The Role of the Extrafibrillar Volume on the Mechanical Properties of Molecular Models of Mineralized Bone Microfibrils
Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary...
Saved in:
Published in | ACS biomaterials science & engineering Vol. 9; no. 1; pp. 230 - 245 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary constituents at the molecular scale. However, the relationship between structure and mechanical properties in bones are still not fully understood. Here, we investigate structural and mechanical properties of all-atom bone molecular models composed of type-I collagen, hydroxyapatite (HA), and water by means of fully atomistic molecular dynamics simulations. Our models encompass an extrafibrillar volume (EFV) and consider mineral content in both the EFV and intrafibrillar volume (IFV), consistent with experimental observations. We investigate solvation structures and elastic properties of bone microfibril models with different degrees of mineralization, ranging from highly mineralized to weakly mineralized and nonmineralized models. We find that the local tetrahedral order of water is lost in similar ways in the EFV and IFV regions for all HA containing models, as calcium and phosphate ions are strongly coordinated with water molecules. We also subject our models to tensile loads and analyze the spatial stress distribution over the nanostructure of the material. Our results show that both mineral and water contents accumulate significantly higher stress levels, most notably in the EFV, thus revealing that this region, which has been only recently incorporated in all-atom molecular models, is fundamental for studying the mechanical properties of bones at the nanoscale. Furthermore, our results corroborate the well-established finding that high mineral content makes bone stiffer. |
---|---|
AbstractList | Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary constituents at the molecular scale. However, the relationship between structure and mechanical properties in bones are still not fully understood. Here, we investigate structural and mechanical properties of all-atom bone molecular models composed of type-I collagen, hydroxyapatite (HA), and water by means of fully atomistic molecular dynamics simulations. Our models encompass an extrafibrillar volume (EFV) and consider mineral content in both the EFV and intrafibrillar volume (IFV), consistent with experimental observations. We investigate solvation structures and elastic properties of bone microfibril models with different degrees of mineralization, ranging from highly mineralized to weakly mineralized and nonmineralized models. We find that the local tetrahedral order of water is lost in similar ways in the EFV and IFV regions for all HA containing models, as calcium and phosphate ions are strongly coordinated with water molecules. We also subject our models to tensile loads and analyze the spatial stress distribution over the nanostructure of the material. Our results show that both mineral and water contents accumulate significantly higher stress levels, most notably in the EFV, thus revealing that this region, which has been only recently incorporated in all-atom molecular models, is fundamental for studying the mechanical properties of bones at the nanoscale. Furthermore, our results corroborate the well-established finding that high mineral content makes bone stiffer. Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary constituents at the molecular scale. However, the relationship between structure and mechanical properties in bones are still not fully understood. Here, we investigate structural and mechanical properties of all-atom bone molecular models composed of type-I collagen, hydroxyapatite (HA), and water by means of fully atomistic molecular dynamics simulations. Our models encompass an extrafibrillar volume (EFV) and consider mineral content in both the EFV and intrafibrillar volume (IFV), consistent with experimental observations. We investigate solvation structures and elastic properties of bone microfibril models with different degrees of mineralization, ranging from highly mineralized to weakly mineralized and nonmineralized models. We find that the local tetrahedral order of water is lost in similar ways in the EFV and IFV regions for all HA containing models, as calcium and phosphate ions are strongly coordinated with water molecules. We also subject our models to tensile loads and analyze the spatial stress distribution over the nanostructure of the material. Our results show that both mineral and water contents accumulate significantly higher stress levels, most notably in the EFV, thus revealing that this region, which has been only recently incorporated in all-atom molecular models, is fundamental for studying the mechanical properties of bones at the nanoscale. Furthermore, our results corroborate the well-established finding that high mineral content makes bone stiffer.Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary constituents at the molecular scale. However, the relationship between structure and mechanical properties in bones are still not fully understood. Here, we investigate structural and mechanical properties of all-atom bone molecular models composed of type-I collagen, hydroxyapatite (HA), and water by means of fully atomistic molecular dynamics simulations. Our models encompass an extrafibrillar volume (EFV) and consider mineral content in both the EFV and intrafibrillar volume (IFV), consistent with experimental observations. We investigate solvation structures and elastic properties of bone microfibril models with different degrees of mineralization, ranging from highly mineralized to weakly mineralized and nonmineralized models. We find that the local tetrahedral order of water is lost in similar ways in the EFV and IFV regions for all HA containing models, as calcium and phosphate ions are strongly coordinated with water molecules. We also subject our models to tensile loads and analyze the spatial stress distribution over the nanostructure of the material. Our results show that both mineral and water contents accumulate significantly higher stress levels, most notably in the EFV, thus revealing that this region, which has been only recently incorporated in all-atom molecular models, is fundamental for studying the mechanical properties of bones at the nanoscale. Furthermore, our results corroborate the well-established finding that high mineral content makes bone stiffer. |
Author | Sollero, Paulo Galvão, Douglas S. Skaf, Munir S. Felix, Levi C. de Alcântara, Amadeus C. S. |
AuthorAffiliation | University of Campinas Institute of Chemistry Center for Computing in Engineering & Sciences, CCES Department of Computational Mechanics, School of Mechanical Engineering Department of Applied Physics, Gleb Wataghin Institute of Physics |
AuthorAffiliation_xml | – name: University of Campinas – name: Center for Computing in Engineering & Sciences, CCES – name: Institute of Chemistry – name: Department of Applied Physics, Gleb Wataghin Institute of Physics – name: Department of Computational Mechanics, School of Mechanical Engineering |
Author_xml | – sequence: 1 givenname: Amadeus C. S. surname: de Alcântara fullname: de Alcântara, Amadeus C. S. organization: Center for Computing in Engineering & Sciences, CCES – sequence: 2 givenname: Levi C. orcidid: 0000-0001-5928-0885 surname: Felix fullname: Felix, Levi C. organization: University of Campinas – sequence: 3 givenname: Douglas S. surname: Galvão fullname: Galvão, Douglas S. organization: University of Campinas – sequence: 4 givenname: Paulo surname: Sollero fullname: Sollero, Paulo organization: Center for Computing in Engineering & Sciences, CCES – sequence: 5 givenname: Munir S. orcidid: 0000-0001-7485-1228 surname: Skaf fullname: Skaf, Munir S. email: skaf@unicamp.br organization: University of Campinas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36484626$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9P20AQxVdVUEPTfIXiI5fA_s3aBw6AoEVKVITSXq3xeiwWrb1h1xYtn76bOq0QFzjtaN77Pe3MfCKTzndIyBGjJ4xydgomVta30GOw4OIJN5Rqnn8gh1xosShynU9e1FMyj_GBUspErqSUH8lULGUul3x5SJ4295jdeYeZb7I-1Ve_-gCNrYJ1DkL207uhTWL3V1yjuYfOGnDZbfBbDL3FuCPXKcEMO2Dta3Rjz3YYwNlnrLOLNEFqmODH6PiZHDTp7zjfvzPy4_pqc_ltsfr-9ebyfLUAoXS_qJnSkCtaNFDltVCoGiMbqQxykMhACMERBLKC0qIqGIWmkjWtC1pVqQNiRo7H3G3wjwPGvmxtNJhm69APseRaCV5oqXSyftlbh6rFutwG20L4Xf5bVjLo0ZDGiDFg89_CaLm7TPnqMuX-Mok8e0Ua20NvfZeWbd07eDHyyVA--CF0O_Ut6g8WYq6o |
CitedBy_id | crossref_primary_10_1021_acsami_4c02638 crossref_primary_10_1038_s41467_025_57460_y crossref_primary_10_1016_j_pmatsci_2025_101474 crossref_primary_10_1016_j_jmbbm_2024_106471 |
Cites_doi | 10.1038/ncomms2720 10.1007/978-3-319-58845-2_4 10.1021/jp004368u 10.1016/0263-7855(96)00018-5 10.3390/ma13010106 10.1080/00268971003762134 10.1016/j.commatsci.2014.10.068 10.1098/rsif.2013.0835 10.1016/j.cpc.2013.08.002 10.1063/1.437577 10.1021/la3038846 10.1006/jcph.1995.1039 10.1021/jp973084f 10.1089/jwh.2013.4611 10.1210/jc.2019-00221 10.1021/acsbiomaterials.6b00021 10.1021/acs.jpcc.5b12504 10.1115/1.4036316 10.1016/j.bpj.2016.05.038 10.1039/C6TB02835G 10.1016/j.cpc.2011.10.012 10.1002/jcc.21224 10.1126/science.aao2189 10.1016/S0020-1383(16)47003-8 10.32604/cmes.2020.012123 10.1155/2015/638934 10.1016/j.bone.2020.115304 10.3233/APC200086 10.1016/j.jmbbm.2022.105139 10.1016/j.cpc.2010.12.021 10.1073/pnas.1201513109 10.1016/B978-0-12-397165-4.00007-1 10.1016/j.jsb.2014.10.005 10.1021/acsnano.8b00837 10.1016/j.jmbbm.2015.05.023 10.1371/journal.pone.0029258 10.1039/C6CP03403A 10.3390/ma15062274 10.3109/03008208709005616 10.1063/5.0014475 10.3389/fphy.2017.00039 10.1093/nar/gkaa1100 10.1093/nar/28.1.235 10.1103/PhysRevB.17.1302 10.1063/1.328693 10.1021/bm5003416 10.1016/j.ijsolstr.2008.03.016 10.1016/j.mser.2007.05.001 10.1073/pnas.0502718103 10.1103/PhysRevB.69.134103 10.1080/07391102.2018.1433553 10.1021/acsnano.0c02180 10.1142/9789814335058_0021 10.1080/13697137.2019.1685488 10.1039/c0sm01192d 10.1016/0021-9290(75)90075-5 10.1007/s00198-017-4230-x 10.1063/1.467468 10.1007/s10237-018-1067-y 10.1016/j.jmbbm.2020.104132 10.1007/s00198-015-3154-6 10.1021/nl103943u 10.1007/s10237-014-0615-3 10.1098/rspa.2003.1127 10.1098/rsif.2011.0880 10.1016/B978-0-12-801238-3.99937-9 10.1002/prot.24864 10.1515/9781400849505 10.1039/D0BM02003F 10.1038/nmeth.4067 10.1007/s11914-012-0103-6 10.1063/1.464397 10.1021/ja036959e 10.1098/rsfs.2015.0055 10.1016/j.jmbbm.2021.104761 10.1016/j.jmbbm.2016.08.027 10.1080/23335432.2020.1812428 10.1016/j.jmbbm.2007.04.001 10.1021/jp709896w 10.1016/j.semcdb.2015.06.008 10.1016/j.cpc.2021.108171 10.1088/0305-4470/39/19/S18 10.1002/ar.1091490303 10.1021/acsami.1c18727 10.1016/j.micron.2013.03.002 10.1080/08927022.2017.1313418 10.1098/rsif.2010.0413 10.1146/annurev.pc.44.100193.002003 10.1016/j.jmbbm.2022.105431 10.1088/0965-0393/18/1/015012 10.3390/min12020170 10.1038/nmat4719 10.1021/acsami.0c01613 10.1021/jp1059984 10.1007/s11657-017-0324-5 10.1016/j.cpc.2016.10.020 10.1021/ct300400x 10.1146/annurev.biochem.77.032207.120833 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsbiomaterials.2c00728 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2373-9878 |
EndPage | 245 |
ExternalDocumentID | 36484626 10_1021_acsbiomaterials_2c00728 a483928824 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 53G ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS GGK UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a357t-d157a8509fab8d35e5fc4f45ce2a4e1a3332ea3e19009b910afb4d0d90bb009a3 |
IEDL.DBID | ACS |
ISSN | 2373-9878 |
IngestDate | Thu Jul 10 22:16:27 EDT 2025 Wed Feb 19 02:25:06 EST 2025 Tue Jul 01 00:45:35 EDT 2025 Thu Apr 24 23:00:40 EDT 2025 Wed Jan 11 03:10:44 EST 2023 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | mineralized collagen fibril bone nanomechanics collagen fiber molecular dynamics extrafibrillar volume microfibrils |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-d157a8509fab8d35e5fc4f45ce2a4e1a3332ea3e19009b910afb4d0d90bb009a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5928-0885 0000-0001-7485-1228 |
PMID | 36484626 |
PQID | 2753297457 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2753297457 pubmed_primary_36484626 crossref_primary_10_1021_acsbiomaterials_2c00728 crossref_citationtrail_10_1021_acsbiomaterials_2c00728 acs_journals_10_1021_acsbiomaterials_2c00728 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230109 2023-01-09 |
PublicationDateYYYYMMDD | 2023-01-09 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230109 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS biomaterials science & engineering |
PublicationTitleAlternate | ACS Biomater. Sci. Eng |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 Keaveny T. M. (ref12/cit12) 2003 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 Fratzl P. (ref22/cit22) 2008 ref42/cit42 ref96/cit96 ref13/cit13 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref66/cit66 ref33/cit33 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 von Mises R. (ref51/cit51) 1913; 1 ref57/cit57 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref40/cit40 doi: 10.1038/ncomms2720 – ident: ref18/cit18 doi: 10.1007/978-3-319-58845-2_4 – ident: ref105/cit105 doi: 10.1021/jp004368u – ident: ref62/cit62 doi: 10.1016/0263-7855(96)00018-5 – ident: ref7/cit7 doi: 10.3390/ma13010106 – volume-title: Standard Handbook Of Biomedical Engineering And Design year: 2003 ident: ref12/cit12 – ident: ref93/cit93 doi: 10.1080/00268971003762134 – ident: ref81/cit81 doi: 10.1016/j.commatsci.2014.10.068 – ident: ref47/cit47 doi: 10.1098/rsif.2013.0835 – ident: ref80/cit80 doi: 10.1016/j.cpc.2013.08.002 – ident: ref55/cit55 doi: 10.1063/1.437577 – ident: ref70/cit70 doi: 10.1021/la3038846 – ident: ref77/cit77 doi: 10.1006/jcph.1995.1039 – ident: ref66/cit66 doi: 10.1021/jp973084f – ident: ref5/cit5 doi: 10.1089/jwh.2013.4611 – ident: ref31/cit31 doi: 10.1210/jc.2019-00221 – ident: ref60/cit60 doi: 10.1021/acsbiomaterials.6b00021 – ident: ref71/cit71 doi: 10.1021/acs.jpcc.5b12504 – ident: ref91/cit91 doi: 10.1115/1.4036316 – ident: ref90/cit90 doi: 10.1016/j.bpj.2016.05.038 – ident: ref76/cit76 doi: 10.1039/C6TB02835G – ident: ref79/cit79 doi: 10.1016/j.cpc.2011.10.012 – ident: ref61/cit61 doi: 10.1002/jcc.21224 – ident: ref14/cit14 doi: 10.1126/science.aao2189 – ident: ref3/cit3 doi: 10.1016/S0020-1383(16)47003-8 – volume: 1 start-page: 582 year: 1913 ident: ref51/cit51 publication-title: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse – ident: ref9/cit9 doi: 10.32604/cmes.2020.012123 – ident: ref6/cit6 doi: 10.1155/2015/638934 – ident: ref15/cit15 doi: 10.1016/j.bone.2020.115304 – ident: ref83/cit83 doi: 10.3233/APC200086 – ident: ref99/cit99 doi: 10.1016/j.jmbbm.2022.105139 – ident: ref78/cit78 doi: 10.1016/j.cpc.2010.12.021 – ident: ref27/cit27 doi: 10.1073/pnas.1201513109 – ident: ref2/cit2 – ident: ref20/cit20 doi: 10.1016/B978-0-12-397165-4.00007-1 – ident: ref45/cit45 doi: 10.1016/j.jsb.2014.10.005 – ident: ref95/cit95 doi: 10.1021/acsnano.8b00837 – ident: ref11/cit11 doi: 10.1016/j.jmbbm.2015.05.023 – volume-title: Collagen - Structure and Mechanics year: 2008 ident: ref22/cit22 – ident: ref44/cit44 doi: 10.1371/journal.pone.0029258 – ident: ref103/cit103 doi: 10.1039/C6CP03403A – ident: ref42/cit42 doi: 10.3390/ma15062274 – ident: ref1/cit1 – ident: ref50/cit50 doi: 10.3109/03008208709005616 – ident: ref65/cit65 doi: 10.1063/5.0014475 – ident: ref23/cit23 doi: 10.3389/fphy.2017.00039 – ident: ref56/cit56 doi: 10.1093/nar/gkaa1100 – ident: ref32/cit32 doi: 10.1093/nar/28.1.235 – ident: ref85/cit85 doi: 10.1103/PhysRevB.17.1302 – ident: ref89/cit89 doi: 10.1063/1.328693 – ident: ref41/cit41 doi: 10.1021/bm5003416 – ident: ref54/cit54 doi: 10.1016/j.ijsolstr.2008.03.016 – ident: ref25/cit25 doi: 10.1016/j.mser.2007.05.001 – ident: ref33/cit33 doi: 10.1073/pnas.0502718103 – ident: ref86/cit86 doi: 10.1103/PhysRevB.69.134103 – ident: ref58/cit58 doi: 10.1080/07391102.2018.1433553 – ident: ref37/cit37 doi: 10.1021/acsnano.0c02180 – ident: ref21/cit21 doi: 10.1142/9789814335058_0021 – ident: ref29/cit29 doi: 10.1080/13697137.2019.1685488 – ident: ref57/cit57 doi: 10.1039/c0sm01192d – ident: ref97/cit97 doi: 10.1016/0021-9290(75)90075-5 – ident: ref28/cit28 doi: 10.1007/s00198-017-4230-x – ident: ref88/cit88 doi: 10.1063/1.467468 – ident: ref39/cit39 doi: 10.1007/s10237-018-1067-y – ident: ref43/cit43 doi: 10.1016/j.jmbbm.2020.104132 – ident: ref4/cit4 doi: 10.1007/s00198-015-3154-6 – ident: ref34/cit34 doi: 10.1021/nl103943u – ident: ref59/cit59 doi: 10.1007/s10237-014-0615-3 – ident: ref53/cit53 doi: 10.1098/rspa.2003.1127 – ident: ref46/cit46 doi: 10.1098/rsif.2011.0880 – ident: ref94/cit94 doi: 10.1016/B978-0-12-801238-3.99937-9 – ident: ref75/cit75 doi: 10.1002/prot.24864 – ident: ref96/cit96 doi: 10.1515/9781400849505 – ident: ref36/cit36 doi: 10.1039/D0BM02003F – ident: ref69/cit69 doi: 10.1038/nmeth.4067 – ident: ref101/cit101 doi: 10.1007/s11914-012-0103-6 – ident: ref72/cit72 doi: 10.1063/1.464397 – ident: ref67/cit67 doi: 10.1021/ja036959e – ident: ref10/cit10 doi: 10.1098/rsfs.2015.0055 – ident: ref8/cit8 doi: 10.1016/j.jmbbm.2021.104761 – ident: ref100/cit100 doi: 10.1016/j.jmbbm.2016.08.027 – ident: ref38/cit38 doi: 10.1080/23335432.2020.1812428 – ident: ref104/cit104 doi: 10.1016/j.jmbbm.2007.04.001 – ident: ref106/cit106 doi: 10.1021/jp709896w – ident: ref26/cit26 doi: 10.1016/j.semcdb.2015.06.008 – ident: ref73/cit73 doi: 10.1016/j.cpc.2021.108171 – ident: ref87/cit87 doi: 10.1088/0305-4470/39/19/S18 – ident: ref24/cit24 doi: 10.1002/ar.1091490303 – ident: ref17/cit17 doi: 10.1021/acsami.1c18727 – ident: ref49/cit49 doi: 10.1016/j.micron.2013.03.002 – ident: ref52/cit52 doi: 10.1080/08927022.2017.1313418 – ident: ref84/cit84 – ident: ref98/cit98 doi: 10.1098/rsif.2010.0413 – ident: ref92/cit92 doi: 10.1146/annurev.pc.44.100193.002003 – ident: ref48/cit48 doi: 10.1016/j.jmbbm.2022.105431 – ident: ref63/cit63 – ident: ref64/cit64 doi: 10.1088/0965-0393/18/1/015012 – ident: ref74/cit74 doi: 10.1016/j.cpc.2021.108171 – ident: ref13/cit13 doi: 10.3390/min12020170 – ident: ref16/cit16 doi: 10.1038/nmat4719 – ident: ref102/cit102 doi: 10.1021/acsami.0c01613 – ident: ref35/cit35 doi: 10.1021/jp1059984 – ident: ref30/cit30 doi: 10.1007/s11657-017-0324-5 – ident: ref82/cit82 doi: 10.1016/j.cpc.2016.10.020 – ident: ref68/cit68 doi: 10.1021/ct300400x – ident: ref19/cit19 doi: 10.1146/annurev.biochem.77.032207.120833 |
SSID | ssj0001385444 |
Score | 2.2679062 |
Snippet | Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 230 |
SubjectTerms | Animals Bone and Bones Microfibrils Minerals Modeling and Informatics Tools Models, Molecular Water |
Title | The Role of the Extrafibrillar Volume on the Mechanical Properties of Molecular Models of Mineralized Bone Microfibrils |
URI | http://dx.doi.org/10.1021/acsbiomaterials.2c00728 https://www.ncbi.nlm.nih.gov/pubmed/36484626 https://www.proquest.com/docview/2753297457 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BvcChDx7t9iUjcSRL4mdybBEIVdqqogVxi2zHlhCrpNrNCsSv79hJgFKtoNck48ieGfsb2_MNwJ4Q2hWWikQzwxKOEDkxSsnEsULnBRWWxqSwyXd5csa_XYiLFciWnODT7EDbechE122nkTG1ge06X4UXVKIrBzR0-PN-W4XlgscSrpQplmBEnQ-3upa3FVYmO_97ZVoCN-Oyc_wKTofkne62ydV40Zqxvf2Xy_H5PXoNL3sQSr50VvMGVly9CRsPqAm34Brth5w2U0caTxAkkqObdqZ9SBBAw5mR8zirkaaOLycuJBAHfZMfYXd_Fmhag-RkqL5LQtG1affsMjJdX966inxtapQOlwK7pufbcHZ89OvwJOmLNKB2hWqTKhNK5wg7vDZ5xYQT3nLPRSg0xl2mGWPUaeYQeKSFQXCiveFVWhWpQY8vNNuBtRr_9Q6IlxmGVyq3vqgw7JTa4-ygZMWV0TpL3Qj2cejK3snmZTw_p1n5aDzLfjxHIAd9lrYnPA91N6ZPC6Z3gr87zo-nRXYHgynRP8Ohi65ds8APMB6kGLQJNYK3nSXdNcokR_hH5fv_69gHWA9F7-NGUPER1trZwn1CaNSaz9EZ_gDj8g5Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N8QA8ML7XbYCReCRd4o84edyqVgXWCcGGxlNkJ7Y0USVTk4ppf_3OTtKNSVMFr07uEvvu7N_ZvjuAj0Iok-ZUBIppFnCEyIGWMg4MS1WSUpFTHxQ2O46np_zLmTjbgKSPhcGfqJFT7Q_xb7ILRPvY5gLSVdMKZkhzl_Q6eQAPEZJQp9sHox83uyssEdxXcqVMsgAd66S_3HU_L7dA5fXfC9Q9qNOvPpMt-LX6b3_p5Pdw2ehhfnUnpeP_dOwZPO0gKTlodeg5bJjyBTy5lajwJfxBbSLfq7khlSUIGcn4slko68IFUI0W5Kef40hV-ocz48KJnfTJN7fXv3BJWx3lrK_FS1wJtnnbdu7zXp9fmYIcViVSuyuCLev6FZxOxiejadCVbEBZC9kERSSkShCEWKWTggkjbM4tF67sGDeRYoxRo5hBGBKmGqGKspoXYZGGGu0_Vew1bJb4rW0gNo7Q2ZJJbtMCndBYWZwrZFxwqZWKQjOATzh0WWdydeZP02mU3RnPrBvPAcS9WLO8S3_uqnDM1xOGK8KLNgPIepIPvd5kaK3uCEaVplriC-gdUnThhBzAm1ahVkxZzBEM0njn3zr2Hh5NT2ZH2dHn46-78JgiCPNbROkebDaLpXmLoKnR77x9XAMZ-Rax |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLfGkBA8jG92fAaJR3q0-WhaiZcxdhofN03A0F5QlbSJNHFqp2tPoP312Gl7wKRpgte0dpvETn6OYxvghVLG5SVXkRFWRBIhcmS1TiMncpPlXJU8BIXND9L9I_n-WB1vwOsxFgZ_okVObXDik1afVn7IMJC8wnYKSjddPzlTXlLi6-wKXCXnHcn3zu7n3ycsIlMyVHPlQosIjetsvOB1MS_apMr2703qAuQZdqDZTfi2_vdw8eT7dNXZaXl2Lq3j_3buFmwN0JTt9LJ0GzZcfQdu_JGw8C78QKlin5qFY41nCB3Z3s9uaTyFDaA4LdnXsNaxpg4P547CikkK2CGd-S8peStRzseavIxKsS36tpOQ__rkzFXsTVMjNV0V7Fm39-Botvdldz8aSjfgnCvdRVWitMkQjHhjs0oop3wpvVRUfky6xAghuDPCIRyJc4uQxXgrq7jKY4vrQG7Efdis8VvbwHyaoNGls9LnFRqjqfG4Zui0ktoak8RuAi9x6IpB9doieNV5Upwbz2IYzwmk49QW5ZAGnapxLC4njNeEp30mkMtJno-yU6DWkivG1K5Z4QtoJXI05ZSewINeqNZMRSoRFPL04b917BlcO3w7Kz6-O_jwCK5zxGLhpCh_DJvdcuWeIHbq7NOgIr8A5jwZNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+the+Extrafibrillar+Volume+on+the+Mechanical+Properties+of+Molecular+Models+of+Mineralized+Bone+Microfibrils&rft.jtitle=ACS+biomaterials+science+%26+engineering&rft.au=de+Alc%C3%A2ntara%2C+Amadeus+C+S&rft.au=Felix%2C+Levi+C&rft.au=Galv%C3%A3o%2C+Douglas+S&rft.au=Sollero%2C+Paulo&rft.date=2023-01-09&rft.eissn=2373-9878&rft.volume=9&rft.issue=1&rft.spage=230&rft_id=info:doi/10.1021%2Facsbiomaterials.2c00728&rft_id=info%3Apmid%2F36484626&rft.externalDocID=36484626 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-9878&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-9878&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-9878&client=summon |