Peptide Self-Assembly Controlled Photoligation of Polymers
Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design...
Saved in:
Published in | Journal of the American Chemical Society Vol. 145; no. 29; pp. 15981 - 15989 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
26.07.2023
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselvesavoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation “ON” or “OFF” under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions. |
---|---|
AbstractList | Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselves─avoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation "ON" or "OFF" under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions. Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselves─avoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation "ON" or "OFF" under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions.Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselves─avoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation "ON" or "OFF" under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions. Highly efficient chemical ligations that operate in waterundermild conditions are the foundation of bioorthogonal chemistry. However,the toolbox of suitable reactions is limited. Conventional approachesto expand this toolbox aim at altering the inherent reactivity offunctional groups to design new reactions that meet the required benchmarks.Inspired by controlled reaction environments that enzymes provide,we report a fundamentally different approach that makes inefficientreactions highly efficient within defined local environments. Contrastingenzymatically catalyzed reactions, the reactivity controlling self-assembledenvironment is brought about by the ligation targets themselves avoidingthe use of a catalyst. Targeting [2 + 2] photocycloadditions, whichare inefficient at low concentrations and readily quenched by oxygen,short & beta;-sheet encoded peptide sequences are inserted betweena hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer.In water, electrostatic repulsion of deprotonated amino acid residuesgoverns the formation of small self-assembled structures, which enablea highly efficient photoligation of the polymer, reaching & SIM;90%ligation within 2 min (0.034 mM). Upon protonation at low pH, theself-assembly changes into 1D fibers, altering photophysical propertiesand shutting down the photocycloaddition reaction. Using the reversiblemorphology change, it is possible to switch the photoligation "ON"or "OFF" under constant irradiation simply by varyingthe pH. Importantly, in dimethylformamide, the photoligation reactiondid not occur even at 10-fold higher concentrations (0.34 mM). Theself-assembly into a specific architecture, encoded into the polymerligation target, enables a highly efficient ligation that overcomesthe concentration limitations and high oxygen sensitivity of [2 +2] photocycloadditions. Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselves—avoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation “ON” or “OFF” under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions. Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselvesavoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation “ON” or “OFF” under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions. |
Author | Poad, Berwyck L. J. Golberg, Dmitri V. Zhang, Chao Richardson, Bailey J. Frisch, Hendrik Rauthe, Pascal Unterreiner, Andreas-Neil |
AuthorAffiliation | Institute of Physical Chemistry Central Analytical Research Facility School of Chemistry and Physics Centre for Materials Science |
AuthorAffiliation_xml | – name: School of Chemistry and Physics – name: Central Analytical Research Facility – name: Centre for Materials Science – name: Institute of Physical Chemistry |
Author_xml | – sequence: 1 givenname: Bailey J. orcidid: 0009-0007-3661-4011 surname: Richardson fullname: Richardson, Bailey J. organization: Centre for Materials Science – sequence: 2 givenname: Chao orcidid: 0000-0001-5309-8484 surname: Zhang fullname: Zhang, Chao organization: Central Analytical Research Facility – sequence: 3 givenname: Pascal surname: Rauthe fullname: Rauthe, Pascal organization: Institute of Physical Chemistry – sequence: 4 givenname: Andreas-Neil orcidid: 0000-0002-1225-5460 surname: Unterreiner fullname: Unterreiner, Andreas-Neil organization: Institute of Physical Chemistry – sequence: 5 givenname: Dmitri V. orcidid: 0000-0003-2298-6539 surname: Golberg fullname: Golberg, Dmitri V. organization: Centre for Materials Science – sequence: 6 givenname: Berwyck L. J. orcidid: 0000-0002-0420-6116 surname: Poad fullname: Poad, Berwyck L. J. organization: Central Analytical Research Facility – sequence: 7 givenname: Hendrik orcidid: 0000-0001-8490-5082 surname: Frisch fullname: Frisch, Hendrik email: H.Frisch@qut.edu.au organization: Centre for Materials Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37433011$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0c1rFDEYBvAgFbut3jzLHAU77ZuPmWS9lUGrUHCheh4yyRudJTNZkxnK_vdm3bEHsdRTSPg9OTzPGTkZw4iEvKZwSYHRq6026ZIb4OuaPiMrWjEoK8rqE7ICAFZKVfNTcpbSNl8FU_QFOeVScA6Ursj7De6m3mJxh96V1ynh0Pl90YRxisF7tMXmR5iC77_rqQ9jEVyxCX4_YEwvyXOnfcJXy3lOvn388LX5VN5-ufncXN-WmldyKjtnFSjXdaCsqZhxvKNWSKm149KiNWK91kK4ulKUKwRXcaiF1NwKWlkH_Jy8Pf67i-HnjGlqhz4Z9F6PGObUchAguJKSP0mZ4jVbC6hopm8WOncD2nYX-0HHffunmgzeHcE9dsEl0-No8IEB5PJldiq3Cget_l83_fS7zSbM45SjF8eoiSGliO4hRqE9TNweJm6XiTNnf3GzfDdF3fvHQksxh8dtmOOYF_s3_QVPSLOp |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2024_01_023 crossref_primary_10_1039_D3CC03777K crossref_primary_10_1002_ange_202319839 crossref_primary_10_1007_s44275_024_00015_y crossref_primary_10_1021_acs_analchem_3c03490 crossref_primary_10_1002_anie_202319839 crossref_primary_10_1021_acsami_4c19978 crossref_primary_10_1016_j_jconrel_2023_12_028 crossref_primary_10_1021_acs_analchem_4c02273 crossref_primary_10_1021_jacs_3c12342 crossref_primary_10_1038_s41467_024_50366_1 crossref_primary_10_1021_acs_biomac_3c01454 crossref_primary_10_1039_D4SC02172J |
Cites_doi | 10.1063/1.1744225 10.1021/jacs.8b04531 10.1021/jacs.2c00433 10.1021/acs.macromol.8b00613 10.1021/jp0270912 10.1021/acsmacrolett.8b00099 10.1021/jacs.8b08870 10.1039/c1sm05896g 10.1038/s41557-018-0164-y 10.1021/ja060573x 10.1021/acs.chemrev.1c00089 10.1021/ja902825j 10.1038/s41467-021-26681-2 10.1021/ja711213s 10.1038/nmat2778 10.1039/jr9640001996 10.1021/ja710310c 10.1039/c5py01241d 10.1002/9783527832033 10.1038/s41467-023-36024-y 10.1126/science.1063187 10.1038/s41557-018-0047-2 10.1146/annurev.physchem.57.032905.104557 10.1021/acs.accounts.7b00297 10.1002/chem.201602006 10.1021/ar900233v 10.1016/j.actbio.2013.08.013 10.1002/anie.201811541 10.1002/anie.201003707 10.1021/jacs.2c00156 10.1002/adma.201807288 10.1038/s41467-020-18057-9 10.1002/anie.201303810 10.1002/pol.20210126 10.2307/3571331 10.1002/anie.201806668 10.1038/nrd1088 10.1039/c6ob00292g 10.1073/pnas.072699999 10.1038/nrm2820 10.1039/b609047h 10.1016/j.jconrel.2014.06.042 10.1021/acs.chemrev.7b00581 10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5 10.1002/anie.201812489 10.1021/ja072536r 10.1002/chir.20459 10.1021/acscatal.0c03753 10.1002/anie.202201791 10.1021/ar200148z 10.1021/acspolymersau.2c00032 10.1021/ar8000926 10.1126/science.1093783 10.1002/adfm.201908171 10.1002/anie.201712976 10.1038/NMAT2778 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION 17B 1KM BLEPL BNZSX DTL EGQ NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.3c03961 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Web of Science - Science Citation Index Expanded - 2023 Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Web of Science PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Web of Science AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 15989 |
ExternalDocumentID | 37433011 001027011800001 10_1021_jacs_3c03961 h47897001 |
Genre | Journal Article |
GrantInformation_xml | – fundername: QUT through the Centre for Materials Science and School of Chemistry and Physics – fundername: GRK 2039 Molecular Architectures for Fluorescent Cell Imaging – fundername: Karlsruhe Institute of Technology (KIT) – fundername: ARC Laureate Fellowship; Australian Research Council – fundername: Australian Research Council grantid: DE200101096; LE220100031; FL160100089; LE190100081 – fundername: Australian Research Council grantid: DE200101096; LE190100081; FL160100089; LE220100031 – fundername: Queensland University of Technology (QUT) |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFRP ABMVS ABPPZ ABPTK ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZCA ~02 53G AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA CITATION CUPRZ 17B 1KM AAYWT BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a357t-bfd808fbb08dc52cf3b1d477aaf37dedc499a44f658138e0f530647a3d415df03 |
IEDL.DBID | ACS |
ISICitedReferencesCount | 14 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=001027011800001 |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Jul 10 22:34:19 EDT 2025 Mon Jul 21 10:01:44 EDT 2025 Mon Jul 21 05:32:53 EDT 2025 Fri Aug 29 16:07:48 EDT 2025 Tue Jul 22 04:34:20 EDT 2025 Tue Jul 01 03:54:36 EDT 2025 Thu Apr 24 23:10:53 EDT 2025 Fri Jul 28 03:16:50 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | REVERSIBLE 2+2 PHOTOCYCLOADDITION ENERGY-TRANSFER MICELLES DNA AGGREGATION AMPHIPHILE NANOFIBERS |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-a357t-bfd808fbb08dc52cf3b1d477aaf37dedc499a44f658138e0f530647a3d415df03 |
Notes | Australian Research Council ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2298-6539 0000-0001-5309-8484 0000-0002-0420-6116 0009-0007-3661-4011 0000-0002-1225-5460 0000-0001-8490-5082 |
PMID | 37433011 |
PQID | 2836294051 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1021_jacs_3c03961 proquest_miscellaneous_2836294051 proquest_miscellaneous_3040438773 pubmed_primary_37433011 webofscience_primary_001027011800001 webofscience_primary_001027011800001CitationCount crossref_citationtrail_10_1021_jacs_3c03961 acs_journals_10_1021_jacs_3c03961 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-26 |
PublicationDateYYYYMMDD | 2023-07-26 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | WASHINGTON |
PublicationPlace_xml | – name: WASHINGTON – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAbbrev | J AM CHEM SOC |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2023 |
Publisher | American Chemical Society Amer Chemical Soc |
Publisher_xml | – name: American Chemical Society – name: Amer Chemical Soc |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 van Leeuwen P. W. N. M. (ref57/cit57) 2022 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 Mason S. F. (ref47/cit47) 1978 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref44/cit44 ref7/cit7 Frisch, H (WOS:000460318200058) 2019; 58 Fichman, G (WOS:000334137700018) 2014; 10 Spitzer, D (WOS:000442340000041) 2018; 57 Kalayci, K (WOS:000569766000019) 2020; 11 Kalayci, K (WOS:000514467000001) 2020; 30 Kolb, HC (WOS:000187217100009) 2003; 8 Channon, KJ (WOS:000269735800004) 2009; 131 Marschner, DE (WOS:000433404700027) 2018; 51 Zwicker, VE (WOS:000459709300021) 2019; 58 Silva, GA (WOS:000189238600046) 2004; 303 Qiu, RM (WOS:000799109400044) 2022; 144 Frisch, H (WOS:000378933400031) 2016; 14 Nowak, BP (WOS:000774677700001) 2022; 61 Kumar, M (WOS:000436103200006) 2018; 10 Bialas, S (WOS:000459798700024) 2019; 31 van Leeuwen, P. W. N. M. (001027011800001.53) 2022 Spano, FC (WOS:000237668700008) 2006; 57 Booth, R (WOS:000714972500022) 2021; 12 Sletten, EM (WOS:000296075300003) 2011; 44 Xu, Z (WOS:000453261100018) 2019; 11 Dong, H (WOS:000250105500044) 2007; 129 Gottarelli, G (WOS:000253555000029) 2008; 20 Hartgerink, JD (WOS:000175087000075) 2002; 99 Barner-Kowollik, C (WOS:000285891900008) 2011; 50 Sekiguchi, T (WOS:000431488200004) 2018; 57 Hendricks, MP (WOS:000413392000004) 2017; 50 Hartgerink, JD (WOS:000172307400034) 2001; 294 Hestand, NJ (WOS:000441475900005) 2018; 118 Frisch, H (WOS:000324309900049) 2013; 52 Sheehan, F (WOS:000753852200004) 2021; 121 Zhang, SM (WOS:000279014300022) 2010; 9 Muraoka, T (WOS:000253854400032) 2008; 130 Channon, KJ (WOS:000255041400037) 2008; 130 Palmer, LC (WOS:000261767600012) 2008; 41 COHEN, MD (WOS:A19644237B00020) 1964 Spano, FC (WOS:000275820900008) 2010; 43 Doi, T (WOS:000380273300033) 2016; 22 Mason, S. F. (001027011800001.44) 1978 Frisch, H (WOS:000440877000035) 2018; 140 Truong, VX (WOS:000430515500013) 2018; 7 Pelras, T (WOS:000447354800018) 2018; 140 Dawson, WM (WOS:001170148000006) 2023; 14 MCRAE, EG (WOS:A1958WA15500038) 1958; 28 Geng, ZS (WOS:000645197500001) 2021; 59 KASHA, M (WOS:A19632479C00009) 1963; 20 Ulijn, RV (WOS:000254315700004) 2008; 37 Ahlers, P (WOS:000362742000003) 2015; 6 Cabral, H (WOS:000345910900028) 2014; 190 Gerhardt, SA (WOS:000182167100022) 2003; 107 Casey, JR (WOS:000272944700012) 2010; 11 Duncan, R (WOS:000182590600016) 2003; 2 Paramonov, SE (WOS:000237931700048) 2006; 128 Li, L (WOS:000850197800001) 2022; 2 Besenius, P (WOS:000294447600014) 2011; 7 Kodura, D (WOS:000790698300026) 2022; 144 Liu, SY (WOS:000608850500050) 2020; 10 |
References_xml | – ident: ref51/cit51 doi: 10.1063/1.1744225 – ident: ref11/cit11 doi: 10.1021/jacs.8b04531 – ident: ref18/cit18 doi: 10.1021/jacs.2c00433 – ident: ref10/cit10 doi: 10.1021/acs.macromol.8b00613 – volume-title: Optical Activity and Chiral Discrimination year: 1978 ident: ref47/cit47 – ident: ref56/cit56 doi: 10.1021/jp0270912 – ident: ref8/cit8 doi: 10.1021/acsmacrolett.8b00099 – ident: ref54/cit54 doi: 10.1021/jacs.8b08870 – ident: ref20/cit20 doi: 10.1039/c1sm05896g – ident: ref24/cit24 doi: 10.1038/s41557-018-0164-y – ident: ref35/cit35 doi: 10.1021/ja060573x – ident: ref26/cit26 doi: 10.1021/acs.chemrev.1c00089 – ident: ref29/cit29 doi: 10.1021/ja902825j – ident: ref43/cit43 doi: 10.1038/s41467-021-26681-2 – ident: ref25/cit25 doi: 10.1021/ja711213s – ident: ref15/cit15 doi: 10.1038/nmat2778 – ident: ref9/cit9 doi: 10.1039/jr9640001996 – ident: ref27/cit27 doi: 10.1021/ja710310c – ident: ref45/cit45 doi: 10.1039/c5py01241d – volume-title: Supramolecular Catalysis year: 2022 ident: ref57/cit57 doi: 10.1002/9783527832033 – ident: ref22/cit22 doi: 10.1038/s41467-023-36024-y – ident: ref31/cit31 doi: 10.1126/science.1063187 – ident: ref17/cit17 doi: 10.1038/s41557-018-0047-2 – ident: ref53/cit53 doi: 10.1146/annurev.physchem.57.032905.104557 – ident: ref12/cit12 doi: 10.1021/acs.accounts.7b00297 – ident: ref38/cit38 doi: 10.1002/chem.201602006 – ident: ref49/cit49 doi: 10.1021/ar900233v – ident: ref13/cit13 doi: 10.1016/j.actbio.2013.08.013 – ident: ref41/cit41 doi: 10.1002/anie.201811541 – ident: ref55/cit55 doi: 10.1021/jacs.8b04531 – ident: ref2/cit2 doi: 10.1002/anie.201003707 – ident: ref5/cit5 doi: 10.1021/jacs.2c00156 – ident: ref37/cit37 doi: 10.1002/adma.201807288 – ident: ref44/cit44 doi: 10.1126/science.1063187 – ident: ref7/cit7 doi: 10.1038/s41467-020-18057-9 – ident: ref40/cit40 doi: 10.1021/jacs.8b04531 – ident: ref46/cit46 doi: 10.1002/anie.201303810 – ident: ref3/cit3 doi: 10.1002/pol.20210126 – ident: ref52/cit52 doi: 10.2307/3571331 – ident: ref14/cit14 doi: 10.1002/anie.201806668 – ident: ref58/cit58 doi: 10.1038/nrd1088 – ident: ref28/cit28 doi: 10.1039/c6ob00292g – ident: ref32/cit32 doi: 10.1073/pnas.072699999 – ident: ref59/cit59 doi: 10.1038/nrm2820 – ident: ref36/cit36 doi: 10.1039/b609047h – ident: ref60/cit60 doi: 10.1016/j.jconrel.2014.06.042 – ident: ref50/cit50 doi: 10.1021/acs.chemrev.7b00581 – ident: ref1/cit1 doi: 10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5 – ident: ref23/cit23 doi: 10.1002/anie.201812489 – ident: ref34/cit34 doi: 10.1021/ja072536r – ident: ref48/cit48 doi: 10.1002/chir.20459 – ident: ref30/cit30 doi: 10.1021/acscatal.0c03753 – ident: ref16/cit16 doi: 10.1002/anie.202201791 – ident: ref4/cit4 doi: 10.1021/ar200148z – ident: ref19/cit19 doi: 10.1021/acspolymersau.2c00032 – ident: ref42/cit42 doi: 10.1021/ar8000926 – ident: ref33/cit33 doi: 10.1126/science.1093783 – ident: ref39/cit39 doi: 10.1021/acsmacrolett.8b00099 – ident: ref6/cit6 doi: 10.1002/adfm.201908171 – ident: ref21/cit21 doi: 10.1002/anie.201712976 – volume: 2 start-page: 347 year: 2003 ident: WOS:000182590600016 article-title: The dawning era of polymer therapeutics publication-title: NATURE REVIEWS DRUG DISCOVERY doi: 10.1038/nrd1088 – volume: 140 start-page: 9551 year: 2018 ident: WOS:000440877000035 article-title: Photochemistry in Confined Environments for Single-Chain Nanoparticle Design publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b04531 – volume: 118 start-page: 7069 year: 2018 ident: WOS:000441475900005 article-title: Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00581 – volume: 22 start-page: 10533 year: 2016 ident: WOS:000380273300033 article-title: Visible-Light-Triggered Cross-Linking of DNA Duplexes by Reversible [2+2] Photocycloaddition of Styrylpyrene publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201602006 – volume: 14 start-page: 5574 year: 2016 ident: WOS:000378933400031 article-title: Probing the self-assembly and stability of oligohistidine based rod-like micelles by aggregation induced luminescence publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c6ob00292g – volume: 128 start-page: 7291 year: 2006 ident: WOS:000237931700048 article-title: Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja060573x – volume: 107 start-page: 2763 year: 2003 ident: WOS:000182167100022 article-title: Effect of micelles on oxygen-quenching processes of triplet-state para-substituted tetraphenylporphyrin photosensitizers publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/jp0270912 – volume: 31 start-page: ARTN 1807288 year: 2019 ident: WOS:000459798700024 article-title: Access to Disparate Soft Matter Materials by Curing with Two Colors of Light publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201807288 – volume: 58 start-page: 3087 year: 2019 ident: WOS:000459709300021 article-title: A Fluorogenic Probe for Cell Surface Phosphatidylserine Using an Intramolecular Indicator Displacement Sensing Mechanism publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201812489 – volume: 20 start-page: 471 year: 2008 ident: WOS:000253555000029 article-title: The use of circular dichroism spectroscopy for studying the chiral molecular self-assembly: An overview publication-title: CHIRALITY doi: 10.1002/chir.20459 – volume: 7 start-page: 464 year: 2018 ident: WOS:000430515500013 article-title: Wavelength-Selective Coupling and Decoupling of Polymer Chains via Reversible [2+2] Photocycloaddition of Styrylpyrene for Construction of Cytocompatible Photodynamic Hydrogels publication-title: ACS MACRO LETTERS doi: 10.1021/acsmacrolett.8b00099 – volume: 44 start-page: 666 year: 2011 ident: WOS:000296075300003 article-title: From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar200148z – volume: 51 start-page: 3802 year: 2018 ident: WOS:000433404700027 article-title: Visible Light [2+2] Cycloadditions for Reversible Polymer Ligation publication-title: MACROMOLECULES doi: 10.1021/acs.macromol.8b00613 – volume: 10 start-page: 696 year: 2018 ident: WOS:000436103200006 article-title: Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-018-0047-2 – volume: 59 start-page: 963 year: 2021 ident: WOS:000645197500001 article-title: Click chemistry strategies for the accelerated synthesis of functional macromolecules publication-title: JOURNAL OF POLYMER SCIENCE doi: 10.1002/pol.20210126 – volume: 12 start-page: ARTN 6421 year: 2021 ident: WOS:000714972500022 article-title: Supramolecular fibrillation of peptide amphiphiles induces environmental responses in aqueous droplets publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-021-26681-2 – volume: 57 start-page: 5626 year: 2018 ident: WOS:000431488200004 article-title: Molecular Recognition by a Short Partial Peptide of the Adrenergic Receptor: A Bottom-Up Approach publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201712976 – volume: 7 start-page: 7980 year: 2011 ident: WOS:000294447600014 article-title: Peptide functionalised discotic amphiphiles and their self-assembly into supramolecular nanofibres publication-title: SOFT MATTER doi: 10.1039/c1sm05896g – year: 2022 ident: 001027011800001.53 publication-title: Supramolecular Catalysis – volume: 121 start-page: 13869 year: 2021 ident: WOS:000753852200004 article-title: Peptide-Based Supramolecular Systems Chemistry publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.1c00089 – volume: 61 start-page: ARTN e202201791 year: 2022 ident: WOS:000774677700001 article-title: Mediating Oxidation of Thioethers with Iodine-A Mild and Versatile Pathway to Trigger the Formation of Peptide Hydrogels publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202201791 – volume: 50 start-page: 60 year: 2011 ident: WOS:000285891900008 article-title: "Clicking" Polymers or Just Efficient Linking: What Is the Difference? publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201003707 – volume: 11 start-page: 50 year: 2010 ident: WOS:000272944700012 article-title: Sensors and regulators of intracellular pH publication-title: NATURE REVIEWS MOLECULAR CELL BIOLOGY doi: 10.1038/nrm2820 – volume: 190 start-page: 465 year: 2014 ident: WOS:000345910900028 article-title: Progress of drug-loaded polymeric micelles into clinical studies publication-title: JOURNAL OF CONTROLLED RELEASE doi: 10.1016/j.jconrel.2014.06.042 – volume: 131 start-page: 12520 year: 2009 ident: WOS:000269735800004 article-title: Efficient Energy Transfer within Self-Assembling Peptide Fibers: A Route to Light-Harvesting Nanomaterials publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja902825j – volume: 52 start-page: 10097 year: 2013 ident: WOS:000324309900049 article-title: pH-Switchable Ampholytic Supramolecular Copolymers publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201303810 – volume: 10 start-page: 14937 year: 2020 ident: WOS:000608850500050 article-title: Bioinspired Supramolecular Catalysts from Designed Self-Assembly of DNA or Peptides publication-title: ACS CATALYSIS doi: 10.1021/acscatal.0c03753 – start-page: 1996 year: 1964 ident: WOS:A19644237B00020 article-title: TOPOCHEMISTRY .1. SURVEY publication-title: JOURNAL OF THE CHEMICAL SOCIETY – volume: 37 start-page: 664 year: 2008 ident: WOS:000254315700004 article-title: Designing peptide based nanomaterials publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b609047h – volume: 144 start-page: 5562 year: 2022 ident: WOS:000799109400044 article-title: Supramolecular Copolymers of Peptides and Lipidated Peptides and Their Therapeutic Potential publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c00433 – volume: 10 start-page: 1671 year: 2014 ident: WOS:000334137700018 article-title: Self-assembly of short peptides to form hydrogels: Design of building blocks, physical properties and technological applications publication-title: ACTA BIOMATERIALIA doi: 10.1016/j.actbio.2013.08.013 – volume: 8 start-page: 1128 year: 2003 ident: WOS:000187217100009 article-title: The growing impact of click chemistry on drug discovery publication-title: DRUG DISCOVERY TODAY – volume: 14 start-page: ARTN 383 year: 2023 ident: WOS:001170148000006 article-title: Differential sensing with arrays of de novo designed peptide assemblies publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-023-36024-y – volume: 2 start-page: 478 year: 2022 ident: WOS:000850197800001 article-title: Modular Platform of Carbohydrates-modified Supramolecular Polymers Based on Dendritic Peptide Scaffolds publication-title: ACS POLYMERS AU doi: 10.1021/acspolymersau.2c00032 – volume: 41 start-page: 1674 year: 2008 ident: WOS:000261767600012 article-title: Molecular Self-Assembly into One-Dimensional Nanostructures publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar8000926 – volume: 130 start-page: 5487 year: 2008 ident: WOS:000255041400037 article-title: Modification of fluorophore photophysics through peptide-driven self-assembly publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja710310c – volume: 20 start-page: 55 year: 1963 ident: WOS:A19632479C00009 article-title: ENERGY TRANSFER MECHANISMS AND MOLECULAR EXCITON MODEL FOR MOLECULAR AGGREGATES publication-title: RADIATION RESEARCH – volume: 129 start-page: 12468 year: 2007 ident: WOS:000250105500044 article-title: Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructure publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja072536r – volume: 28 start-page: 721 year: 1958 ident: WOS:A1958WA15500038 article-title: ENHANCEMENT OF PHOSPHORESCENCE ABILITY UPON AGGREGATION OF DYE MOLECULES publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 9 start-page: 594 year: 2010 ident: WOS:000279014300022 article-title: A self-assembly pathway to aligned monodomain gels publication-title: NATURE MATERIALS doi: 10.1038/NMAT2778 – volume: 11 start-page: 86 year: 2019 ident: WOS:000453261100018 article-title: Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-018-0164-y – volume: 99 start-page: 5133 year: 2002 ident: WOS:000175087000075 article-title: Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.072699999 – volume: 140 start-page: 12736 year: 2018 ident: WOS:000447354800018 article-title: Polymer Nanowires with Highly Precise Internal Morphology and Topography publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b08870 – volume: 130 start-page: 2946 year: 2008 ident: WOS:000253854400032 article-title: Quadruple helix formation of a photoresponsive peptide amphiphile and its light-triggered dissociation into single fibers publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja711213s – year: 1978 ident: 001027011800001.44 publication-title: Optical Activity andChiral Discrimination – volume: 6 start-page: 7245 year: 2015 ident: WOS:000362742000003 article-title: Tuneable pH-regulated supramolecular copolymerisation by mixing mismatched dendritic peptide comonomers publication-title: POLYMER CHEMISTRY doi: 10.1039/c5py01241d – volume: 30 start-page: ARTN 1908171 year: 2020 ident: WOS:000514467000001 article-title: Wavelength-Dependent Stiffening of Hydrogel Matrices via Redshifted [2+2] Photocycloadditions publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201908171 – volume: 294 start-page: 1684 year: 2001 ident: WOS:000172307400034 article-title: Self-assembly and mineralization of peptide-amphiphile nanofibers publication-title: SCIENCE – volume: 58 start-page: 3604 year: 2019 ident: WOS:000460318200058 article-title: Controlling Chain Coupling and Single-Chain Ligation by Two Colours of Visible Light publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201811541 – volume: 57 start-page: 217 year: 2006 ident: WOS:000237668700008 article-title: Excitons in conjugated oligomer aggregates, films, and crystals publication-title: ANNUAL REVIEW OF PHYSICAL CHEMISTRY doi: 10.1146/annurev.physchem.57.032905.104557 – volume: 43 start-page: 429 year: 2010 ident: WOS:000275820900008 article-title: The Spectral Signatures of Frenkel Polarons in H- and J-Aggregates publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar900233v – volume: 11 start-page: ARTN 4193 year: 2020 ident: WOS:000569766000019 article-title: Green light triggered [2+2] cycloaddition of halochromic styrylquinoxaline-controlling photoreactivity by pH publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-020-18057-9 – volume: 57 start-page: 11349 year: 2018 ident: WOS:000442340000041 article-title: Surface-Assisted Self-Assembly of a Hydrogel by Proton Diffusion publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201806668 – volume: 50 start-page: 2440 year: 2017 ident: WOS:000413392000004 article-title: Supramolecular Assembly of Peptide Amphiphiles publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.7b00297 – volume: 303 start-page: 1352 year: 2004 ident: WOS:000189238600046 article-title: Selective differentiation of neural progenitor cells by high-epitope density nanofibers publication-title: SCIENCE doi: 10.1126/science.1093783 – volume: 144 start-page: 6343 year: 2022 ident: WOS:000790698300026 article-title: Orange-Light-Induced Photochemistry Gated by pH and Confined Environments publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c00156 |
SSID | ssj0004281 |
Score | 2.492136 |
Snippet | Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable... Highly efficient chemical ligations that operate in waterundermild conditions are the foundation of bioorthogonal chemistry. However,the toolbox of suitable... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15981 |
SubjectTerms | amino acids catalysts catalytic activity Chemistry Chemistry, Multidisciplinary dimethylformamide electrostatic interactions hydrophilicity hydrophobicity irradiation oxygen peptides Physical Sciences polymers protonation Science & Technology |
Title | Peptide Self-Assembly Controlled Photoligation of Polymers |
URI | http://dx.doi.org/10.1021/jacs.3c03961 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=001027011800001 https://www.ncbi.nlm.nih.gov/pubmed/37433011 https://www.proquest.com/docview/2836294051 https://www.proquest.com/docview/3040438773 |
Volume | 145 |
WOS | 001027011800001 |
WOSCitedRecordID | wos001027011800001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JSsRAEC1ED3pxX-JGBD1JhiSddPd4k-CCoAyo4C2kNwRjIk7mMH69XVnGfbkmFUJ3V6feS1W_AtinmQgMi7QnKaNexAPpCRLEXl8YGUfa-EzjeefLK3p-G13cxXdvBbKfM_gh6gPJYY9In_SR5cyElDMkWcfJ9dv5x5AHHcxlnJK2wP3z0xiA5PBjAPqCKr8NQHWwOV2As-7ITlNj8tAbVaInX74qOP4xjkWYb_Gme9w4yBJM6WIZZpOuzdsKHA2wrkVp91rnxsMc8KPIx27SlLDnWrmD-7Iq81qKoyzc0riDMh_j7-5VuD09uUnOvbahgpeRmFWeMIr73AjhcyXjUBoiAhUxlmWGMKWVtPQniyJjUUlAuPZNjPyEZUTZMK-MT9ZguigLvQGuxIyeXUsLwFRELElUNDCcZFKaPnI2B_bseNN2QwzTOtcdWq6BV9tZcOCwW4lUtork2Bgj_8H6YGL91Chx_GC31y1qaqcS8x9ZocvRMLVIioZ9i1B_sSE-yg1ZFyMOrDceMXkbsWgLv4cO7L93kcn9Wp-P1aJ6CJ0dCP5jlrQjRw2CavMf07YFc9jzHn8wh3Qbpqvnkd6xyKgSu_W2eAWnYQVi |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigXyrspr1RqTyhVbCe2F4lDFai29KGV2kq9hfglpIYEkazQ8l_4K_w2xtlkC4WiXipxdUaOMx5nvvGMPwNs8kIRJxIbaS54lEiiI8VIGo2U02liXSysP-98eMTHp8n7s_RsCb4PZ2FwEA321HRJ_At2AU8ThI1Mx2zESV9DuW9nXzFCa97svcXp3KJ0991JNo76SwSigqWijZQzMpZOqVganVLtmCImEaIoHBPGGo2Qv0gSh56YMGljl3pMLgpm0LUZFzPs9xbcRtxDfWy3kx1fHLukkgzoWkjO-rr6y6P1fk83v_u9P8DsX_1e5-N2V-HHQjtdacv59rRV2_rbJeLI_1Z99-Buj67DnflyuA9LtnoAK9lwqd1DeD3xVTzGhse2dJHPeH9S5SzM5gX7pTXh5GPd1mVHPFJXYe3CSV3O_Ob-Izi9kaE_huWqruwahNrnL9FyEW6ahGFIbDhxkhVau5GPUAPYQP3m_fJv8i6zTzGy8q291gN4NRhArnv-dX8NSHmF9NZC-vOcd-QKuY3BlnJUpc_2FJWtp02OuJHTEeLxf8iw2JMrSSFYAE_mhrh4G0Ns6f_-AWz-apmL5x0boegoBH2gEAC5jljWf7lnXGjXr6G2l7AyPjk8yA_2jvafwh2KGNNvrVP-DJbbL1P7HDFhq150KzOEDzdtyz8BK4xpXQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIkEv5V3CM5XaE0qVxIntReJQpaxaCtVKpVJvIX4JqWlSkayq5d_wV_hlzGSTBQpFvVTiGo8cZzzOfOMZfwbY4IWKnEhsoLngQSIjHSgWpcFIOZ0m1oXC0nnnDwd89yh5d5weL8G34SwMDqLBnpouiU-r-sy4nmGAqIKwgemQjXjU11Hu29k5RmnNm70dnNLNOB6__ZjtBv1FAkHBUtEGyhkZSqdUKI1OY-2YikwiRFE4Jow1GmF_kSQOvXHEpA1dSrhcFMygezMuZNjvDbhJGUKK77azw59HL2MZDQhbSM762vqLoyXfp5vffd8fgPavvq_zc-M78H2hoa685WRr2qot_fUCeeR_rcK7sNqjbH97vizuwZKt7sPtbLjc7gG8nlA1j7H-oS1dQJnvU1XO_GxeuF9a408-121ddgQkdeXXzp_U5Yw2-R_C0bUM_REsV3VlH4OvKY-JFoyw0yQMQ2PDIydZobUbUaTqwTrqN-9_A03eZfhjjLDoaa91D14NRpDrnoedrgMpL5HeXEifzflHLpFbH-wpR1VS1qeobD1tcsSPPB4hLv-HDAuJZEkKwTxYmxvj4m0MMSZ5AQ82frXORXvHSig6KkEKGDyIriKW9V9OzAvtkyuo7SXcmuyM8_d7B_tPYSVGqEk77DF_Bsvtl6l9jtCwVS-6xenDp-s25R8evWvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peptide+Self-Assembly+Controlled+Photoligation+of+Polymers&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Richardson%2C+Bailey+J&rft.au=Zhang%2C+Chao&rft.au=Rauthe%2C+Pascal&rft.au=Unterreiner%2C+Andreas-Neil&rft.date=2023-07-26&rft.issn=1520-5126&rft.volume=145&rft.issue=29+p.15981-15989&rft.spage=15981&rft.epage=15989&rft_id=info:doi/10.1021%2Fjacs.3c03961&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |