Selective Laser Melting of the Porous Ta Scaffold with Mg-Doped Calcium Phosphate Coating for Orthopedic Applications

Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) tec...

Full description

Saved in:
Bibliographic Details
Published inACS biomaterials science & engineering Vol. 10; no. 3; pp. 1435 - 1447
Main Authors Xu, Jianfeng, Wu, Di, Ge, Bing, Li, Maoyuan, Yu, Haiyu, Cao, Fang, Wang, Weidan, Zhang, Qing, Yi, Pinqiao, Wang, Haiyao, Song, Liqun, Liu, Lingpeng, Li, Junlei, Zhao, Dewei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) technology, possessed biomechanical properties compatible with natural bone tissue. To enhance the osteogenesis bioactivity of these porous Ta scaffolds, we applied calcium phosphate (CaP) and magnesium-doped calcium phosphate (Mg-CaP) coatings to the surface of SLM Ta scaffolds through a hydrothermal method. These degradable coatings released calcium and magnesium ions, demonstrating osteogenic bioactivity. Experimental results indicated that the Mg-CaP group exhibited biocompatibility comparable to that of the Ta group in vivo and in vitro. In terms of osteogenesis, both the CaP group and the Mg-CaP group showed improved outcomes compared to the control group, with the Mg-CaP group demonstrating superior performance. Therefore, both CaP and magnesium-CaP coatings can significantly enhance the osseointegration of three-dimensional-printed porous Ta, thereby increasing the surface bioactivity. Overall, the present study introduces an innovative approach for the biofunctionalization of SLM porous Ta, aiming to enhance its suitability as a bone implant material.
AbstractList Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) technology, possessed biomechanical properties compatible with natural bone tissue. To enhance the osteogenesis bioactivity of these porous Ta scaffolds, we applied calcium phosphate (CaP) and magnesium-doped calcium phosphate (Mg-CaP) coatings to the surface of SLM Ta scaffolds through a hydrothermal method. These degradable coatings released calcium and magnesium ions, demonstrating osteogenic bioactivity. Experimental results indicated that the Mg-CaP group exhibited biocompatibility comparable to that of the Ta group in vivo and in vitro. In terms of osteogenesis, both the CaP group and the Mg-CaP group showed improved outcomes compared to the control group, with the Mg-CaP group demonstrating superior performance. Therefore, both CaP and magnesium-CaP coatings can significantly enhance the osseointegration of three-dimensional-printed porous Ta, thereby increasing the surface bioactivity. Overall, the present study introduces an innovative approach for the biofunctionalization of SLM porous Ta, aiming to enhance its suitability as a bone implant material.
Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) technology, possessed biomechanical properties compatible with natural bone tissue. To enhance the osteogenesis bioactivity of these porous Ta scaffolds, we applied calcium phosphate (CaP) and magnesium-doped calcium phosphate (Mg-CaP) coatings to the surface of SLM Ta scaffolds through a hydrothermal method. These degradable coatings released calcium and magnesium ions, demonstrating osteogenic bioactivity. Experimental results indicated that the Mg-CaP group exhibited biocompatibility comparable to that of the Ta group in vivo and in vitro. In terms of osteogenesis, both the CaP group and the Mg-CaP group showed improved outcomes compared to the control group, with the Mg-CaP group demonstrating superior performance. Therefore, both CaP and magnesium-CaP coatings can significantly enhance the osseointegration of three-dimensional-printed porous Ta, thereby increasing the surface bioactivity. Overall, the present study introduces an innovative approach for the biofunctionalization of SLM porous Ta, aiming to enhance its suitability as a bone implant material.Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) technology, possessed biomechanical properties compatible with natural bone tissue. To enhance the osteogenesis bioactivity of these porous Ta scaffolds, we applied calcium phosphate (CaP) and magnesium-doped calcium phosphate (Mg-CaP) coatings to the surface of SLM Ta scaffolds through a hydrothermal method. These degradable coatings released calcium and magnesium ions, demonstrating osteogenic bioactivity. Experimental results indicated that the Mg-CaP group exhibited biocompatibility comparable to that of the Ta group in vivo and in vitro. In terms of osteogenesis, both the CaP group and the Mg-CaP group showed improved outcomes compared to the control group, with the Mg-CaP group demonstrating superior performance. Therefore, both CaP and magnesium-CaP coatings can significantly enhance the osseointegration of three-dimensional-printed porous Ta, thereby increasing the surface bioactivity. Overall, the present study introduces an innovative approach for the biofunctionalization of SLM porous Ta, aiming to enhance its suitability as a bone implant material.
Author Wang, Weidan
Liu, Lingpeng
Zhao, Dewei
Song, Liqun
Wu, Di
Wang, Haiyao
Cao, Fang
Ge, Bing
Xu, Jianfeng
Yu, Haiyu
Li, Maoyuan
Yi, Pinqiao
Li, Junlei
Zhang, Qing
AuthorAffiliation Integrative Laboratory
Zhongshan Hospital of Dalian University
Department of Orthopaedics
AuthorAffiliation_xml – name: Department of Orthopaedics
– name: Integrative Laboratory
– name: Zhongshan Hospital of Dalian University
Author_xml – sequence: 1
  givenname: Jianfeng
  surname: Xu
  fullname: Xu, Jianfeng
  organization: Department of Orthopaedics
– sequence: 2
  givenname: Di
  surname: Wu
  fullname: Wu, Di
  organization: Department of Orthopaedics
– sequence: 3
  givenname: Bing
  surname: Ge
  fullname: Ge, Bing
  organization: Department of Orthopaedics
– sequence: 4
  givenname: Maoyuan
  surname: Li
  fullname: Li, Maoyuan
  organization: Department of Orthopaedics
– sequence: 5
  givenname: Haiyu
  surname: Yu
  fullname: Yu, Haiyu
  organization: Department of Orthopaedics
– sequence: 6
  givenname: Fang
  surname: Cao
  fullname: Cao, Fang
  organization: Department of Orthopaedics
– sequence: 7
  givenname: Weidan
  surname: Wang
  fullname: Wang, Weidan
  organization: Department of Orthopaedics
– sequence: 8
  givenname: Qing
  surname: Zhang
  fullname: Zhang, Qing
  organization: Zhongshan Hospital of Dalian University
– sequence: 9
  givenname: Pinqiao
  surname: Yi
  fullname: Yi, Pinqiao
  organization: Department of Orthopaedics
– sequence: 10
  givenname: Haiyao
  surname: Wang
  fullname: Wang, Haiyao
  organization: Department of Orthopaedics
– sequence: 11
  givenname: Liqun
  surname: Song
  fullname: Song, Liqun
  organization: Department of Orthopaedics
– sequence: 12
  givenname: Lingpeng
  surname: Liu
  fullname: Liu, Lingpeng
  organization: Department of Orthopaedics
– sequence: 13
  givenname: Junlei
  surname: Li
  fullname: Li, Junlei
  email: jilli11b@alum.imr.ac.cn
  organization: Department of Orthopaedics
– sequence: 14
  givenname: Dewei
  orcidid: 0009-0000-4467-9818
  surname: Zhao
  fullname: Zhao, Dewei
  email: zhaodewei2016@l63.com
  organization: Department of Orthopaedics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38330203$$D View this record in MEDLINE/PubMed
BookMark eNqNkctOHDEQRa0IFAjwC4mX2TTxo5-LLNCQlzQIJMi6VWOXaSN3u2O7E-Xv42GGKGITVlVSnVuquvcNOZj8hIS84-ycM8E_gIob60dIGCy4eC4V4xWTr8ixkI0surZpD_7pj8hZjA-MMS7bqizL1-RItlIyweQxWW7RoUr2J9I1RAz0Cl2y0z31hqYB6Y0Pfon0DuitAmO80_SXTQO9ui8u_YyarsApu4z0ZvBxHvJNdOXhcYPxgV6HNGwxq-jFPDur8shP8ZQcmnw5nu3rCfn--dPd6muxvv7ybXWxLkBWTSo014gbpgxwhSW0HVatUGXNN3XZ1UYLZqAFI4xuOQNWN7xuDdRaIUjdZUtOyPvd3jn4HwvG1I82KnQOJsxv9aITFWOi5HVG3-7RZTOi7udgRwi_-yerMtDsABV8jAHNX4SzfptL_yyXfp9LVn58plQ2PRqRAlj3Ar3c6TPQP_glTNvp_1R_AI-urfk
CitedBy_id crossref_primary_10_1007_s10856_025_06871_w
crossref_primary_10_1016_j_jmrt_2024_12_191
crossref_primary_10_1111_jace_20018
Cites_doi 10.1016/S0021-9290(01)00082-3
10.1016/j.msec.2015.02.029
10.1097/00003086-200108000-00015
10.1080/10255842.2016.1215436
10.1021/acsbiomaterials.8b01094
10.3390/ma15103670
10.1016/j.proeng.2013.05.119
10.1016/j.addma.2019.04.025
10.1039/C5NR00471C
10.1016/j.biomaterials.2008.11.004
10.5435/jaaos-d-19-00420
10.1016/j.actbio.2012.01.021
10.1016/j.apmt.2019.02.017
10.1016/j.jcrysgro.2017.07.014
10.1016/j.biomaterials.2006.04.041
10.1016/j.jmbbm.2018.04.010
10.1016/j.bioactmat.2021.09.009
10.1016/j.actbio.2012.06.037
10.1038/nm.4162
10.1016/j.mser.2014.10.001
10.1021/acsnano.9b00489
10.1155/2022/4529520
10.1016/S0142-9612(00)00274-X
10.1016/j.actbio.2014.06.004
10.1016/j.bioactmat.2017.10.001
10.3390/ijms19061619
10.3390/ma10040334
10.1016/j.bioactmat.2019.05.001
10.1039/C9TB00420C
10.1016/j.medengphy.2007.04.008
10.1016/j.injury.2011.06.015
10.1002/jbm.b.34492
10.3109/07435800.2013.879168
10.2147/IJN.S124671
10.1039/c3ra00054k
10.1002/jbm.a.30320
10.3109/03008207.2014.923877
10.1016/j.actbio.2010.01.046
10.1016/j.actbio.2017.02.024
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsbiomaterials.3c01503
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2373-9878
EndPage 1447
ExternalDocumentID 38330203
10_1021_acsbiomaterials_3c01503
c012476906
Genre Journal Article
GroupedDBID 53G
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
EBS
GGK
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
CITATION
CUPRZ
NPM
7X8
ID FETCH-LOGICAL-a357t-d1deeb0cfa1ce4a89e582c461b6496fd20fa8af2fd810a067168fa6dcea3d9503
IEDL.DBID ACS
ISSN 2373-9878
IngestDate Fri Jul 11 10:54:32 EDT 2025
Mon Jul 21 06:05:40 EDT 2025
Thu Apr 24 23:12:29 EDT 2025
Tue Jul 01 00:45:37 EDT 2025
Tue Mar 12 03:27:09 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Mg2
CaP coating
porous Ta
hydrothermal treatment
osteogenesis
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-d1deeb0cfa1ce4a89e582c461b6496fd20fa8af2fd810a067168fa6dcea3d9503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0000-4467-9818
PMID 38330203
PQID 2925002416
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2925002416
pubmed_primary_38330203
crossref_primary_10_1021_acsbiomaterials_3c01503
crossref_citationtrail_10_1021_acsbiomaterials_3c01503
acs_journals_10_1021_acsbiomaterials_3c01503
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-11
PublicationDateYYYYMMDD 2024-03-11
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS biomaterials science & engineering
PublicationTitleAlternate ACS Biomater. Sci. Eng
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref38/cit38
  doi: 10.1016/S0021-9290(01)00082-3
– ident: ref29/cit29
  doi: 10.1016/j.msec.2015.02.029
– ident: ref22/cit22
  doi: 10.1097/00003086-200108000-00015
– ident: ref37/cit37
  doi: 10.1080/10255842.2016.1215436
– ident: ref6/cit6
  doi: 10.1021/acsbiomaterials.8b01094
– ident: ref13/cit13
  doi: 10.3390/ma15103670
– ident: ref36/cit36
  doi: 10.1016/j.proeng.2013.05.119
– ident: ref8/cit8
  doi: 10.1016/j.addma.2019.04.025
– ident: ref19/cit19
  doi: 10.1039/C5NR00471C
– ident: ref33/cit33
  doi: 10.1016/j.biomaterials.2008.11.004
– ident: ref11/cit11
  doi: 10.5435/jaaos-d-19-00420
– ident: ref35/cit35
  doi: 10.1016/j.actbio.2012.01.021
– ident: ref15/cit15
  doi: 10.1016/j.apmt.2019.02.017
– ident: ref30/cit30
  doi: 10.1016/j.jcrysgro.2017.07.014
– ident: ref7/cit7
  doi: 10.1016/j.biomaterials.2006.04.041
– ident: ref12/cit12
  doi: 10.1016/j.jmbbm.2018.04.010
– ident: ref10/cit10
  doi: 10.1016/j.bioactmat.2021.09.009
– ident: ref16/cit16
  doi: 10.1016/j.actbio.2012.06.037
– ident: ref24/cit24
  doi: 10.1038/nm.4162
– ident: ref27/cit27
  doi: 10.1016/j.mser.2014.10.001
– ident: ref5/cit5
  doi: 10.1021/acsnano.9b00489
– ident: ref20/cit20
  doi: 10.1155/2022/4529520
– ident: ref32/cit32
  doi: 10.1016/S0142-9612(00)00274-X
– ident: ref31/cit31
  doi: 10.1016/j.actbio.2014.06.004
– ident: ref9/cit9
  doi: 10.1016/j.bioactmat.2017.10.001
– ident: ref14/cit14
  doi: 10.3390/ijms19061619
– ident: ref17/cit17
  doi: 10.3390/ma10040334
– ident: ref18/cit18
  doi: 10.1016/j.bioactmat.2019.05.001
– ident: ref25/cit25
  doi: 10.1039/C9TB00420C
– ident: ref28/cit28
  doi: 10.1016/j.medengphy.2007.04.008
– ident: ref2/cit2
  doi: 10.1016/j.injury.2011.06.015
– ident: ref4/cit4
  doi: 10.1002/jbm.b.34492
– ident: ref21/cit21
  doi: 10.3109/07435800.2013.879168
– ident: ref1/cit1
  doi: 10.2147/IJN.S124671
– ident: ref39/cit39
  doi: 10.1039/c3ra00054k
– ident: ref34/cit34
  doi: 10.1002/jbm.a.30320
– ident: ref23/cit23
  doi: 10.3109/03008207.2014.923877
– ident: ref3/cit3
  doi: 10.1016/j.actbio.2010.01.046
– ident: ref26/cit26
  doi: 10.1016/j.actbio.2017.02.024
SSID ssj0001385444
Score 2.3267741
Snippet Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1435
SubjectTerms Bio-interactions and Biocompatibility
Title Selective Laser Melting of the Porous Ta Scaffold with Mg-Doped Calcium Phosphate Coating for Orthopedic Applications
URI http://dx.doi.org/10.1021/acsbiomaterials.3c01503
https://www.ncbi.nlm.nih.gov/pubmed/38330203
https://www.proquest.com/docview/2925002416
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcYe9keGLCvbgN5Eo-4iz_qOI9VB0Jo3dAKEm-RPyla11RN8sJfv3OSMhiqGO-5k313zv3Od75D6IB6Rq3PJFHgHIigNiEq84oEF7ySCedpEh84j7_Lkwtxejm43EB0TQaf0S_alvEluq5ajfS5jUE6f4aeM6nSGG8NR5O_1ypcDUQzwpXxlBOIqNWqqms9r-iZbHnfM62Bm43bOX6Ffq4e77TVJr_6dWX69uZhL8f_39E22upAKB62VrODNvx8F72805rwNaonzYAc-Bfib-DolnjsZ7FCGhcBA2bEZ8WyqEt8rvHE6hCKmcPxShePr8jXYuEdHumZva5_47NpUS6msAo8KnTDAWAy_rGspvGza4uHd1Lob9DF8dH56IR0IxqI5oO0Io46701igwaNCw1qHihmhaRGikwGx5KglQ4sOEUTDZ6RShW0dNZr7jLY9Fu0OS_m_j3CmTAAXziXylvhuTfBqNRAfCdVRo0VPXQIgsu7I1bmTfac0fwfaeadNHtIrrSZ267deZy6MXucMLklXLQdPx4n-bwylxxOZ0y56LkHLeQsA4gJMIjKHnrX2tEtU644j3ngD0_b2Ef0ggHHWAdH6Se0WS1rvwfAqDL7zVH4A1ZrDc0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa67rD1sPcje2rAjnNmPaLIxyBbkW1JVyAp0J0MPZeiWRzE9mW_fpTjpF2BotiuhkVQoih-FCkS4D31jFqfyUShcUgEtWmiMq-S4IJXMuW8n8YHzpMjOToRX097p3ugtm9hkIkSKZVNEP-iugD9iN_ig3RdbQTT5Tb66vwW3EZIwqLbNRhOL25XuOqJppMr432eoGOttsld19OKBsqWfxuoa1BnY30O78OPHd9N0sl5t65M1_6-UtLxfyb2AO61kJQMNnvoIez55SM4uFSo8DHU06ZdDp6MZIxmb00mfhHzpUkRCCJIclysi7okM02mVodQLByJF7xk8jP5VKy8I0O9sGf1L3I8L8rVHLkgw0I3FBA0k-_rah5_O7NkcCmg_gRODj_PhqOkbdiQaN7rV4mjznuT2qBR_kKj0HuKWSGpkSKTwbE0aKUDC07RVKOdpFIFLZ31mrsMJ_0U9pfF0j8HkgmDYIZzqbwVnnsTjOob9PakyqixogMfcOHyVuHKvImlM5pfWc28Xc0OyK1Qc9sWP489OBY3D0x3A1eb-h83D3m33TU56moMwOilRynkLEPAiaCIyg4822ynHVGuOI9R4Rf_NrG3cGc0m4zz8Zejby_hLkPqMUOO0lewX61r_xohU2XeNNrxB33UFi4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6Dhi2w96P7KkBO06pZSmKDOwSpAu6rekCpAV6GQw9l6JpHMT2Zb9-lONkXYGi2K6GRUgiKX4UKRLgA_Mpsz6TVKFxoILZhKrMKxpc8EomnPeT-MB5fCQPTsTX097pDnzavIXBSZRIqWyC-FGrly60FQbYHn6Pj9J1tWZOl9vor_NbcDsG76LrNRhO_9ywcNUTTTfXlPc5RedabRK8rqcVjZQt_zZS1yDPxgKNHsCP7dybxJPzbl2Zrv11pazj_y7uIdxvoSkZrGXpEez4xWO4d6lg4ROop03bHDwhySGavxUZ-3nMmyZFIIgkyaRYFXVJjjWZWh1CMXckXvSS8U-6Xyy9I0M9t2f1BZnMinI5w1mQYaEbCgieyfdVNYu_nVkyuBRYfwono8_HwwPaNm6gmvf6FXXMeW8SGzTKgdDI_J5KrZDMSJHJ4NIkaKVDGpxiiUZ7yaQKWjrrNXcZLvoZ7C6KhX8BJBMGQQ3nUnkrPPcmGNU36PVJlTFjRQc-4sblreKVeRNTT1l-ZTfzdjc7IDeMzW1bBD324pjfPDDZDlyu64DcPOT9RnJy1NkYiNELj1zI0wyBJ4IjJjvwfC1SW6JccR6jwy__bWHv4M5kf5Qffjn69grupkg8Jsox9hp2q1Xt3yByqszbRkF-A0Y7GLE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Laser+Melting+of+the+Porous+Ta+Scaffold+with+Mg-Doped+Calcium+Phosphate+Coating+for+Orthopedic+Applications&rft.jtitle=ACS+biomaterials+science+%26+engineering&rft.au=Xu%2C+Jianfeng&rft.au=Wu%2C+Di&rft.au=Ge%2C+Bing&rft.au=Li%2C+Maoyuan&rft.date=2024-03-11&rft.issn=2373-9878&rft.eissn=2373-9878&rft.volume=10&rft.issue=3&rft.spage=1435&rft.epage=1447&rft_id=info:doi/10.1021%2Facsbiomaterials.3c01503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsbiomaterials_3c01503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-9878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-9878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-9878&client=summon