjche_2023_03_028
crossref_primary_10_1021_acs_iecr_1c04968
crossref_primary_10_1016_j_enconman_2023_117082
crossref_primary_10_1134_S1070427222050019
crossref_primary_10_1016_j_jechem_2024_04_018
crossref_primary_10_1016_j_hydromet_2022_106011
crossref_primary_10_1021_acs_iecr_2c02216
crossref_primary_10_2139_ssrn_4060684
crossref_primary_10_1016_j_xcrp_2023_101618
crossref_primary_10_1021_acsami_1c12695
crossref_primary_10_1021_acs_iecr_3c02403
crossref_primary_10_1039_D1CY00729G
crossref_primary_10_1007_s11708_024_0949_1
crossref_primary_10_1039_D3RA05580A
crossref_primary_10_1039_D4CC00042K
crossref_primary_10_1021_acsaem_3c00426
crossref_primary_10_1002_cssc_202300783
crossref_primary_10_1002_ppap_202200244
crossref_primary_10_3390_bios13020284
crossref_primary_10_1021_acs_jpca_3c06841
crossref_primary_10_1021_acsami_1c21550
crossref_primary_10_1021_acs_energyfuels_4c00702
crossref_primary_10_1021_acssuschemeng_2c04715
crossref_primary_10_1002_adma_202303455
crossref_primary_10_1016_j_ijhydene_2024_02_123
crossref_primary_10_1016_j_cclet_2022_107841
crossref_primary_10_1021_acsami_2c00259
crossref_primary_10_1016_j_cattod_2023_114141
crossref_primary_10_1016_j_cattod_2023_114144
crossref_primary_10_1016_j_jelechem_2021_115932
crossref_primary_10_1016_j_joei_2022_02_014
crossref_primary_10_1021_acssuschemeng_2c05877
crossref_primary_10_1021_acssuschemeng_1c04031
crossref_primary_10_1016_j_apcata_2022_118983
crossref_primary_10_1016_j_saa_2023_123091
crossref_primary_10_1007_s11090_023_10397_w
crossref_primary_10_1021_acssuschemeng_2c04740
crossref_primary_10_1063_5_0173110
crossref_primary_10_1016_j_cep_2023_109608
crossref_primary_10_1016_j_ceja_2022_100340
crossref_primary_10_1016_j_esci_2024_100253
crossref_primary_10_1002_aenm_202300722
crossref_primary_10_1007_s11090_022_10258_y
crossref_primary_10_1016_j_jcou_2021_101642
crossref_primary_10_1021_jacs_2c01950
crossref_primary_10_1021_acssuschemeng_2c01959
Cites_doi 10.1021/acscatal.7b01624
10.1088/1361-6463/ab4b37
10.1021/acs.iecr.6b02053
10.1126/science.aba4997
10.1088/1361-6463/ab3b2c
10.1039/d0gc02058c
10.1088/1361-6463/ab0c58
10.1021/acscatal.0c00684
10.1016/j.micromeso.2015.11.014
10.1038/ngeo325
10.1016/j.ssi.2009.08.001
10.1016/j.gee.2020.04.006
10.1088/2633-1357/aba1f8
10.1002/9783527610044.hetcat0129
10.1073/pnas.0602439103
10.1021/acscatal.8b02585
10.2172/1395932
10.1088/1361-6595/ab7a8a
10.1016/j.cej.2016.02.047
10.1007/s11090-016-9713-6
10.1021/acs.chemrev.5b00362
10.1021/acssuschemeng.9b00406
10.1007/s11090-006-9034-2
10.1021/jacs.6b06515
10.1021/acs.iecr.9b05220
10.1016/j.jcrysgro.2015.02.064
10.1038/s41929-018-0045-1
10.1016/j.nanoen.2018.03.059
10.1016/j.jcat.2020.11.030
10.1021/acsaem.8b00898
10.1088/1361-6463/ab6a36
10.1021/acssuschemeng.7b02381
10.1002/adma.201704303
10.1021/acssuschemeng.8b03705
10.1021/acscatal.9b02538
10.1016/j.ccr.2013.02.010
10.1109/tps.2014.2323077
10.1002/cctc.201901769
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
CorporateAuthor Colorado School of Mines, Golden, CO (United States)
CorporateAuthor_xml – name: Colorado School of Mines, Golden, CO (United States)
DBID NPM
AAYXX
CITATION
7X8
OTOTI
DOI 10.1021/acsami.1c03115
DatabaseName PubMed
CrossRef
MEDLINE - Academic
OSTI.GOV
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 21348
ExternalDocumentID 1853775
10_1021_acsami_1c03115
33908750
b455546636
Genre Journal Article
GroupedDBID -
.K2
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GGK
GNL
IH9
JG
JG~
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
5ZA
6J9
AAHBH
ABJNI
ABQRX
ADHLV
BAANH
CUPRZ
NPM
AAYXX
CITATION
7X8
OTOTI
ID FETCH-LOGICAL-a357t-eaf7fbfe6e55006e6cc13f878ee565122cc369454c8ef4b4fda14f30f21078263
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Fri May 19 00:47:06 EDT 2023
Fri Aug 16 07:39:03 EDT 2024
Fri Aug 23 02:40:55 EDT 2024
Sat Sep 28 08:37:16 EDT 2024
Fri May 14 13:05:55 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords plasma catalysis
zeolitic imidazolate frameworks
nonthermal plasma
ammonia synthesis
ammonia adsorption effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-eaf7fbfe6e55006e6cc13f878ee565122cc369454c8ef4b4fda14f30f21078263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SC0021357
USDOE Office of Science (SC)
ORCID 0000-0002-4606-7118
0000-0003-3614-6055
0000-0002-2717-1577
0000-0001-6391-2478
0000000163912478
0000000246067118
0000000336146055
0000000227171577
PMID 33908750
PQID 2519312380
PQPubID 23479
PageCount 11
ParticipantIDs osti_scitechconnect_1853775
proquest_miscellaneous_2519312380
crossref_primary_10_1021_acsami_1c03115
pubmed_primary_33908750
acs_journals_10_1021_acsami_1c03115
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2021-05-12
PublicationDateYYYYMMDD 2021-05-12
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2021
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
Schlögl R. (ref4/cit4) 2008
ref27/cit27
ref18/cit18
Gorky F. (ref31/cit31) 2020; 393
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
van‘t Veer K. (ref16/cit16) 2020; 29
ref8/cit8
ref5/cit5
ref2/cit2
Duan C. (ref24/cit24) 2021
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref30/cit30
ref1/cit1
ref38/cit38
ref7/cit7
References_xml – ident: ref34/cit34
  doi: 10.1021/acscatal.7b01624
– ident: ref2/cit2
– ident: ref38/cit38
  doi: 10.1088/1361-6463/ab4b37
– ident: ref22/cit22
  doi: 10.1021/acs.iecr.6b02053
– ident: ref28/cit28
  doi: 10.1126/science.aba4997
– ident: ref12/cit12
  doi: 10.1088/1361-6463/ab3b2c
– ident: ref11/cit11
  doi: 10.1039/d0gc02058c
– start-page: 1
  year: 2021
  ident: ref24/cit24
  publication-title: Sci. China Mater.
  contributor:
    fullname: Duan C.
– ident: ref17/cit17
  doi: 10.1088/1361-6463/ab0c58
– ident: ref36/cit36
  doi: 10.1021/acscatal.0c00684
– ident: ref33/cit33
  doi: 10.1016/j.micromeso.2015.11.014
– ident: ref3/cit3
  doi: 10.1038/ngeo325
– ident: ref7/cit7
  doi: 10.1016/j.ssi.2009.08.001
– ident: ref23/cit23
  doi: 10.1016/j.gee.2020.04.006
– ident: ref27/cit27
  doi: 10.1088/2633-1357/aba1f8
– start-page: 2501
  volume-title: Handbook of heterogeneous catalysis
  year: 2008
  ident: ref4/cit4
  doi: 10.1002/9783527610044.hetcat0129
  contributor:
    fullname: Schlögl R.
– ident: ref32/cit32
  doi: 10.1073/pnas.0602439103
– ident: ref10/cit10
  doi: 10.1021/acscatal.8b02585
– ident: ref9/cit9
  doi: 10.2172/1395932
– volume: 29
  start-page: 045020
  year: 2020
  ident: ref16/cit16
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/ab7a8a
  contributor:
    fullname: van‘t Veer K.
– ident: ref39/cit39
  doi: 10.1016/j.cej.2016.02.047
– ident: ref21/cit21
  doi: 10.1007/s11090-016-9713-6
– ident: ref13/cit13
  doi: 10.1021/acs.chemrev.5b00362
– ident: ref15/cit15
  doi: 10.1021/acssuschemeng.9b00406
– ident: ref6/cit6
  doi: 10.1007/s11090-006-9034-2
– ident: ref29/cit29
  doi: 10.1021/jacs.6b06515
– ident: ref26/cit26
  doi: 10.1021/acs.iecr.9b05220
– ident: ref30/cit30
  doi: 10.1016/j.jcrysgro.2015.02.064
– ident: ref14/cit14
  doi: 10.1038/s41929-018-0045-1
– ident: ref5/cit5
– ident: ref8/cit8
  doi: 10.1016/j.nanoen.2018.03.059
– volume: 393
  start-page: 369
  year: 2020
  ident: ref31/cit31
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.11.030
  contributor:
    fullname: Gorky F.
– ident: ref35/cit35
  doi: 10.1021/acsaem.8b00898
– ident: ref20/cit20
  doi: 10.1088/1361-6463/ab6a36
– ident: ref18/cit18
  doi: 10.1021/acssuschemeng.7b02381
– ident: ref37/cit37
  doi: 10.1002/adma.201704303
– ident: ref25/cit25
  doi: 10.1021/acssuschemeng.8b03705
– ident: ref40/cit40
  doi: 10.1021/acscatal.9b02538
– ident: ref1/cit1
  doi: 10.1016/j.ccr.2013.02.010
– ident: ref19/cit19
  doi: 10.1109/tps.2014.2323077
– ident: ref41/cit41
  doi: 10.1002/cctc.201901769
SSID ssj0063205
Score 2.5730748
Snippet Microporous crystals have emerged as highly appealing catalytic materials for the plasma catalytic synthesis of ammonia. Herein, we demonstrate that zeolitic...
Not provided.
SourceID osti
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 21338
SubjectTerms Energy, Environmental, and Catalysis Applications
Materials Science
Science & Technology - Other Topics
Title Plasma-Induced Catalytic Conversion of Nitrogen and Hydrogen to Ammonia over Zeolitic Imidazolate Frameworks ZIF‑8 and ZIF-67
URI http://dx.doi.org/10.1021/acsami.1c03115
https://www.ncbi.nlm.nih.gov/pubmed/33908750
https://search.proquest.com/docview/2519312380
https://www.osti.gov/biblio/1853775
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgucCBN3RbqIxA4uQSP2I7x2rFaotEhVQqVb1YjmNLK9SkarKH9gJ_gb_YX8JMsqFAVdFbojgvZybzefz5G0LeecVN5gvDIuABpoLMmfcCE_mcB15WPihcKPx5Xy8O1aej_Ogq3_HvDL7gH3xosRQODxkKw9wl94QBz0AQNDsY_7laip6sCCNyxSxErFGe8dr5GIRC-1cQmjTgTDcDzD7QzB8Nqkdtr0-I_JJvO6uu3AkX19Ub__sOj8nDNdqku4N5PCF3Yv2UPPhDg_AZ-f4F8POJZ1jDI8SKzjCfcw7t6QwJ6X02jTaJ7i-7swasjfq6oovzatjpGrqLlrz0FLmg9DgOfDq6d7Ks_AWMm7tI5yMBrKXHe_PLHz9tfxHYZto8J4fzj19nC7auysC8zE3Hok8mlSnqCIObTEcdApfJGhsjgEMuRAhSFypXwcakSpUqz1WSWYLBJcARLV-QSd3UcYNQnpJP0RamVEJB0ChSWXjBU5GM1XmyU_IWes6tvap1_YS54G7oTrfuzil5P35MdzpIdNzYcgu_tQNwgQq5AalEoXMIWYyBo29GE3DgYzhx4uvYrFqHq3slhHibTcnLwTZ-30nKAosCZJu3etYtcl8gKQblX8UrMunOVvE1oJqu3O4N-hcmcvHc
link.rule.ids 230,315,783,787,888,2772,27088,27936,27937,57070,57120
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLXKsAAWvKFDeRiBxMpt_EjsLKsRoxloR5Vopaoby3FsaYSaVE1m0W7gF_hFvoR7k0l5qRLs8nAcx77OPdc-PibkrVNcJy7XLAAeYMrLlDkncCCfc8-L0nmFC4X3F9nsSH04To83yM6wFgYK0UBOTTeJ_1NdgO_ANdwRh_sE9WFukJupBmtFLDT5NPx6Myk6ziIE5ooZcFyDSuNfz6Mv8s1vvmhUQ5-6Hmd2_mZ6jxxclbSjmXzeXrXFtr_8Q8TxPz7lPrm7xp50tzeWB2QjVA_JnV8UCR-RLweApk8dwx09fCjpBEd3LiA9nSA9vRtbo3Wki2V7XoPtUVeVdHZR9idtTXfRrpeOIjOUnoSeXUfnp8vSXUIU3QY6HehgDT2ZT79__Wa6TOCYZfoxOZq-P5zM2HqPBuZkqlsWXNSxiCELEOokWci85zIabUIAqMiF8F5muUqVNyGqQsXScRVlEiHUBHCSySdkVNVV2CSUx-hiMLkulFDgQvJY5E7wmEdtsjSaMXkDNWfXfayx3fS54LavTruuzjF5N7SpPesFO65NuYVNbgFqoF6uR2KRby0CGK3h7uvBEiz0OJxGcVWoV43Ftb4SHL5JxuRpbyJXb5Iyxy0Ckmf_VNZX5NbscH_P7s0XH7fIbYF0GRSGFc_JqD1fhReAd9riZWfjPwCJg_o8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZgkRA8lJsu5TACiae08ZHYeVwtRLscq0q0UtUXy3FsaYWaVE32oX2Bv8Bf5Jcwk6PiUCV4y-E4jj3OfGPPfEPIayuZim2mIg94IJJOJJG1HBfyGXOsKK2TGCj8aZUuDuX7o-RoiOPGWBhoRAM1Nd0mPs7q0zIMDANsD65jVhzmYuSIuU5uJIpxzNcwm38ef7-p4J3fIhjnMtKgvEamxr-eR33kmt_00aSGeXU11ux0Tn6HHFy2tnM1-bK7aYtdd_EHkeN_fs5dsjVgUDrrheYeuear--T2L8yED8jXfUDVJzbCzB7Ol3SOqzznUJ7O0U29W2OjdaCrdXtWgwxSW5V0cV72J21NZyjfa0vRQ5Qe-97Lji5P1qW9AGu69TQf3cIaerzMf3z7rrtK4DhK1UNymL87mC-iIVdDZEWi2sjboEIRfOrB5IlTnzrHRNBKew-QkXHunEgzmUinfZCFDKVlMog4gMkJICUVj8ikqiu_TSgLwQavM1VILkGVZKHILGchC0qnSdBT8gp6zgxzrTHdNjpnpu9OM3TnlLwZx9Wc9sQdV5bcwWE3ADmQN9ehg5FrDQIZpeDuy1EaDMw83E6xla83jcGYXwGKX8dT8rgXk8s3CZFhqoD4yT-19QW5uf82Nx-Xqw875BZHrxnkh-VPyaQ92_hnAHva4nkn5j8Bjqr8tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma-Induced+Catalytic+Conversion+of+Nitrogen+and+Hydrogen+to+Ammonia+over+Zeolitic+Imidazolate+Frameworks+ZIF-8+and+ZIF-67&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Gorky%2C+Fnu&rft.au=Lucero%2C+Jolie+M.&rft.au=Crawford%2C+James+M.&rft.au=Blake%2C+Beth&rft.date=2021-05-12&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=13&rft.issue=18&rft.spage=21338&rft.epage=21348&rft_id=info:doi/10.1021%2Facsami.1c03115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_1c03115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon