The Role of the Extrafibrillar Volume on the Mechanical Properties of Molecular Models of Mineralized Bone Microfibrils

Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary...

Full description

Saved in:
Bibliographic Details
Published inACS biomaterials science & engineering Vol. 9; no. 1; pp. 230 - 245
Main Authors de Alcântara, Amadeus C. S., Felix, Levi C., Galvão, Douglas S., Sollero, Paulo, Skaf, Munir S.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary constituents at the molecular scale. However, the relationship between structure and mechanical properties in bones are still not fully understood. Here, we investigate structural and mechanical properties of all-atom bone molecular models composed of type-I collagen, hydroxyapatite (HA), and water by means of fully atomistic molecular dynamics simulations. Our models encompass an extrafibrillar volume (EFV) and consider mineral content in both the EFV and intrafibrillar volume (IFV), consistent with experimental observations. We investigate solvation structures and elastic properties of bone microfibril models with different degrees of mineralization, ranging from highly mineralized to weakly mineralized and nonmineralized models. We find that the local tetrahedral order of water is lost in similar ways in the EFV and IFV regions for all HA containing models, as calcium and phosphate ions are strongly coordinated with water molecules. We also subject our models to tensile loads and analyze the spatial stress distribution over the nanostructure of the material. Our results show that both mineral and water contents accumulate significantly higher stress levels, most notably in the EFV, thus revealing that this region, which has been only recently incorporated in all-atom molecular models, is fundamental for studying the mechanical properties of bones at the nanoscale. Furthermore, our results corroborate the well-established finding that high mineral content makes bone stiffer.
AbstractList Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary constituents at the molecular scale. However, the relationship between structure and mechanical properties in bones are still not fully understood. Here, we investigate structural and mechanical properties of all-atom bone molecular models composed of type-I collagen, hydroxyapatite (HA), and water by means of fully atomistic molecular dynamics simulations. Our models encompass an extrafibrillar volume (EFV) and consider mineral content in both the EFV and intrafibrillar volume (IFV), consistent with experimental observations. We investigate solvation structures and elastic properties of bone microfibril models with different degrees of mineralization, ranging from highly mineralized to weakly mineralized and nonmineralized models. We find that the local tetrahedral order of water is lost in similar ways in the EFV and IFV regions for all HA containing models, as calcium and phosphate ions are strongly coordinated with water molecules. We also subject our models to tensile loads and analyze the spatial stress distribution over the nanostructure of the material. Our results show that both mineral and water contents accumulate significantly higher stress levels, most notably in the EFV, thus revealing that this region, which has been only recently incorporated in all-atom molecular models, is fundamental for studying the mechanical properties of bones at the nanoscale. Furthermore, our results corroborate the well-established finding that high mineral content makes bone stiffer.
Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary constituents at the molecular scale. However, the relationship between structure and mechanical properties in bones are still not fully understood. Here, we investigate structural and mechanical properties of all-atom bone molecular models composed of type-I collagen, hydroxyapatite (HA), and water by means of fully atomistic molecular dynamics simulations. Our models encompass an extrafibrillar volume (EFV) and consider mineral content in both the EFV and intrafibrillar volume (IFV), consistent with experimental observations. We investigate solvation structures and elastic properties of bone microfibril models with different degrees of mineralization, ranging from highly mineralized to weakly mineralized and nonmineralized models. We find that the local tetrahedral order of water is lost in similar ways in the EFV and IFV regions for all HA containing models, as calcium and phosphate ions are strongly coordinated with water molecules. We also subject our models to tensile loads and analyze the spatial stress distribution over the nanostructure of the material. Our results show that both mineral and water contents accumulate significantly higher stress levels, most notably in the EFV, thus revealing that this region, which has been only recently incorporated in all-atom molecular models, is fundamental for studying the mechanical properties of bones at the nanoscale. Furthermore, our results corroborate the well-established finding that high mineral content makes bone stiffer.Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary constituents at the molecular scale. However, the relationship between structure and mechanical properties in bones are still not fully understood. Here, we investigate structural and mechanical properties of all-atom bone molecular models composed of type-I collagen, hydroxyapatite (HA), and water by means of fully atomistic molecular dynamics simulations. Our models encompass an extrafibrillar volume (EFV) and consider mineral content in both the EFV and intrafibrillar volume (IFV), consistent with experimental observations. We investigate solvation structures and elastic properties of bone microfibril models with different degrees of mineralization, ranging from highly mineralized to weakly mineralized and nonmineralized models. We find that the local tetrahedral order of water is lost in similar ways in the EFV and IFV regions for all HA containing models, as calcium and phosphate ions are strongly coordinated with water molecules. We also subject our models to tensile loads and analyze the spatial stress distribution over the nanostructure of the material. Our results show that both mineral and water contents accumulate significantly higher stress levels, most notably in the EFV, thus revealing that this region, which has been only recently incorporated in all-atom molecular models, is fundamental for studying the mechanical properties of bones at the nanoscale. Furthermore, our results corroborate the well-established finding that high mineral content makes bone stiffer.
