Peptide Self-Assembly Controlled Photoligation of Polymers

Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 145; no. 29; pp. 15981 - 15989
Main Authors Richardson, Bailey J., Zhang, Chao, Rauthe, Pascal, Unterreiner, Andreas-Neil, Golberg, Dmitri V., Poad, Berwyck L. J., Frisch, Hendrik
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 26.07.2023
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselvesavoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation “ON” or “OFF” under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions.
AbstractList Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselves─avoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation "ON" or "OFF" under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions.
Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselves─avoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation "ON" or "OFF" under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions.Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselves─avoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation "ON" or "OFF" under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions.
Highly efficient chemical ligations that operate in waterundermild conditions are the foundation of bioorthogonal chemistry. However,the toolbox of suitable reactions is limited. Conventional approachesto expand this toolbox aim at altering the inherent reactivity offunctional groups to design new reactions that meet the required benchmarks.Inspired by controlled reaction environments that enzymes provide,we report a fundamentally different approach that makes inefficientreactions highly efficient within defined local environments. Contrastingenzymatically catalyzed reactions, the reactivity controlling self-assembledenvironment is brought about by the ligation targets themselves avoidingthe use of a catalyst. Targeting [2 + 2] photocycloadditions, whichare inefficient at low concentrations and readily quenched by oxygen,short & beta;-sheet encoded peptide sequences are inserted betweena hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer.In water, electrostatic repulsion of deprotonated amino acid residuesgoverns the formation of small self-assembled structures, which enablea highly efficient photoligation of the polymer, reaching & SIM;90%ligation within 2 min (0.034 mM). Upon protonation at low pH, theself-assembly changes into 1D fibers, altering photophysical propertiesand shutting down the photocycloaddition reaction. Using the reversiblemorphology change, it is possible to switch the photoligation "ON"or "OFF" under constant irradiation simply by varyingthe pH. Importantly, in dimethylformamide, the photoligation reactiondid not occur even at 10-fold higher concentrations (0.34 mM). Theself-assembly into a specific architecture, encoded into the polymerligation target, enables a highly efficient ligation that overcomesthe concentration limitations and high oxygen sensitivity of [2 +2] photocycloadditions.
Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselves—avoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation “ON” or “OFF” under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions.
Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselvesavoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation “ON” or “OFF” under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions.
Author Poad, Berwyck L. J.
Golberg, Dmitri V.
Zhang, Chao
Richardson, Bailey J.
Frisch, Hendrik
Rauthe, Pascal
Unterreiner, Andreas-Neil
AuthorAffiliation Institute of Physical Chemistry
Central Analytical Research Facility
School of Chemistry and Physics
Centre for Materials Science
AuthorAffiliation_xml – name: School of Chemistry and Physics
– name: Central Analytical Research Facility
– name: Centre for Materials Science
– name: Institute of Physical Chemistry
Author_xml – sequence: 1
  givenname: Bailey J.
  orcidid: 0009-0007-3661-4011
  surname: Richardson
  fullname: Richardson, Bailey J.
  organization: Centre for Materials Science
– sequence: 2
  givenname: Chao
  orcidid: 0000-0001-5309-8484
  surname: Zhang
  fullname: Zhang, Chao
  organization: Central Analytical Research Facility
– sequence: 3
  givenname: Pascal
  surname: Rauthe
  fullname: Rauthe, Pascal
  organization: Institute of Physical Chemistry
– sequence: 4
  givenname: Andreas-Neil
  orcidid: 0000-0002-1225-5460
  surname: Unterreiner
  fullname: Unterreiner, Andreas-Neil
  organization: Institute of Physical Chemistry
– sequence: 5
  givenname: Dmitri V.
  orcidid: 0000-0003-2298-6539
  surname: Golberg
  fullname: Golberg, Dmitri V.
  organization: Centre for Materials Science
– sequence: 6
  givenname: Berwyck L. J.
  orcidid: 0000-0002-0420-6116
  surname: Poad
  fullname: Poad, Berwyck L. J.
  organization: Central Analytical Research Facility
– sequence: 7
  givenname: Hendrik
  orcidid: 0000-0001-8490-5082
  surname: Frisch
  fullname: Frisch, Hendrik
  email: H.Frisch@qut.edu.au
  organization: Centre for Materials Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37433011$$D View this record in MEDLINE/PubMed
BookMark eNqN0c1rFDEYBvAgFbut3jzLHAU77ZuPmWS9lUGrUHCheh4yyRudJTNZkxnK_vdm3bEHsdRTSPg9OTzPGTkZw4iEvKZwSYHRq6026ZIb4OuaPiMrWjEoK8rqE7ICAFZKVfNTcpbSNl8FU_QFOeVScA6Ursj7De6m3mJxh96V1ynh0Pl90YRxisF7tMXmR5iC77_rqQ9jEVyxCX4_YEwvyXOnfcJXy3lOvn388LX5VN5-ufncXN-WmldyKjtnFSjXdaCsqZhxvKNWSKm149KiNWK91kK4ulKUKwRXcaiF1NwKWlkH_Jy8Pf67i-HnjGlqhz4Z9F6PGObUchAguJKSP0mZ4jVbC6hopm8WOncD2nYX-0HHffunmgzeHcE9dsEl0-No8IEB5PJldiq3Cget_l83_fS7zSbM45SjF8eoiSGliO4hRqE9TNweJm6XiTNnf3GzfDdF3fvHQksxh8dtmOOYF_s3_QVPSLOp
CitedBy_id crossref_primary_10_1016_j_bioactmat_2024_01_023
crossref_primary_10_1039_D3CC03777K
crossref_primary_10_1002_ange_202319839
crossref_primary_10_1007_s44275_024_00015_y
crossref_primary_10_1021_acs_analchem_3c03490
crossref_primary_10_1002_anie_202319839
crossref_primary_10_1021_acsami_4c19978
crossref_primary_10_1016_j_jconrel_2023_12_028
crossref_primary_10_1021_acs_analchem_4c02273
crossref_primary_10_1021_jacs_3c12342
crossref_primary_10_1038_s41467_024_50366_1
crossref_primary_10_1021_acs_biomac_3c01454
crossref_primary_10_1039_D4SC02172J
Cites_doi 10.1063/1.1744225
10.1021/jacs.8b04531
10.1021/jacs.2c00433
10.1021/acs.macromol.8b00613
10.1021/jp0270912
10.1021/acsmacrolett.8b00099
10.1021/jacs.8b08870
10.1039/c1sm05896g
10.1038/s41557-018-0164-y
10.1021/ja060573x
10.1021/acs.chemrev.1c00089
10.1021/ja902825j
10.1038/s41467-021-26681-2
10.1021/ja711213s
10.1038/nmat2778
10.1039/jr9640001996
10.1021/ja710310c
10.1039/c5py01241d
10.1002/9783527832033
10.1038/s41467-023-36024-y
10.1126/science.1063187
10.1038/s41557-018-0047-2
10.1146/annurev.physchem.57.032905.104557
10.1021/acs.accounts.7b00297
10.1002/chem.201602006
10.1021/ar900233v
10.1016/j.actbio.2013.08.013
10.1002/anie.201811541
10.1002/anie.201003707
10.1021/jacs.2c00156
10.1002/adma.201807288
10.1038/s41467-020-18057-9
10.1002/anie.201303810
10.1002/pol.20210126
10.2307/3571331
10.1002/anie.201806668
10.1038/nrd1088
10.1039/c6ob00292g
10.1073/pnas.072699999
10.1038/nrm2820
10.1039/b609047h
10.1016/j.jconrel.2014.06.042
10.1021/acs.chemrev.7b00581
10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5
10.1002/anie.201812489
10.1021/ja072536r
10.1002/chir.20459
10.1021/acscatal.0c03753
10.1002/anie.202201791
10.1021/ar200148z
10.1021/acspolymersau.2c00032
10.1021/ar8000926
10.1126/science.1093783
10.1002/adfm.201908171
10.1002/anie.201712976
10.1038/NMAT2778
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
17B
1KM
BLEPL
BNZSX
DTL
EGQ
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.3c03961
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Web of Science - Science Citation Index Expanded - 2023
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Web of Science
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 15989
ExternalDocumentID 37433011
001027011800001
10_1021_jacs_3c03961
h47897001
Genre Journal Article
GrantInformation_xml – fundername: QUT through the Centre for Materials Science and School of Chemistry and Physics
– fundername: GRK 2039 Molecular Architectures for Fluorescent Cell Imaging
– fundername: Karlsruhe Institute of Technology (KIT)
– fundername: ARC Laureate Fellowship; Australian Research Council
– fundername: Australian Research Council
  grantid: DE200101096; LE220100031; FL160100089; LE190100081
– fundername: Australian Research Council
  grantid: DE200101096; LE190100081; FL160100089; LE220100031
– fundername: Queensland University of Technology (QUT)
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFRP
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
CITATION
CUPRZ
17B
1KM
AAYWT
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a357t-bfd808fbb08dc52cf3b1d477aaf37dedc499a44f658138e0f530647a3d415df03
IEDL.DBID ACS
ISICitedReferencesCount 14
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=001027011800001
ISSN 0002-7863
1520-5126
IngestDate Thu Jul 10 22:34:19 EDT 2025
Mon Jul 21 10:01:44 EDT 2025
Mon Jul 21 05:32:53 EDT 2025
Fri Aug 29 16:07:48 EDT 2025
Tue Jul 22 04:34:20 EDT 2025
Tue Jul 01 03:54:36 EDT 2025
Thu Apr 24 23:10:53 EDT 2025
Fri Jul 28 03:16:50 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords REVERSIBLE 2+2 PHOTOCYCLOADDITION
ENERGY-TRANSFER
MICELLES
DNA
AGGREGATION
AMPHIPHILE NANOFIBERS
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-a357t-bfd808fbb08dc52cf3b1d477aaf37dedc499a44f658138e0f530647a3d415df03
Notes Australian Research Council
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2298-6539
0000-0001-5309-8484
0000-0002-0420-6116
0009-0007-3661-4011
0000-0002-1225-5460
0000-0001-8490-5082
PMID 37433011
PQID 2836294051
PQPubID 23479
PageCount 9
ParticipantIDs crossref_primary_10_1021_jacs_3c03961
proquest_miscellaneous_2836294051
proquest_miscellaneous_3040438773
pubmed_primary_37433011
webofscience_primary_001027011800001
webofscience_primary_001027011800001CitationCount
crossref_citationtrail_10_1021_jacs_3c03961
acs_journals_10_1021_jacs_3c03961
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-26
PublicationDateYYYYMMDD 2023-07-26
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-26
  day: 26
PublicationDecade 2020
PublicationPlace WASHINGTON
PublicationPlace_xml – name: WASHINGTON
– name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAbbrev J AM CHEM SOC
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2023
Publisher American Chemical Society
Amer Chemical Soc
Publisher_xml – name: American Chemical Society
– name: Amer Chemical Soc
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
van Leeuwen P. W. N. M. (ref57/cit57) 2022
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
Mason S. F. (ref47/cit47) 1978
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref44/cit44
ref7/cit7
Frisch, H (WOS:000460318200058) 2019; 58
Fichman, G (WOS:000334137700018) 2014; 10
Spitzer, D (WOS:000442340000041) 2018; 57
Kalayci, K (WOS:000569766000019) 2020; 11
Kalayci, K (WOS:000514467000001) 2020; 30
Kolb, HC (WOS:000187217100009) 2003; 8
Channon, KJ (WOS:000269735800004) 2009; 131
Marschner, DE (WOS:000433404700027) 2018; 51
Zwicker, VE (WOS:000459709300021) 2019; 58
Silva, GA (WOS:000189238600046) 2004; 303
Qiu, RM (WOS:000799109400044) 2022; 144
Frisch, H (WOS:000378933400031) 2016; 14
Nowak, BP (WOS:000774677700001) 2022; 61
Kumar, M (WOS:000436103200006) 2018; 10
Bialas, S (WOS:000459798700024) 2019; 31
van Leeuwen, P. W. N. M. (001027011800001.53) 2022
Spano, FC (WOS:000237668700008) 2006; 57
Booth, R (WOS:000714972500022) 2021; 12
Sletten, EM (WOS:000296075300003) 2011; 44
Xu, Z (WOS:000453261100018) 2019; 11
Dong, H (WOS:000250105500044) 2007; 129
Gottarelli, G (WOS:000253555000029) 2008; 20
Hartgerink, JD (WOS:000175087000075) 2002; 99
Barner-Kowollik, C (WOS:000285891900008) 2011; 50
Sekiguchi, T (WOS:000431488200004) 2018; 57
Hendricks, MP (WOS:000413392000004) 2017; 50
Hartgerink, JD (WOS:000172307400034) 2001; 294
Hestand, NJ (WOS:000441475900005) 2018; 118
Frisch, H (WOS:000324309900049) 2013; 52
Sheehan, F (WOS:000753852200004) 2021; 121
Zhang, SM (WOS:000279014300022) 2010; 9
Muraoka, T (WOS:000253854400032) 2008; 130
Channon, KJ (WOS:000255041400037) 2008; 130
Palmer, LC (WOS:000261767600012) 2008; 41
COHEN, MD (WOS:A19644237B00020) 1964
Spano, FC (WOS:000275820900008) 2010; 43
Doi, T (WOS:000380273300033) 2016; 22
Mason, S. F. (001027011800001.44) 1978
Frisch, H (WOS:000440877000035) 2018; 140
Truong, VX (WOS:000430515500013) 2018; 7
Pelras, T (WOS:000447354800018) 2018; 140
Dawson, WM (WOS:001170148000006) 2023; 14
MCRAE, EG (WOS:A1958WA15500038) 1958; 28
Geng, ZS (WOS:000645197500001) 2021; 59
KASHA, M (WOS:A19632479C00009) 1963; 20
Ulijn, RV (WOS:000254315700004) 2008; 37
Ahlers, P (WOS:000362742000003) 2015; 6
Cabral, H (WOS:000345910900028) 2014; 190
Gerhardt, SA (WOS:000182167100022) 2003; 107
Casey, JR (WOS:000272944700012) 2010; 11
Duncan, R (WOS:000182590600016) 2003; 2
Paramonov, SE (WOS:000237931700048) 2006; 128
Li, L (WOS:000850197800001) 2022; 2
Besenius, P (WOS:000294447600014) 2011; 7
Kodura, D (WOS:000790698300026) 2022; 144
Liu, SY (WOS:000608850500050) 2020; 10
References_xml – ident: ref51/cit51
  doi: 10.1063/1.1744225
– ident: ref11/cit11
  doi: 10.1021/jacs.8b04531
– ident: ref18/cit18
  doi: 10.1021/jacs.2c00433
– ident: ref10/cit10
  doi: 10.1021/acs.macromol.8b00613
– volume-title: Optical Activity and Chiral Discrimination
  year: 1978
  ident: ref47/cit47
– ident: ref56/cit56
  doi: 10.1021/jp0270912
– ident: ref8/cit8
  doi: 10.1021/acsmacrolett.8b00099
– ident: ref54/cit54
  doi: 10.1021/jacs.8b08870
– ident: ref20/cit20
  doi: 10.1039/c1sm05896g
– ident: ref24/cit24
  doi: 10.1038/s41557-018-0164-y
– ident: ref35/cit35
  doi: 10.1021/ja060573x
– ident: ref26/cit26
  doi: 10.1021/acs.chemrev.1c00089
– ident: ref29/cit29
  doi: 10.1021/ja902825j
– ident: ref43/cit43
  doi: 10.1038/s41467-021-26681-2
– ident: ref25/cit25
  doi: 10.1021/ja711213s
– ident: ref15/cit15
  doi: 10.1038/nmat2778
– ident: ref9/cit9
  doi: 10.1039/jr9640001996
– ident: ref27/cit27
  doi: 10.1021/ja710310c
– ident: ref45/cit45
  doi: 10.1039/c5py01241d
– volume-title: Supramolecular Catalysis
  year: 2022
  ident: ref57/cit57
  doi: 10.1002/9783527832033
– ident: ref22/cit22
  doi: 10.1038/s41467-023-36024-y
– ident: ref31/cit31
  doi: 10.1126/science.1063187
– ident: ref17/cit17
  doi: 10.1038/s41557-018-0047-2
– ident: ref53/cit53
  doi: 10.1146/annurev.physchem.57.032905.104557
– ident: ref12/cit12
  doi: 10.1021/acs.accounts.7b00297
– ident: ref38/cit38
  doi: 10.1002/chem.201602006
– ident: ref49/cit49
  doi: 10.1021/ar900233v
– ident: ref13/cit13
  doi: 10.1016/j.actbio.2013.08.013
– ident: ref41/cit41
  doi: 10.1002/anie.201811541
– ident: ref55/cit55
  doi: 10.1021/jacs.8b04531
– ident: ref2/cit2
  doi: 10.1002/anie.201003707
– ident: ref5/cit5
  doi: 10.1021/jacs.2c00156
– ident: ref37/cit37
  doi: 10.1002/adma.201807288
– ident: ref44/cit44
  doi: 10.1126/science.1063187
– ident: ref7/cit7
  doi: 10.1038/s41467-020-18057-9
– ident: ref40/cit40
  doi: 10.1021/jacs.8b04531
– ident: ref46/cit46
  doi: 10.1002/anie.201303810
– ident: ref3/cit3
  doi: 10.1002/pol.20210126
– ident: ref52/cit52
  doi: 10.2307/3571331
– ident: ref14/cit14
  doi: 10.1002/anie.201806668
– ident: ref58/cit58
  doi: 10.1038/nrd1088
– ident: ref28/cit28
  doi: 10.1039/c6ob00292g
– ident: ref32/cit32
  doi: 10.1073/pnas.072699999
– ident: ref59/cit59
  doi: 10.1038/nrm2820
– ident: ref36/cit36
  doi: 10.1039/b609047h
– ident: ref60/cit60
  doi: 10.1016/j.jconrel.2014.06.042
– ident: ref50/cit50
  doi: 10.1021/acs.chemrev.7b00581
– ident: ref1/cit1
  doi: 10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5
– ident: ref23/cit23
  doi: 10.1002/anie.201812489
– ident: ref34/cit34
  doi: 10.1021/ja072536r
– ident: ref48/cit48
  doi: 10.1002/chir.20459
– ident: ref30/cit30
  doi: 10.1021/acscatal.0c03753
– ident: ref16/cit16
  doi: 10.1002/anie.202201791
– ident: ref4/cit4
  doi: 10.1021/ar200148z
– ident: ref19/cit19
  doi: 10.1021/acspolymersau.2c00032
– ident: ref42/cit42
  doi: 10.1021/ar8000926
– ident: ref33/cit33
  doi: 10.1126/science.1093783
– ident: ref39/cit39
  doi: 10.1021/acsmacrolett.8b00099
– ident: ref6/cit6
  doi: 10.1002/adfm.201908171
– ident: ref21/cit21
  doi: 10.1002/anie.201712976
– volume: 2
  start-page: 347
  year: 2003
  ident: WOS:000182590600016
  article-title: The dawning era of polymer therapeutics
  publication-title: NATURE REVIEWS DRUG DISCOVERY
  doi: 10.1038/nrd1088
– volume: 140
  start-page: 9551
  year: 2018
  ident: WOS:000440877000035
  article-title: Photochemistry in Confined Environments for Single-Chain Nanoparticle Design
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b04531
– volume: 118
  start-page: 7069
  year: 2018
  ident: WOS:000441475900005
  article-title: Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00581
– volume: 22
  start-page: 10533
  year: 2016
  ident: WOS:000380273300033
  article-title: Visible-Light-Triggered Cross-Linking of DNA Duplexes by Reversible [2+2] Photocycloaddition of Styrylpyrene
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201602006
– volume: 14
  start-page: 5574
  year: 2016
  ident: WOS:000378933400031
  article-title: Probing the self-assembly and stability of oligohistidine based rod-like micelles by aggregation induced luminescence
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c6ob00292g
– volume: 128
  start-page: 7291
  year: 2006
  ident: WOS:000237931700048
  article-title: Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja060573x
– volume: 107
  start-page: 2763
  year: 2003
  ident: WOS:000182167100022
  article-title: Effect of micelles on oxygen-quenching processes of triplet-state para-substituted tetraphenylporphyrin photosensitizers
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY A
  doi: 10.1021/jp0270912
– volume: 31
  start-page: ARTN 1807288
  year: 2019
  ident: WOS:000459798700024
  article-title: Access to Disparate Soft Matter Materials by Curing with Two Colors of Light
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201807288
– volume: 58
  start-page: 3087
  year: 2019
  ident: WOS:000459709300021
  article-title: A Fluorogenic Probe for Cell Surface Phosphatidylserine Using an Intramolecular Indicator Displacement Sensing Mechanism
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201812489
– volume: 20
  start-page: 471
  year: 2008
  ident: WOS:000253555000029
  article-title: The use of circular dichroism spectroscopy for studying the chiral molecular self-assembly: An overview
  publication-title: CHIRALITY
  doi: 10.1002/chir.20459
– volume: 7
  start-page: 464
  year: 2018
  ident: WOS:000430515500013
  article-title: Wavelength-Selective Coupling and Decoupling of Polymer Chains via Reversible [2+2] Photocycloaddition of Styrylpyrene for Construction of Cytocompatible Photodynamic Hydrogels
  publication-title: ACS MACRO LETTERS
  doi: 10.1021/acsmacrolett.8b00099
– volume: 44
  start-page: 666
  year: 2011
  ident: WOS:000296075300003
  article-title: From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar200148z
– volume: 51
  start-page: 3802
  year: 2018
  ident: WOS:000433404700027
  article-title: Visible Light [2+2] Cycloadditions for Reversible Polymer Ligation
  publication-title: MACROMOLECULES
  doi: 10.1021/acs.macromol.8b00613
– volume: 10
  start-page: 696
  year: 2018
  ident: WOS:000436103200006
  article-title: Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-018-0047-2
– volume: 59
  start-page: 963
  year: 2021
  ident: WOS:000645197500001
  article-title: Click chemistry strategies for the accelerated synthesis of functional macromolecules
  publication-title: JOURNAL OF POLYMER SCIENCE
  doi: 10.1002/pol.20210126
– volume: 12
  start-page: ARTN 6421
  year: 2021
  ident: WOS:000714972500022
  article-title: Supramolecular fibrillation of peptide amphiphiles induces environmental responses in aqueous droplets
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-021-26681-2
– volume: 57
  start-page: 5626
  year: 2018
  ident: WOS:000431488200004
  article-title: Molecular Recognition by a Short Partial Peptide of the Adrenergic Receptor: A Bottom-Up Approach
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201712976
– volume: 7
  start-page: 7980
  year: 2011
  ident: WOS:000294447600014
  article-title: Peptide functionalised discotic amphiphiles and their self-assembly into supramolecular nanofibres
  publication-title: SOFT MATTER
  doi: 10.1039/c1sm05896g
– year: 2022
  ident: 001027011800001.53
  publication-title: Supramolecular Catalysis
– volume: 121
  start-page: 13869
  year: 2021
  ident: WOS:000753852200004
  article-title: Peptide-Based Supramolecular Systems Chemistry
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.1c00089
– volume: 61
  start-page: ARTN e202201791
  year: 2022
  ident: WOS:000774677700001
  article-title: Mediating Oxidation of Thioethers with Iodine-A Mild and Versatile Pathway to Trigger the Formation of Peptide Hydrogels
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202201791
– volume: 50
  start-page: 60
  year: 2011
  ident: WOS:000285891900008
  article-title: "Clicking" Polymers or Just Efficient Linking: What Is the Difference?
