Selective Laser Melting of the Porous Ta Scaffold with Mg-Doped Calcium Phosphate Coating for Orthopedic Applications
Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) tec...
Saved in:
Published in | ACS biomaterials science & engineering Vol. 10; no. 3; pp. 1435 - 1447 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) technology, possessed biomechanical properties compatible with natural bone tissue. To enhance the osteogenesis bioactivity of these porous Ta scaffolds, we applied calcium phosphate (CaP) and magnesium-doped calcium phosphate (Mg-CaP) coatings to the surface of SLM Ta scaffolds through a hydrothermal method. These degradable coatings released calcium and magnesium ions, demonstrating osteogenic bioactivity. Experimental results indicated that the Mg-CaP group exhibited biocompatibility comparable to that of the Ta group in vivo and in vitro. In terms of osteogenesis, both the CaP group and the Mg-CaP group showed improved outcomes compared to the control group, with the Mg-CaP group demonstrating superior performance. Therefore, both CaP and magnesium-CaP coatings can significantly enhance the osseointegration of three-dimensional-printed porous Ta, thereby increasing the surface bioactivity. Overall, the present study introduces an innovative approach for the biofunctionalization of SLM porous Ta, aiming to enhance its suitability as a bone implant material. |
---|---|
AbstractList | Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) technology, possessed biomechanical properties compatible with natural bone tissue. To enhance the osteogenesis bioactivity of these porous Ta scaffolds, we applied calcium phosphate (CaP) and magnesium-doped calcium phosphate (Mg-CaP) coatings to the surface of SLM Ta scaffolds through a hydrothermal method. These degradable coatings released calcium and magnesium ions, demonstrating osteogenic bioactivity. Experimental results indicated that the Mg-CaP group exhibited biocompatibility comparable to that of the Ta group in vivo and in vitro. In terms of osteogenesis, both the CaP group and the Mg-CaP group showed improved outcomes compared to the control group, with the Mg-CaP group demonstrating superior performance. Therefore, both CaP and magnesium-CaP coatings can significantly enhance the osseointegration of three-dimensional-printed porous Ta, thereby increasing the surface bioactivity. Overall, the present study introduces an innovative approach for the biofunctionalization of SLM porous Ta, aiming to enhance its suitability as a bone implant material. Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) technology, possessed biomechanical properties compatible with natural bone tissue. To enhance the osteogenesis bioactivity of these porous Ta scaffolds, we applied calcium phosphate (CaP) and magnesium-doped calcium phosphate (Mg-CaP) coatings to the surface of SLM Ta scaffolds through a hydrothermal method. These degradable coatings released calcium and magnesium ions, demonstrating osteogenic bioactivity. Experimental results indicated that the Mg-CaP group exhibited biocompatibility comparable to that of the Ta group in vivo and in vitro. In terms of osteogenesis, both the CaP group and the Mg-CaP group showed improved outcomes compared to the control group, with the Mg-CaP group demonstrating superior performance. Therefore, both CaP and magnesium-CaP coatings can significantly enhance the osseointegration of three-dimensional-printed porous Ta, thereby increasing the surface bioactivity. Overall, the present study introduces an innovative approach for the biofunctionalization of SLM porous Ta, aiming to enhance its suitability as a bone implant material.Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) technology, possessed biomechanical properties compatible with natural bone tissue. To enhance the osteogenesis bioactivity of these porous Ta scaffolds, we applied calcium phosphate (CaP) and magnesium-doped calcium phosphate (Mg-CaP) coatings to the surface of SLM Ta scaffolds through a hydrothermal method. These degradable coatings released calcium and magnesium ions, demonstrating osteogenic bioactivity. Experimental results indicated that the Mg-CaP group exhibited biocompatibility comparable to that of the Ta group in vivo and in vitro. In terms of osteogenesis, both the CaP group and the Mg-CaP group showed improved outcomes compared to the control group, with the Mg-CaP group demonstrating superior performance. Therefore, both CaP and magnesium-CaP coatings can significantly enhance the osseointegration of three-dimensional-printed porous Ta, thereby increasing the surface bioactivity. Overall, the present study introduces an innovative approach for the biofunctionalization of SLM porous Ta, aiming to enhance its suitability as a bone implant material. |
Author | Wang, Weidan Liu, Lingpeng Zhao, Dewei Song, Liqun Wu, Di Wang, Haiyao Cao, Fang Ge, Bing Xu, Jianfeng Yu, Haiyu Li, Maoyuan Yi, Pinqiao Li, Junlei Zhang, Qing |
AuthorAffiliation | Integrative Laboratory Zhongshan Hospital of Dalian University Department of Orthopaedics |
AuthorAffiliation_xml | – name: Department of Orthopaedics – name: Integrative Laboratory – name: Zhongshan Hospital of Dalian University |
Author_xml | – sequence: 1 givenname: Jianfeng surname: Xu fullname: Xu, Jianfeng organization: Department of Orthopaedics – sequence: 2 givenname: Di surname: Wu fullname: Wu, Di organization: Department of Orthopaedics – sequence: 3 givenname: Bing surname: Ge fullname: Ge, Bing organization: Department of Orthopaedics – sequence: 4 givenname: Maoyuan surname: Li fullname: Li, Maoyuan organization: Department of Orthopaedics – sequence: 5 givenname: Haiyu surname: Yu fullname: Yu, Haiyu organization: Department of Orthopaedics – sequence: 6 givenname: Fang surname: Cao fullname: Cao, Fang organization: Department of Orthopaedics – sequence: 7 givenname: Weidan surname: Wang fullname: Wang, Weidan organization: Department of Orthopaedics – sequence: 8 givenname: Qing surname: Zhang fullname: Zhang, Qing organization: Zhongshan Hospital of Dalian University – sequence: 9 givenname: Pinqiao surname: Yi fullname: Yi, Pinqiao organization: Department of Orthopaedics – sequence: 10 givenname: Haiyao surname: Wang fullname: Wang, Haiyao organization: Department of Orthopaedics – sequence: 11 givenname: Liqun surname: Song fullname: Song, Liqun organization: Department of Orthopaedics – sequence: 12 givenname: Lingpeng surname: Liu fullname: Liu, Lingpeng organization: Department of Orthopaedics – sequence: 13 givenname: Junlei surname: Li fullname: Li, Junlei email: jilli11b@alum.imr.ac.cn organization: Department of Orthopaedics – sequence: 14 givenname: Dewei orcidid: 0009-0000-4467-9818 surname: Zhao fullname: Zhao, Dewei email: zhaodewei2016@l63.com organization: Department of Orthopaedics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38330203$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctOHDEQRa0IFAjwC4mX2TTxo5-LLNCQlzQIJMi6VWOXaSN3u2O7E-Xv42GGKGITVlVSnVuquvcNOZj8hIS84-ycM8E_gIob60dIGCy4eC4V4xWTr8ixkI0surZpD_7pj8hZjA-MMS7bqizL1-RItlIyweQxWW7RoUr2J9I1RAz0Cl2y0z31hqYB6Y0Pfon0DuitAmO80_SXTQO9ui8u_YyarsApu4z0ZvBxHvJNdOXhcYPxgV6HNGwxq-jFPDur8shP8ZQcmnw5nu3rCfn--dPd6muxvv7ybXWxLkBWTSo014gbpgxwhSW0HVatUGXNN3XZ1UYLZqAFI4xuOQNWN7xuDdRaIUjdZUtOyPvd3jn4HwvG1I82KnQOJsxv9aITFWOi5HVG3-7RZTOi7udgRwi_-yerMtDsABV8jAHNX4SzfptL_yyXfp9LVn58plQ2PRqRAlj3Ar3c6TPQP_glTNvp_1R_AI-urfk |
CitedBy_id | crossref_primary_10_1007_s10856_025_06871_w crossref_primary_10_1016_j_jmrt_2024_12_191 crossref_primary_10_1111_jace_20018 |
Cites_doi | 10.1016/S0021-9290(01)00082-3 10.1016/j.msec.2015.02.029 10.1097/00003086-200108000-00015 10.1080/10255842.2016.1215436 10.1021/acsbiomaterials.8b01094 10.3390/ma15103670 10.1016/j.proeng.2013.05.119 10.1016/j.addma.2019.04.025 10.1039/C5NR00471C 10.1016/j.biomaterials.2008.11.004 10.5435/jaaos-d-19-00420 10.1016/j.actbio.2012.01.021 10.1016/j.apmt.2019.02.017 10.1016/j.jcrysgro.2017.07.014 10.1016/j.biomaterials.2006.04.041 10.1016/j.jmbbm.2018.04.010 10.1016/j.bioactmat.2021.09.009 10.1016/j.actbio.2012.06.037 10.1038/nm.4162 10.1016/j.mser.2014.10.001 10.1021/acsnano.9b00489 10.1155/2022/4529520 10.1016/S0142-9612(00)00274-X 10.1016/j.actbio.2014.06.004 10.1016/j.bioactmat.2017.10.001 10.3390/ijms19061619 10.3390/ma10040334 10.1016/j.bioactmat.2019.05.001 10.1039/C9TB00420C 10.1016/j.medengphy.2007.04.008 10.1016/j.injury.2011.06.015 10.1002/jbm.b.34492 10.3109/07435800.2013.879168 10.2147/IJN.S124671 10.1039/c3ra00054k 10.1002/jbm.a.30320 10.3109/03008207.2014.923877 10.1016/j.actbio.2010.01.046 10.1016/j.actbio.2017.02.024 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsbiomaterials.3c01503 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2373-9878 |
EndPage | 1447 |
ExternalDocumentID | 38330203 10_1021_acsbiomaterials_3c01503 c012476906 |
Genre | Journal Article |
GroupedDBID | 53G ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH EBS GGK UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI CITATION CUPRZ NPM 7X8 |
ID | FETCH-LOGICAL-a357t-d1deeb0cfa1ce4a89e582c461b6496fd20fa8af2fd810a067168fa6dcea3d9503 |
IEDL.DBID | ACS |
ISSN | 2373-9878 |
IngestDate | Fri Jul 11 10:54:32 EDT 2025 Mon Jul 21 06:05:40 EDT 2025 Thu Apr 24 23:12:29 EDT 2025 Tue Jul 01 00:45:37 EDT 2025 Tue Mar 12 03:27:09 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | Mg2 CaP coating porous Ta hydrothermal treatment osteogenesis |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-d1deeb0cfa1ce4a89e582c461b6496fd20fa8af2fd810a067168fa6dcea3d9503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0000-4467-9818 |
PMID | 38330203 |
PQID | 2925002416 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2925002416 pubmed_primary_38330203 crossref_primary_10_1021_acsbiomaterials_3c01503 crossref_citationtrail_10_1021_acsbiomaterials_3c01503 acs_journals_10_1021_acsbiomaterials_3c01503 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-11 |
PublicationDateYYYYMMDD | 2024-03-11 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS biomaterials science & engineering |
PublicationTitleAlternate | ACS Biomater. Sci. Eng |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref38/cit38 doi: 10.1016/S0021-9290(01)00082-3 – ident: ref29/cit29 doi: 10.1016/j.msec.2015.02.029 – ident: ref22/cit22 doi: 10.1097/00003086-200108000-00015 – ident: ref37/cit37 doi: 10.1080/10255842.2016.1215436 – ident: ref6/cit6 doi: 10.1021/acsbiomaterials.8b01094 – ident: ref13/cit13 doi: 10.3390/ma15103670 – ident: ref36/cit36 doi: 10.1016/j.proeng.2013.05.119 – ident: ref8/cit8 doi: 10.1016/j.addma.2019.04.025 – ident: ref19/cit19 doi: 10.1039/C5NR00471C – ident: ref33/cit33 doi: 10.1016/j.biomaterials.2008.11.004 – ident: ref11/cit11 doi: 10.5435/jaaos-d-19-00420 – ident: ref35/cit35 doi: 10.1016/j.actbio.2012.01.021 – ident: ref15/cit15 doi: 10.1016/j.apmt.2019.02.017 – ident: ref30/cit30 doi: 10.1016/j.jcrysgro.2017.07.014 – ident: ref7/cit7 doi: 10.1016/j.biomaterials.2006.04.041 – ident: ref12/cit12 doi: 10.1016/j.jmbbm.2018.04.010 – ident: ref10/cit10 doi: 10.1016/j.bioactmat.2021.09.009 – ident: ref16/cit16 doi: 10.1016/j.actbio.2012.06.037 – ident: ref24/cit24 doi: 10.1038/nm.4162 – ident: ref27/cit27 doi: 10.1016/j.mser.2014.10.001 – ident: ref5/cit5 doi: 10.1021/acsnano.9b00489 – ident: ref20/cit20 doi: 10.1155/2022/4529520 – ident: ref32/cit32 doi: 10.1016/S0142-9612(00)00274-X – ident: ref31/cit31 doi: 10.1016/j.actbio.2014.06.004 – ident: ref9/cit9 doi: 10.1016/j.bioactmat.2017.10.001 – ident: ref14/cit14 doi: 10.3390/ijms19061619 – ident: ref17/cit17 doi: 10.3390/ma10040334 – ident: ref18/cit18 doi: 10.1016/j.bioactmat.2019.05.001 – ident: ref25/cit25 doi: 10.1039/C9TB00420C – ident: ref28/cit28 doi: 10.1016/j.medengphy.2007.04.008 – ident: ref2/cit2 doi: 10.1016/j.injury.2011.06.015 – ident: ref4/cit4 doi: 10.1002/jbm.b.34492 – ident: ref21/cit21 doi: 10.3109/07435800.2013.879168 – ident: ref1/cit1 doi: 10.2147/IJN.S124671 – ident: ref39/cit39 doi: 10.1039/c3ra00054k – ident: ref34/cit34 doi: 10.1002/jbm.a.30320 – ident: ref23/cit23 doi: 10.3109/03008207.2014.923877 – ident: ref3/cit3 doi: 10.1016/j.actbio.2010.01.046 – ident: ref26/cit26 doi: 10.1016/j.actbio.2017.02.024 |
SSID | ssj0001385444 |
Score | 2.3267741 |
Snippet | Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1435 |
SubjectTerms | Bio-interactions and Biocompatibility |
Title | Selective Laser Melting of the Porous Ta Scaffold with Mg-Doped Calcium Phosphate Coating for Orthopedic Applications |
URI | http://dx.doi.org/10.1021/acsbiomaterials.3c01503 https://www.ncbi.nlm.nih.gov/pubmed/38330203 https://www.proquest.com/docview/2925002416 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcYe9keGLCvbgN5Eo-4iz_qOI9VB0Jo3dAKEm-RPyla11RN8sJfv3OSMhiqGO-5k313zv3Od75D6IB6Rq3PJFHgHIigNiEq84oEF7ySCedpEh84j7_Lkwtxejm43EB0TQaf0S_alvEluq5ajfS5jUE6f4aeM6nSGG8NR5O_1ypcDUQzwpXxlBOIqNWqqms9r-iZbHnfM62Bm43bOX6Ffq4e77TVJr_6dWX69uZhL8f_39E22upAKB62VrODNvx8F72805rwNaonzYAc-Bfib-DolnjsZ7FCGhcBA2bEZ8WyqEt8rvHE6hCKmcPxShePr8jXYuEdHumZva5_47NpUS6msAo8KnTDAWAy_rGspvGza4uHd1Lob9DF8dH56IR0IxqI5oO0Io46701igwaNCw1qHihmhaRGikwGx5KglQ4sOEUTDZ6RShW0dNZr7jLY9Fu0OS_m_j3CmTAAXziXylvhuTfBqNRAfCdVRo0VPXQIgsu7I1bmTfac0fwfaeadNHtIrrSZ267deZy6MXucMLklXLQdPx4n-bwylxxOZ0y56LkHLeQsA4gJMIjKHnrX2tEtU644j3ngD0_b2Ef0ggHHWAdH6Se0WS1rvwfAqDL7zVH4A1ZrDc0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa67rD1sPcje2rAjnNmPaLIxyBbkW1JVyAp0J0MPZeiWRzE9mW_fpTjpF2BotiuhkVQoih-FCkS4D31jFqfyUShcUgEtWmiMq-S4IJXMuW8n8YHzpMjOToRX097p3ugtm9hkIkSKZVNEP-iugD9iN_ig3RdbQTT5Tb66vwW3EZIwqLbNRhOL25XuOqJppMr432eoGOttsld19OKBsqWfxuoa1BnY30O78OPHd9N0sl5t65M1_6-UtLxfyb2AO61kJQMNnvoIez55SM4uFSo8DHU06ZdDp6MZIxmb00mfhHzpUkRCCJIclysi7okM02mVodQLByJF7xk8jP5VKy8I0O9sGf1L3I8L8rVHLkgw0I3FBA0k-_rah5_O7NkcCmg_gRODj_PhqOkbdiQaN7rV4mjznuT2qBR_kKj0HuKWSGpkSKTwbE0aKUDC07RVKOdpFIFLZ31mrsMJ_0U9pfF0j8HkgmDYIZzqbwVnnsTjOob9PakyqixogMfcOHyVuHKvImlM5pfWc28Xc0OyK1Qc9sWP489OBY3D0x3A1eb-h83D3m33TU56moMwOilRynkLEPAiaCIyg4822ynHVGuOI9R4Rf_NrG3cGc0m4zz8Zejby_hLkPqMUOO0lewX61r_xohU2XeNNrxB33UFi4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6Dhi2w96P7KkBO06pZSmKDOwSpAu6rekCpAV6GQw9l6JpHMT2Zb9-lONkXYGi2K6GRUgiKX4UKRLgA_Mpsz6TVKFxoILZhKrMKxpc8EomnPeT-MB5fCQPTsTX097pDnzavIXBSZRIqWyC-FGrly60FQbYHn6Pj9J1tWZOl9vor_NbcDsG76LrNRhO_9ywcNUTTTfXlPc5RedabRK8rqcVjZQt_zZS1yDPxgKNHsCP7dybxJPzbl2Zrv11pazj_y7uIdxvoSkZrGXpEez4xWO4d6lg4ROop03bHDwhySGavxUZ-3nMmyZFIIgkyaRYFXVJjjWZWh1CMXckXvSS8U-6Xyy9I0M9t2f1BZnMinI5w1mQYaEbCgieyfdVNYu_nVkyuBRYfwono8_HwwPaNm6gmvf6FXXMeW8SGzTKgdDI_J5KrZDMSJHJ4NIkaKVDGpxiiUZ7yaQKWjrrNXcZLvoZ7C6KhX8BJBMGQQ3nUnkrPPcmGNU36PVJlTFjRQc-4sblreKVeRNTT1l-ZTfzdjc7IDeMzW1bBD324pjfPDDZDlyu64DcPOT9RnJy1NkYiNELj1zI0wyBJ4IjJjvwfC1SW6JccR6jwy__bWHv4M5kf5Qffjn69grupkg8Jsox9hp2q1Xt3yByqszbRkF-A0Y7GLE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Laser+Melting+of+the+Porous+Ta+Scaffold+with+Mg-Doped+Calcium+Phosphate+Coating+for+Orthopedic+Applications&rft.jtitle=ACS+biomaterials+science+%26+engineering&rft.au=Xu%2C+Jianfeng&rft.au=Wu%2C+Di&rft.au=Ge%2C+Bing&rft.au=Li%2C+Maoyuan&rft.date=2024-03-11&rft.issn=2373-9878&rft.eissn=2373-9878&rft.volume=10&rft.issue=3&rft.spage=1435&rft.epage=1447&rft_id=info:doi/10.1021%2Facsbiomaterials.3c01503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsbiomaterials_3c01503 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-9878&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-9878&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-9878&client=summon |