Author Sollero, Paulo
Galvão, Douglas S.
Skaf, Munir S.
Felix, Levi C.
de Alcântara, Amadeus C. S.
AuthorAffiliation University of Campinas
Institute of Chemistry
Center for Computing in Engineering & Sciences, CCES
Department of Computational Mechanics, School of Mechanical Engineering
Department of Applied Physics, Gleb Wataghin Institute of Physics
AuthorAffiliation_xml – name: University of Campinas
– name: Center for Computing in Engineering & Sciences, CCES
– name: Institute of Chemistry
– name: Department of Applied Physics, Gleb Wataghin Institute of Physics
– name: Department of Computational Mechanics, School of Mechanical Engineering
Author_xml – sequence: 1
  givenname: Amadeus C. S.
  surname: de Alcântara
  fullname: de Alcântara, Amadeus C. S.
  organization: Center for Computing in Engineering & Sciences, CCES
– sequence: 2
  givenname: Levi C.
  orcidid: 0000-0001-5928-0885
  surname: Felix
  fullname: Felix, Levi C.
  organization: University of Campinas
– sequence: 3
  givenname: Douglas S.
  surname: Galvão
  fullname: Galvão, Douglas S.
  organization: University of Campinas
– sequence: 4
  givenname: Paulo
  surname: Sollero
  fullname: Sollero, Paulo
  organization: Center for Computing in Engineering & Sciences, CCES
– sequence: 5
  givenname: Munir S.
  orcidid: 0000-0001-7485-1228
  surname: Skaf
  fullname: Skaf, Munir S.
  email: skaf@unicamp.br
  organization: University of Campinas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36484626$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9P20AQxVdVUEPTfIXiI5fA_s3aBw6AoEVKVITSXq3xeiwWrb1h1xYtn76bOq0QFzjtaN77Pe3MfCKTzndIyBGjJ4xydgomVta30GOw4OIJN5Rqnn8gh1xosShynU9e1FMyj_GBUspErqSUH8lULGUul3x5SJ4295jdeYeZb7I-1Ve_-gCNrYJ1DkL207uhTWL3V1yjuYfOGnDZbfBbDL3FuCPXKcEMO2Dta3Rjz3YYwNlnrLOLNEFqmODH6PiZHDTp7zjfvzPy4_pqc_ltsfr-9ebyfLUAoXS_qJnSkCtaNFDltVCoGiMbqQxykMhACMERBLKC0qIqGIWmkjWtC1pVqQNiRo7H3G3wjwPGvmxtNJhm69APseRaCV5oqXSyftlbh6rFutwG20L4Xf5bVjLo0ZDGiDFg89_CaLm7TPnqMuX-Mok8e0Ua20NvfZeWbd07eDHyyVA--CF0O_Ut6g8WYq6o
CitedBy_id crossref_primary_10_1021_acsami_4c02638
crossref_primary_10_1038_s41467_025_57460_y
crossref_primary_10_1016_j_pmatsci_2025_101474
crossref_primary_10_1016_j_jmbbm_2024_106471
Cites_doi 10.1038/ncomms2720
10.1007/978-3-319-58845-2_4
10.1021/jp004368u
10.1016/0263-7855(96)00018-5
10.3390/ma13010106
10.1080/00268971003762134
10.1016/j.commatsci.2014.10.068
10.1098/rsif.2013.0835
10.1016/j.cpc.2013.08.002
10.1063/1.437577
10.1021/la3038846
10.1006/jcph.1995.1039
10.1021/jp973084f
10.1089/jwh.2013.4611
10.1210/jc.2019-00221
10.1021/acsbiomaterials.6b00021
10.1021/acs.jpcc.5b12504
10.1115/1.4036316
10.1016/j.bpj.2016.05.038
10.1039/C6TB02835G
10.1016/j.cpc.2011.10.012
10.1002/jcc.21224
10.1126/science.aao2189
10.1016/S0020-1383(16)47003-8
10.32604/cmes.2020.012123
10.1155/2015/638934
10.1016/j.bone.2020.115304
10.3233/APC200086
10.1016/j.jmbbm.2022.105139
10.1016/j.cpc.2010.12.021
10.1073/pnas.1201513109
10.1016/B978-0-12-397165-4.00007-1
10.1016/j.jsb.2014.10.005
10.1021/acsnano.8b00837
10.1016/j.jmbbm.2015.05.023
10.1371/journal.pone.0029258
10.1039/C6CP03403A
10.3390/ma15062274
10.3109/03008208709005616
10.1063/5.0014475
10.3389/fphy.2017.00039
10.1093/nar/gkaa1100
10.1093/nar/28.1.235
10.1103/PhysRevB.17.1302
10.1063/1.328693
10.1021/bm5003416
10.1016/j.ijsolstr.2008.03.016
10.1016/j.mser.2007.05.001
10.1073/pnas.0502718103
10.1103/PhysRevB.69.134103
10.1080/07391102.2018.1433553
10.1021/acsnano.0c02180
10.1142/9789814335058_0021
10.1080/13697137.2019.1685488
10.1039/c0sm01192d
10.1016/0021-9290(75)90075-5
10.1007/s00198-017-4230-x
10.1063/1.467468
10.1007/s10237-018-1067-y
10.1016/j.jmbbm.2020.104132
10.1007/s00198-015-3154-6
10.1021/nl103943u
10.1007/s10237-014-0615-3
10.1098/rspa.2003.1127
10.1098/rsif.2011.0880
10.1016/B978-0-12-801238-3.99937-9
10.1002/prot.24864
10.1515/9781400849505
10.1039/D0BM02003F
10.1038/nmeth.4067
10.1007/s11914-012-0103-6
10.1063/1.464397
10.1021/ja036959e
10.1098/rsfs.2015.0055
10.1016/j.jmbbm.2021.104761
10.1016/j.jmbbm.2016.08.027
10.1080/23335432.2020.1812428
10.1016/j.jmbbm.2007.04.001
10.1021/jp709896w
10.1016/j.semcdb.2015.06.008
10.1016/j.cpc.2021.108171
10.1088/0305-4470/39/19/S18
10.1002/ar.1091490303
10.1021/acsami.1c18727
10.1016/j.micron.2013.03.002
10.1080/08927022.2017.1313418
10.1098/rsif.2010.0413
10.1146/annurev.pc.44.100193.002003
10.1016/j.jmbbm.2022.105431
10.1088/0965-0393/18/1/015012
10.3390/min12020170
10.1038/nmat4719
10.1021/acsami.0c01613
10.1021/jp1059984
10.1007/s11657-017-0324-5
10.1016/j.cpc.2016.10.020
10.1021/ct300400x
10.1146/annurev.biochem.77.032207.120833
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsbiomaterials.2c00728
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2373-9878
EndPage 245
ExternalDocumentID 36484626
10_1021_acsbiomaterials_2c00728
a483928824
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 53G
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
GGK
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a357t-d157a8509fab8d35e5fc4f45ce2a4e1a3332ea3e19009b910afb4d0d90bb009a3
IEDL.DBID ACS
ISSN 2373-9878
IngestDate Thu Jul 10 22:16:27 EDT 2025
Wed Feb 19 02:25:06 EST 2025
Tue Jul 01 00:45:35 EDT 2025
Thu Apr 24 23:00:40 EDT 2025
Wed Jan 11 03:10:44 EST 2023
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords mineralized collagen fibril
bone nanomechanics
collagen fiber
molecular dynamics
extrafibrillar volume
microfibrils
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-d157a8509fab8d35e5fc4f45ce2a4e1a3332ea3e19009b910afb4d0d90bb009a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5928-0885
0000-0001-7485-1228
PMID 36484626
PQID 2753297457
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2753297457
pubmed_primary_36484626
crossref_primary_10_1021_acsbiomaterials_2c00728
crossref_citationtrail_10_1021_acsbiomaterials_2c00728
acs_journals_10_1021_acsbiomaterials_2c00728
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230109
2023-01-09
PublicationDateYYYYMMDD 2023-01-09
PublicationDate_xml – month: 01
  year: 2023
  text: 20230109
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS biomaterials science & engineering
PublicationTitleAlternate ACS Biomater. Sci. Eng
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
Keaveny T. M. (ref12/cit12) 2003
ref16/cit16
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
Fratzl P. (ref22/cit22) 2008
ref42/cit42
ref96/cit96
ref13/cit13
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref66/cit66
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
von Mises R. (ref51/cit51) 1913; 1
ref57/cit57
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref40/cit40
  doi: 10.1038/ncomms2720
– ident: ref18/cit18
  doi: 10.1007/978-3-319-58845-2_4
– ident: ref105/cit105
  doi: 10.1021/jp004368u
– ident: ref62/cit62
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref7/cit7
  doi: 10.3390/ma13010106
– volume-title: Standard Handbook Of Biomedical Engineering And Design
  year: 2003
  ident: ref12/cit12
– ident: ref93/cit93
  doi: 10.1080/00268971003762134
– ident: ref81/cit81
  doi: 10.1016/j.commatsci.2014.10.068
– ident: ref47/cit47
  doi: 10.1098/rsif.2013.0835
– ident: ref80/cit80
  doi: 10.1016/j.cpc.2013.08.002
– ident: ref55/cit55
  doi: 10.1063/1.437577
– ident: ref70/cit70
  doi: 10.1021/la3038846
– ident: ref77/cit77
  doi: 10.1006/jcph.1995.1039
– ident: ref66/cit66
  doi: 10.1021/jp973084f
– ident: ref5/cit5
  doi: 10.1089/jwh.2013.4611
– ident: ref31/cit31
  doi: 10.1210/jc.2019-00221
– ident: ref60/cit60
  doi: 10.1021/acsbiomaterials.6b00021
– ident: ref71/cit71
  doi: 10.1021/acs.jpcc.5b12504
– ident: ref91/cit91
  doi: 10.1115/1.4036316
– ident: ref90/cit90
  doi: 10.1016/j.bpj.2016.05.038
– ident: ref76/cit76
  doi: 10.1039/C6TB02835G
– ident: ref79/cit79
  doi: 10.1016/j.cpc.2011.10.012
– ident: ref61/cit61
  doi: 10.1002/jcc.21224
– ident: ref14/cit14
  doi: 10.1126/science.aao2189
– ident: ref3/cit3
  doi: 10.1016/S0020-1383(16)47003-8
– volume: 1
  start-page: 582
  year: 1913
  ident: ref51/cit51
  publication-title: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
– ident: ref9/cit9
  doi: 10.32604/cmes.2020.012123
– ident: ref6/cit6
  doi: 10.1155/2015/638934
– ident: ref15/cit15
  doi: 10.1016/j.bone.2020.115304
– ident: ref83/cit83
  doi: 10.3233/APC200086
– ident: ref99/cit99
  doi: 10.1016/j.jmbbm.2022.105139
– ident: ref78/cit78
  doi: 10.1016/j.cpc.2010.12.021
– ident: ref27/cit27
  doi: 10.1073/pnas.1201513109
– ident: ref2/cit2
– ident: ref20/cit20
  doi: 10.1016/B978-0-12-397165-4.00007-1
– ident: ref45/cit45
  doi: 10.1016/j.jsb.2014.10.005
– ident: ref95/cit95
  doi: 10.1021/acsnano.8b00837
– ident: ref11/cit11
  doi: 10.1016/j.jmbbm.2015.05.023
– volume-title: Collagen - Structure and Mechanics
  year: 2008
  ident: ref22/cit22
– ident: ref44/cit44
  doi: 10.1371/journal.pone.0029258
– ident: ref103/cit103
  doi: 10.1039/C6CP03403A
– ident: ref42/cit42
  doi: 10.3390/ma15062274
– ident: ref1/cit1
– ident: ref50/cit50
  doi: 10.3109/03008208709005616
– ident: ref65/cit65
  doi: 10.1063/5.0014475
– ident: ref23/cit23
  doi: 10.3389/fphy.2017.00039
– ident: ref56/cit56
  doi: 10.1093/nar/gkaa1100
– ident: ref32/cit32
  doi: 10.1093/nar/28.1.235
– ident: ref85/cit85
  doi: 10.1103/PhysRevB.17.1302
– ident: ref89/cit89
  doi: 10.1063/1.328693
– ident: ref41/cit41
  doi: 10.1021/bm5003416
– ident: ref54/cit54
  doi: 10.1016/j.ijsolstr.2008.03.016
– ident: ref25/cit25
  doi: 10.1016/j.mser.2007.05.001
– ident: ref33/cit33
  doi: 10.1073/pnas.0502718103
– ident: ref86/cit86
  doi: 10.1103/PhysRevB.69.134103
– ident: ref58/cit58
  doi: 10.1080/07391102.2018.1433553
– ident: ref37/cit37
  doi: 10.1021/acsnano.0c02180
– ident: ref21/cit21
  doi: 10.1142/9789814335058_0021
– ident: ref29/cit29
  doi: 10.1080/13697137.2019.1685488
– ident: ref57/cit57
  doi: 10.1039/c0sm01192d
– ident: ref97/cit97
  doi: 10.1016/0021-9290(75)90075-5
– ident: ref28/cit28
  doi: 10.1007/s00198-017-4230-x
– ident: ref88/cit88
  doi: 10.1063/1.467468
– ident: ref39/cit39
  doi: 10.1007/s10237-018-1067-y
– ident: ref43/cit43
  doi: 10.1016/j.jmbbm.2020.104132
– ident: ref4/cit4
  doi: 10.1007/s00198-015-3154-6
– ident: ref34/cit34
  doi: 10.1021/nl103943u
– ident: ref59/cit59
  doi: 10.1007/s10237-014-0615-3
– ident: ref53/cit53
  doi: 10.1098/rspa.2003.1127
– ident: ref46/cit46
  doi: 10.1098/rsif.2011.0880
– ident: ref94/cit94
  doi: 10.1016/B978-0-12-801238-3.99937-9
– ident: ref75/cit75
  doi: 10.1002/prot.24864
– ident: ref96/cit96
  doi: 10.1515/9781400849505
– ident: ref36/cit36
  doi: 10.1039/D0BM02003F
– ident: ref69/cit69
  doi: 10.1038/nmeth.4067
– ident: ref101/cit101
  doi: 10.1007/s11914-012-0103-6
– ident: ref72/cit72
  doi: 10.1063/1.464397
– ident: ref67/cit67
  doi: 10.1021/ja036959e
– ident: ref10/cit10
  doi: 10.1098/rsfs.2015.0055
– ident: ref8/cit8
  doi: 10.1016/j.jmbbm.2021.104761
– ident: ref100/cit100
  doi: 10.1016/j.jmbbm.2016.08.027
– ident: ref38/cit38
  doi: 10.1080/23335432.2020.1812428
– ident: ref104/cit104
  doi: 10.1016/j.jmbbm.2007.04.001
– ident: ref106/cit106
  doi: 10.1021/jp709896w
– ident: ref26/cit26
  doi: 10.1016/j.semcdb.2015.06.008
– ident: ref73/cit73
  doi: 10.1016/j.cpc.2021.108171
– ident: ref87/cit87
  doi: 10.1088/0305-4470/39/19/S18
– ident: ref24/cit24
  doi: 10.1002/ar.1091490303
– ident: ref17/cit17
  doi: 10.1021/acsami.1c18727
– ident: ref49/cit49
  doi: 10.1016/j.micron.2013.03.002
– ident: ref52/cit52
  doi: 10.1080/08927022.2017.1313418
– ident: ref84/cit84
– ident: ref98/cit98
  doi: 10.1098/rsif.2010.0413
– ident: ref92/cit92
  doi: 10.1146/annurev.pc.44.100193.002003
– ident: ref48/cit48
  doi: 10.1016/j.jmbbm.2022.105431
– ident: ref63/cit63
– ident: ref64/cit64
  doi: 10.1088/0965-0393/18/1/015012
– ident: ref74/cit74
  doi: 10.1016/j.cpc.2021.108171
– ident: ref13/cit13
  doi: 10.3390/min12020170
– ident: ref16/cit16
  doi: 10.1038/nmat4719
– ident: ref102/cit102
  doi: 10.1021/acsami.0c01613
– ident: ref35/cit35
  doi: 10.1021/jp1059984
– ident: ref30/cit30
  doi: 10.1007/s11657-017-0324-5
– ident: ref82/cit82
  doi: 10.1016/j.cpc.2016.10.020
– ident: ref68/cit68
  doi: 10.1021/ct300400x
– ident: ref19/cit19
  doi: 10.1146/annurev.biochem.77.032207.120833
SSID ssj0001385444
Score 2.2679062
Snippet Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 230
SubjectTerms Animals
Bone and Bones
Microfibrils
Minerals
Modeling and Informatics Tools
Models, Molecular
Water
Title The Role of the Extrafibrillar Volume on the Mechanical Properties of Molecular Models of Mineralized Bone Microfibrils
URI http://dx.doi.org/10.1021/acsbiomaterials.2c00728
https://www.ncbi.nlm.nih.gov/pubmed/36484626
https://www.proquest.com/docview/2753297457
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BvcChDx7t9iUjcSRL4mdybBEIVdqqogVxi2zHlhCrpNrNCsSv79hJgFKtoNck48ieGfsb2_MNwJ4Q2hWWikQzwxKOEDkxSsnEsULnBRWWxqSwyXd5csa_XYiLFciWnODT7EDbechE122nkTG1ge06X4UXVKIrBzR0-PN-W4XlgscSrpQplmBEnQ-3upa3FVYmO_97ZVoCN-Oyc_wKTofkne62ydV40Zqxvf2Xy_H5PXoNL3sQSr50VvMGVly9CRsPqAm34Brth5w2U0caTxAkkqObdqZ9SBBAw5mR8zirkaaOLycuJBAHfZMfYXd_Fmhag-RkqL5LQtG1affsMjJdX966inxtapQOlwK7pufbcHZ89OvwJOmLNKB2hWqTKhNK5wg7vDZ5xYQT3nLPRSg0xl2mGWPUaeYQeKSFQXCiveFVWhWpQY8vNNuBtRr_9Q6IlxmGVyq3vqgw7JTa4-ygZMWV0TpL3Qj2cejK3snmZTw_p1n5aDzLfjxHIAd9lrYnPA91N6ZPC6Z3gr87zo-nRXYHgynRP8Ohi65ds8APMB6kGLQJNYK3nSXdNcokR_hH5fv_69gHWA9F7-NGUPER1trZwn1CaNSaz9EZ_gDj8g5Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N8QA8ML7XbYCReCRd4o84edyqVgXWCcGGxlNkJ7Y0USVTk4ppf_3OTtKNSVMFr07uEvvu7N_ZvjuAj0Iok-ZUBIppFnCEyIGWMg4MS1WSUpFTHxQ2O46np_zLmTjbgKSPhcGfqJFT7Q_xb7ILRPvY5gLSVdMKZkhzl_Q6eQAPEZJQp9sHox83uyssEdxXcqVMsgAd66S_3HU_L7dA5fXfC9Q9qNOvPpMt-LX6b3_p5Pdw2ehhfnUnpeP_dOwZPO0gKTlodeg5bJjyBTy5lajwJfxBbSLfq7khlSUIGcn4slko68IFUI0W5Kef40hV-ocz48KJnfTJN7fXv3BJWx3lrK_FS1wJtnnbdu7zXp9fmYIcViVSuyuCLev6FZxOxiejadCVbEBZC9kERSSkShCEWKWTggkjbM4tF67sGDeRYoxRo5hBGBKmGqGKspoXYZGGGu0_Vew1bJb4rW0gNo7Q2ZJJbtMCndBYWZwrZFxwqZWKQjOATzh0WWdydeZP02mU3RnPrBvPAcS9WLO8S3_uqnDM1xOGK8KLNgPIepIPvd5kaK3uCEaVplriC-gdUnThhBzAm1ahVkxZzBEM0njn3zr2Hh5NT2ZH2dHn46-78JgiCPNbROkebDaLpXmLoKnR77x9XAMZ-Rax
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLfGkBA8jG92fAaJR3q0-WhaiZcxdhofN03A0F5QlbSJNHFqp2tPoP312Gl7wKRpgte0dpvETn6OYxvghVLG5SVXkRFWRBIhcmS1TiMncpPlXJU8BIXND9L9I_n-WB1vwOsxFgZ_okVObXDik1afVn7IMJC8wnYKSjddPzlTXlLi6-wKXCXnHcn3zu7n3ycsIlMyVHPlQosIjetsvOB1MS_apMr2703qAuQZdqDZTfi2_vdw8eT7dNXZaXl2Lq3j_3buFmwN0JTt9LJ0GzZcfQdu_JGw8C78QKlin5qFY41nCB3Z3s9uaTyFDaA4LdnXsNaxpg4P547CikkK2CGd-S8peStRzseavIxKsS36tpOQ__rkzFXsTVMjNV0V7Fm39-Botvdldz8aSjfgnCvdRVWitMkQjHhjs0oop3wpvVRUfky6xAghuDPCIRyJc4uQxXgrq7jKY4vrQG7Efdis8VvbwHyaoNGls9LnFRqjqfG4Zui0ktoak8RuAi9x6IpB9doieNV5Upwbz2IYzwmk49QW5ZAGnapxLC4njNeEp30mkMtJno-yU6DWkivG1K5Z4QtoJXI05ZSewINeqNZMRSoRFPL04b917BlcO3w7Kz6-O_jwCK5zxGLhpCh_DJvdcuWeIHbq7NOgIr8A5jwZNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+the+Extrafibrillar+Volume+on+the+Mechanical+Properties+of+Molecular+Models+of+Mineralized+Bone+Microfibrils&rft.jtitle=ACS+biomaterials+science+%26+engineering&rft.au=de+Alc%C3%A2ntara%2C+Amadeus+C+S&rft.au=Felix%2C+Levi+C&rft.au=Galv%C3%A3o%2C+Douglas+S&rft.au=Sollero%2C+Paulo&rft.date=2023-01-09&rft.eissn=2373-9878&rft.volume=9&rft.issue=1&rft.spage=230&rft_id=info:doi/10.1021%2Facsbiomaterials.2c00728&rft_id=info%3Apmid%2F36484626&rft.externalDocID=36484626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-9878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-9878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-9878&client=summon