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201003707
– volume: 11
  start-page: 50
  year: 2010
  ident: WOS:000272944700012
  article-title: Sensors and regulators of intracellular pH
  publication-title: NATURE REVIEWS MOLECULAR CELL BIOLOGY
  doi: 10.1038/nrm2820
– volume: 190
  start-page: 465
  year: 2014
  ident: WOS:000345910900028
  article-title: Progress of drug-loaded polymeric micelles into clinical studies
  publication-title: JOURNAL OF CONTROLLED RELEASE
  doi: 10.1016/j.jconrel.2014.06.042
– volume: 131
  start-page: 12520
  year: 2009
  ident: WOS:000269735800004
  article-title: Efficient Energy Transfer within Self-Assembling Peptide Fibers: A Route to Light-Harvesting Nanomaterials
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja902825j
– volume: 52
  start-page: 10097
  year: 2013
  ident: WOS:000324309900049
  article-title: pH-Switchable Ampholytic Supramolecular Copolymers
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201303810
– volume: 10
  start-page: 14937
  year: 2020
  ident: WOS:000608850500050
  article-title: Bioinspired Supramolecular Catalysts from Designed Self-Assembly of DNA or Peptides
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.0c03753
– start-page: 1996
  year: 1964
  ident: WOS:A19644237B00020
  article-title: TOPOCHEMISTRY .1. SURVEY
  publication-title: JOURNAL OF THE CHEMICAL SOCIETY
– volume: 37
  start-page: 664
  year: 2008
  ident: WOS:000254315700004
  article-title: Designing peptide based nanomaterials
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/b609047h
– volume: 144
  start-page: 5562
  year: 2022
  ident: WOS:000799109400044
  article-title: Supramolecular Copolymers of Peptides and Lipidated Peptides and Their Therapeutic Potential
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c00433
– volume: 10
  start-page: 1671
  year: 2014
  ident: WOS:000334137700018
  article-title: Self-assembly of short peptides to form hydrogels: Design of building blocks, physical properties and technological applications
  publication-title: ACTA BIOMATERIALIA
  doi: 10.1016/j.actbio.2013.08.013
– volume: 8
  start-page: 1128
  year: 2003
  ident: WOS:000187217100009
  article-title: The growing impact of click chemistry on drug discovery
  publication-title: DRUG DISCOVERY TODAY
– volume: 14
  start-page: ARTN 383
  year: 2023
  ident: WOS:001170148000006
  article-title: Differential sensing with arrays of de novo designed peptide assemblies
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-023-36024-y
– volume: 2
  start-page: 478
  year: 2022
  ident: WOS:000850197800001
  article-title: Modular Platform of Carbohydrates-modified Supramolecular Polymers Based on Dendritic Peptide Scaffolds
  publication-title: ACS POLYMERS AU
  doi: 10.1021/acspolymersau.2c00032
– volume: 41
  start-page: 1674
  year: 2008
  ident: WOS:000261767600012
  article-title: Molecular Self-Assembly into One-Dimensional Nanostructures
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar8000926
– volume: 130
  start-page: 5487
  year: 2008
  ident: WOS:000255041400037
  article-title: Modification of fluorophore photophysics through peptide-driven self-assembly
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja710310c
– volume: 20
  start-page: 55
  year: 1963
  ident: WOS:A19632479C00009
  article-title: ENERGY TRANSFER MECHANISMS AND MOLECULAR EXCITON MODEL FOR MOLECULAR AGGREGATES
  publication-title: RADIATION RESEARCH
– volume: 129
  start-page: 12468
  year: 2007
  ident: WOS:000250105500044
  article-title: Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructure
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja072536r
– volume: 28
  start-page: 721
  year: 1958
  ident: WOS:A1958WA15500038
  article-title: ENHANCEMENT OF PHOSPHORESCENCE ABILITY UPON AGGREGATION OF DYE MOLECULES
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 9
  start-page: 594
  year: 2010
  ident: WOS:000279014300022
  article-title: A self-assembly pathway to aligned monodomain gels
  publication-title: NATURE MATERIALS
  doi: 10.1038/NMAT2778
– volume: 11
  start-page: 86
  year: 2019
  ident: WOS:000453261100018
  article-title: Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-018-0164-y
– volume: 99
  start-page: 5133
  year: 2002
  ident: WOS:000175087000075
  article-title: Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  doi: 10.1073/pnas.072699999
– volume: 140
  start-page: 12736
  year: 2018
  ident: WOS:000447354800018
  article-title: Polymer Nanowires with Highly Precise Internal Morphology and Topography
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b08870
– volume: 130
  start-page: 2946
  year: 2008
  ident: WOS:000253854400032
  article-title: Quadruple helix formation of a photoresponsive peptide amphiphile and its light-triggered dissociation into single fibers
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja711213s
– year: 1978
  ident: 001027011800001.44
  publication-title: Optical Activity andChiral Discrimination
– volume: 6
  start-page: 7245
  year: 2015
  ident: WOS:000362742000003
  article-title: Tuneable pH-regulated supramolecular copolymerisation by mixing mismatched dendritic peptide comonomers
  publication-title: POLYMER CHEMISTRY
  doi: 10.1039/c5py01241d
– volume: 30
  start-page: ARTN 1908171
  year: 2020
  ident: WOS:000514467000001
  article-title: Wavelength-Dependent Stiffening of Hydrogel Matrices via Redshifted [2+2] Photocycloadditions
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201908171
– volume: 294
  start-page: 1684
  year: 2001
  ident: WOS:000172307400034
  article-title: Self-assembly and mineralization of peptide-amphiphile nanofibers
  publication-title: SCIENCE
– volume: 58
  start-page: 3604
  year: 2019
  ident: WOS:000460318200058
  article-title: Controlling Chain Coupling and Single-Chain Ligation by Two Colours of Visible Light
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201811541
– volume: 57
  start-page: 217
  year: 2006
  ident: WOS:000237668700008
  article-title: Excitons in conjugated oligomer aggregates, films, and crystals
  publication-title: ANNUAL REVIEW OF PHYSICAL CHEMISTRY
  doi: 10.1146/annurev.physchem.57.032905.104557
– volume: 43
  start-page: 429
  year: 2010
  ident: WOS:000275820900008
  article-title: The Spectral Signatures of Frenkel Polarons in H- and J-Aggregates
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar900233v
– volume: 11
  start-page: ARTN 4193
  year: 2020
  ident: WOS:000569766000019
  article-title: Green light triggered [2+2] cycloaddition of halochromic styrylquinoxaline-controlling photoreactivity by pH
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-020-18057-9
– volume: 57
  start-page: 11349
  year: 2018
  ident: WOS:000442340000041
  article-title: Surface-Assisted Self-Assembly of a Hydrogel by Proton Diffusion
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201806668
– volume: 50
  start-page: 2440
  year: 2017
  ident: WOS:000413392000004
  article-title: Supramolecular Assembly of Peptide Amphiphiles
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.7b00297
– volume: 303
  start-page: 1352
  year: 2004
  ident: WOS:000189238600046
  article-title: Selective differentiation of neural progenitor cells by high-epitope density nanofibers
  publication-title: SCIENCE
  doi: 10.1126/science.1093783
– volume: 144
  start-page: 6343
  year: 2022
  ident: WOS:000790698300026
  article-title: Orange-Light-Induced Photochemistry Gated by pH and Confined Environments
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c00156
SSID ssj0004281
Score 2.492136
Snippet Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable...
Highly efficient chemical ligations that operate in waterundermild conditions are the foundation of bioorthogonal chemistry. However,the toolbox of suitable...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15981
SubjectTerms amino acids
catalysts
catalytic activity
Chemistry
Chemistry, Multidisciplinary
dimethylformamide
electrostatic interactions
hydrophilicity
hydrophobicity
irradiation
oxygen
peptides
Physical Sciences
polymers
protonation
Science & Technology
Title Peptide Self-Assembly Controlled Photoligation of Polymers
URI http://dx.doi.org/10.1021/jacs.3c03961
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=001027011800001
https://www.ncbi.nlm.nih.gov/pubmed/37433011
https://www.proquest.com/docview/2836294051
https://www.proquest.com/docview/3040438773
Volume 145
WOS 001027011800001
WOSCitedRecordID wos001027011800001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JSsRAEC1ED3pxX-JGBD1JhiSddPd4k-CCoAyo4C2kNwRjIk7mMH69XVnGfbkmFUJ3V6feS1W_AtinmQgMi7QnKaNexAPpCRLEXl8YGUfa-EzjeefLK3p-G13cxXdvBbKfM_gh6gPJYY9In_SR5cyElDMkWcfJ9dv5x5AHHcxlnJK2wP3z0xiA5PBjAPqCKr8NQHWwOV2As-7ITlNj8tAbVaInX74qOP4xjkWYb_Gme9w4yBJM6WIZZpOuzdsKHA2wrkVp91rnxsMc8KPIx27SlLDnWrmD-7Iq81qKoyzc0riDMh_j7-5VuD09uUnOvbahgpeRmFWeMIr73AjhcyXjUBoiAhUxlmWGMKWVtPQniyJjUUlAuPZNjPyEZUTZMK-MT9ZguigLvQGuxIyeXUsLwFRELElUNDCcZFKaPnI2B_bseNN2QwzTOtcdWq6BV9tZcOCwW4lUtork2Bgj_8H6YGL91Chx_GC31y1qaqcS8x9ZocvRMLVIioZ9i1B_sSE-yg1ZFyMOrDceMXkbsWgLv4cO7L93kcn9Wp-P1aJ6CJ0dCP5jlrQjRw2CavMf07YFc9jzHn8wh3Qbpqvnkd6xyKgSu_W2eAWnYQVi
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigXyrspr1RqTyhVbCe2F4lDFai29KGV2kq9hfglpIYEkazQ8l_4K_w2xtlkC4WiXipxdUaOMx5nvvGMPwNs8kIRJxIbaS54lEiiI8VIGo2U02liXSysP-98eMTHp8n7s_RsCb4PZ2FwEA321HRJ_At2AU8ThI1Mx2zESV9DuW9nXzFCa97svcXp3KJ0991JNo76SwSigqWijZQzMpZOqVganVLtmCImEaIoHBPGGo2Qv0gSh56YMGljl3pMLgpm0LUZFzPs9xbcRtxDfWy3kx1fHLukkgzoWkjO-rr6y6P1fk83v_u9P8DsX_1e5-N2V-HHQjtdacv59rRV2_rbJeLI_1Z99-Buj67DnflyuA9LtnoAK9lwqd1DeD3xVTzGhse2dJHPeH9S5SzM5gX7pTXh5GPd1mVHPFJXYe3CSV3O_Ob-Izi9kaE_huWqruwahNrnL9FyEW6ahGFIbDhxkhVau5GPUAPYQP3m_fJv8i6zTzGy8q291gN4NRhArnv-dX8NSHmF9NZC-vOcd-QKuY3BlnJUpc_2FJWtp02OuJHTEeLxf8iw2JMrSSFYAE_mhrh4G0Ns6f_-AWz-apmL5x0boegoBH2gEAC5jljWf7lnXGjXr6G2l7AyPjk8yA_2jvafwh2KGNNvrVP-DJbbL1P7HDFhq150KzOEDzdtyz8BK4xpXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIkEv5V3CM5XaE0qVxIntReJQpaxaCtVKpVJvIX4JqWlSkayq5d_wV_hlzGSTBQpFvVTiGo8cZzzOfOMZfwbY4IWKnEhsoLngQSIjHSgWpcFIOZ0m1oXC0nnnDwd89yh5d5weL8G34SwMDqLBnpouiU-r-sy4nmGAqIKwgemQjXjU11Hu29k5RmnNm70dnNLNOB6__ZjtBv1FAkHBUtEGyhkZSqdUKI1OY-2YikwiRFE4Jow1GmF_kSQOvXHEpA1dSrhcFMygezMuZNjvDbhJGUKK77azw59HL2MZDQhbSM762vqLoyXfp5vffd8fgPavvq_zc-M78H2hoa685WRr2qot_fUCeeR_rcK7sNqjbH97vizuwZKt7sPtbLjc7gG8nlA1j7H-oS1dQJnvU1XO_GxeuF9a408-121ddgQkdeXXzp_U5Yw2-R_C0bUM_REsV3VlH4OvKY-JFoyw0yQMQ2PDIydZobUbUaTqwTrqN-9_A03eZfhjjLDoaa91D14NRpDrnoedrgMpL5HeXEifzflHLpFbH-wpR1VS1qeobD1tcsSPPB4hLv-HDAuJZEkKwTxYmxvj4m0MMSZ5AQ82frXORXvHSig6KkEKGDyIriKW9V9OzAvtkyuo7SXcmuyM8_d7B_tPYSVGqEk77DF_Bsvtl6l9jtCwVS-6xenDp-s25R8evWvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peptide+Self-Assembly+Controlled+Photoligation+of+Polymers&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Richardson%2C+Bailey+J&rft.au=Zhang%2C+Chao&rft.au=Rauthe%2C+Pascal&rft.au=Unterreiner%2C+Andreas-Neil&rft.date=2023-07-26&rft.issn=1520-5126&rft.volume=145&rft.issue=29+p.15981-15989&rft.spage=15981&rft.epage=15989&rft_id=info:doi/10.1021%2Fjacs.3c03961&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon