Supramolecular Photosensitizer Enables Oxygen-Independent Generation of Hydroxyl Radicals for Photodynamic Therapy

The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent problem to be solved. Herein, we develop an oxygen-independent supramolecular photodynamic agent that produces hydroxyl radical (•OH) by oxidiz...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 145; no. 7; pp. 4081 - 4087
Main Authors Teng, Kun-Xu, Niu, Li-Ya, Yang, Qing-Zheng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent problem to be solved. Herein, we develop an oxygen-independent supramolecular photodynamic agent that produces hydroxyl radical (•OH) by oxidizing water in the presence of intracellularly abundant pyruvic acid under oxygen-free conditions. A fluorene-substituted BODIPY was designed as the electron donor and coassembled with perylene diimide as the electron acceptor to form the quadruple hydrogen-bonded supramolecular photodynamic agent. Detailed mechanism studies reveal that intermolecular electron transfer and charge separation upon light irradiation result in an efficient generation of radical ion pairs. Under oxygen-free conditions, the cationic radicals directly oxidize water to generate highly cytotoxic •OH, and the anionic radicals transfer electrons to pyruvic acid, realizing the catalytic cycle. Thus, this photodynamic agent exhibited superb photocytotoxicity even under severe hypoxic environments and excellent in vivo antitumor efficacy on HeLa-bearing mouse models. This work provides a strategy for constructing oxygen-independent photodynamic agents, which opens up an avenue for effective PDT against hypoxic tumors.
AbstractList The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent problem to be solved. Herein, we develop an oxygen-independent supramolecular photodynamic agent that produces hydroxyl radical ( OH) by oxidizing water in the presence of intracellularly abundant pyruvic acid under oxygen-free conditions. A fluorene-substituted BODIPY was designed as the electron donor and coassembled with perylene diimide as the electron acceptor to form the quadruple hydrogen-bonded supramolecular photodynamic agent. Detailed mechanism studies reveal that intermolecular electron transfer and charge separation upon light irradiation result in an efficient generation of radical ion pairs. Under oxygen-free conditions, the cationic radicals directly oxidize water to generate highly cytotoxic OH, and the anionic radicals transfer electrons to pyruvic acid, realizing the catalytic cycle. Thus, this photodynamic agent exhibited superb photocytotoxicity even under severe hypoxic environments and excellent antitumor efficacy on HeLa-bearing mouse models. This work provides a strategy for constructing oxygen-independent photodynamic agents, which opens up an avenue for effective PDT against hypoxic tumors.
The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent problem to be solved. Herein, we develop an oxygen-independent supramolecular photodynamic agent that produces hydroxyl radical (•OH) by oxidizing water in the presence of intracellularly abundant pyruvic acid under oxygen-free conditions. A fluorene-substituted BODIPY was designed as the electron donor and coassembled with perylene diimide as the electron acceptor to form the quadruple hydrogen-bonded supramolecular photodynamic agent. Detailed mechanism studies reveal that intermolecular electron transfer and charge separation upon light irradiation result in an efficient generation of radical ion pairs. Under oxygen-free conditions, the cationic radicals directly oxidize water to generate highly cytotoxic •OH, and the anionic radicals transfer electrons to pyruvic acid, realizing the catalytic cycle. Thus, this photodynamic agent exhibited superb photocytotoxicity even under severe hypoxic environments and excellent in vivo antitumor efficacy on HeLa-bearing mouse models. This work provides a strategy for constructing oxygen-independent photodynamic agents, which opens up an avenue for effective PDT against hypoxic tumors.
The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent problem to be solved. Herein, we develop an oxygen-independent supramolecular photodynamic agent that produces hydroxyl radical (•OH) by oxidizing water in the presence of intracellularly abundant pyruvic acid under oxygen-free conditions. A fluorene-substituted BODIPY was designed as the electron donor and coassembled with perylene diimide as the electron acceptor to form the quadruple hydrogen-bonded supramolecular photodynamic agent. Detailed mechanism studies reveal that intermolecular electron transfer and charge separation upon light irradiation result in an efficient generation of radical ion pairs. Under oxygen-free conditions, the cationic radicals directly oxidize water to generate highly cytotoxic •OH, and the anionic radicals transfer electrons to pyruvic acid, realizing the catalytic cycle. Thus, this photodynamic agent exhibited superb photocytotoxicity even under severe hypoxic environments and excellent in vivo antitumor efficacy on HeLa-bearing mouse models. This work provides a strategy for constructing oxygen-independent photodynamic agents, which opens up an avenue for effective PDT against hypoxic tumors.The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent problem to be solved. Herein, we develop an oxygen-independent supramolecular photodynamic agent that produces hydroxyl radical (•OH) by oxidizing water in the presence of intracellularly abundant pyruvic acid under oxygen-free conditions. A fluorene-substituted BODIPY was designed as the electron donor and coassembled with perylene diimide as the electron acceptor to form the quadruple hydrogen-bonded supramolecular photodynamic agent. Detailed mechanism studies reveal that intermolecular electron transfer and charge separation upon light irradiation result in an efficient generation of radical ion pairs. Under oxygen-free conditions, the cationic radicals directly oxidize water to generate highly cytotoxic •OH, and the anionic radicals transfer electrons to pyruvic acid, realizing the catalytic cycle. Thus, this photodynamic agent exhibited superb photocytotoxicity even under severe hypoxic environments and excellent in vivo antitumor efficacy on HeLa-bearing mouse models. This work provides a strategy for constructing oxygen-independent photodynamic agents, which opens up an avenue for effective PDT against hypoxic tumors.
Author Yang, Qing-Zheng
Teng, Kun-Xu
Niu, Li-Ya
AuthorAffiliation Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry
AuthorAffiliation_xml – name: Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry
Author_xml – sequence: 1
  givenname: Kun-Xu
  surname: Teng
  fullname: Teng, Kun-Xu
– sequence: 2
  givenname: Li-Ya
  orcidid: 0000-0002-5376-6902
  surname: Niu
  fullname: Niu, Li-Ya
  email: niuly@bnu.edu.cn
– sequence: 3
  givenname: Qing-Zheng
  orcidid: 0000-0002-9131-4907
  surname: Yang
  fullname: Yang, Qing-Zheng
  email: qzyang@bnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36779824$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQhS1URG8LO9bISxak-JXYWaKqtJUqFUFZW44zpr5K7GAnUtNfjy9NNwjEZkZjf3M0OucEHYUYAKG3lJxRwujHvbH5jFlKVaNeoB2tGalqypojtCOEsEqqhh-jk5z3ZRRM0VfomDdStoqJHUrflimZMQ5gl8Ek_OU-zjFDyH72j5DwRTDdABnfPqw_IFTXoYcJSgkzvoQAycw-Bhwdvlr7FB_WAX81vbdmyNjFTa5fgxm9xXf3hZ_W1-ilK__wZuun6Pvni7vzq-rm9vL6_NNNZXgt56qTojeyAUNbRwBYJ9paSe4Mc5RIy0SpVAnO-wZUIx2XxlHRycYKQoEoforeP-lOKf5cIM969NnCMJgAccmaE0FEQ1jx538ok7Jua05ZW9B3G7p0I_R6Sn40adXPlhaAPQE2xZwTOG39_NumORk_aEr0ITd9yE1vuZWlD38sPev-A9_uPTzu45JCMfLv6C-eHKg0
CitedBy_id crossref_primary_10_1002_adhm_202401904
crossref_primary_10_1002_ange_202401036
crossref_primary_10_1039_D4QM00399C
crossref_primary_10_1021_acsmaterialslett_4c01564
crossref_primary_10_1038_s41467_024_46987_1
crossref_primary_10_1002_adhm_202301732
crossref_primary_10_1039_D4TB00099D
crossref_primary_10_1016_j_ejmech_2025_117523
crossref_primary_10_1039_D3TB00545C
crossref_primary_10_1016_j_nantod_2024_102498
crossref_primary_10_1021_acsami_4c20278
crossref_primary_10_1021_acsami_5c01822
crossref_primary_10_1002_advs_202207736
crossref_primary_10_1002_smll_202410816
crossref_primary_10_1002_asia_202401276
crossref_primary_10_1021_acsmaterialslett_4c00592
crossref_primary_10_1002_adom_202302834
crossref_primary_10_1038_s41467_025_55905_y
crossref_primary_10_1002_ange_202319073
crossref_primary_10_1002_ange_202318783
crossref_primary_10_1021_acsami_4c02175
crossref_primary_10_1021_jacsau_3c00268
crossref_primary_10_1039_D4CC01240B
crossref_primary_10_1002_anie_202309786
crossref_primary_10_1039_D4SC00874J
crossref_primary_10_1002_ange_202400049
crossref_primary_10_1016_j_dyepig_2024_112049
crossref_primary_10_1002_advs_202409157
crossref_primary_10_1021_acs_jmedchem_4c02916
crossref_primary_10_1002_adhm_202303336
crossref_primary_10_1007_s12274_024_6917_6
crossref_primary_10_1002_ange_202410522
crossref_primary_10_1021_jacs_4c18400
crossref_primary_10_1016_j_ccr_2024_215718
crossref_primary_10_1016_j_ijbiomac_2025_141213
crossref_primary_10_1016_j_matdes_2023_112566
crossref_primary_10_1002_ange_202413595
crossref_primary_10_1021_acs_nanolett_4c05497
crossref_primary_10_1002_smll_202402439
crossref_primary_10_1016_j_nantod_2024_102596
crossref_primary_10_1021_acs_jmedchem_4c00624
crossref_primary_10_1021_acs_joc_4c00034
crossref_primary_10_1002_anie_202319488
crossref_primary_10_1016_j_cclet_2024_109957
crossref_primary_10_1021_acsnano_3c04256
crossref_primary_10_1002_advs_202307569
crossref_primary_10_1021_acsnano_3c05106
crossref_primary_10_1038_s41467_024_46768_w
crossref_primary_10_1002_adom_202401463
crossref_primary_10_1039_D4MH01167H
crossref_primary_10_1002_smo_20230014
crossref_primary_10_1039_D4SC02756F
crossref_primary_10_1002_adfm_202423408
crossref_primary_10_1002_ange_202315599
crossref_primary_10_1039_D3SC05820D
crossref_primary_10_3788_CJL240454
crossref_primary_10_1039_D3CC06019E
crossref_primary_10_1038_s41467_024_55060_w
crossref_primary_10_1039_D3DT04063A
crossref_primary_10_1039_D3BM01130E
crossref_primary_10_3390_molecules30061274
crossref_primary_10_1002_advs_202409506
crossref_primary_10_1007_s40843_024_3268_6
crossref_primary_10_1039_D4RA00928B
crossref_primary_10_1002_anie_202401036
crossref_primary_10_1002_smll_202412249
crossref_primary_10_1007_s11426_024_2533_4
crossref_primary_10_1021_acsami_4c14754
crossref_primary_10_1021_acs_inorgchem_4c03219
crossref_primary_10_1021_acs_inorgchem_4c01914
crossref_primary_10_1007_s11426_024_2411_7
crossref_primary_10_1002_adtp_202300330
crossref_primary_10_1016_j_biomaterials_2023_122391
crossref_primary_10_34133_bmr_0138
crossref_primary_10_1021_acsami_4c04361
crossref_primary_10_1007_s43630_024_00669_5
crossref_primary_10_1039_D3QI01666H
crossref_primary_10_1038_s41467_024_49311_z
crossref_primary_10_1016_j_matt_2024_09_001
crossref_primary_10_1039_D3CC04460B
crossref_primary_10_1021_acs_inorgchem_3c03216
crossref_primary_10_1038_s41467_023_43890_z
crossref_primary_10_1021_acs_langmuir_4c01113
crossref_primary_10_1002_anie_202315599
crossref_primary_10_1002_advs_202307920
crossref_primary_10_1039_D3QI02047A
crossref_primary_10_1002_adfm_202313755
crossref_primary_10_1002_anie_202413595
crossref_primary_10_1002_anie_202410522
crossref_primary_10_1002_adma_202418978
crossref_primary_10_1002_advs_202410405
crossref_primary_10_1002_smsc_202400220
crossref_primary_10_1021_jacs_4c09508
crossref_primary_10_1002_adhm_202403009
crossref_primary_10_1021_acsmaterialslett_3c01511
crossref_primary_10_1002_advs_202413365
crossref_primary_10_1039_D4CS00599F
crossref_primary_10_1016_j_cclet_2025_110832
crossref_primary_10_1016_j_cclet_2023_108518
crossref_primary_10_1002_smll_202307414
crossref_primary_10_1021_acs_nanolett_5c00946
crossref_primary_10_1002_ange_202309786
crossref_primary_10_1039_D5SC00360A
crossref_primary_10_1016_j_dyepig_2024_112350
crossref_primary_10_1002_adfm_202407349
crossref_primary_10_1039_D4SC02179G
crossref_primary_10_1002_adhm_202304067
crossref_primary_10_1002_chem_202301313
crossref_primary_10_1016_j_dyepig_2024_112359
crossref_primary_10_1021_acsmaterialslett_3c00436
crossref_primary_10_1021_acs_inorgchem_4c03013
crossref_primary_10_1039_D4SC08685F
crossref_primary_10_1016_j_dyepig_2023_111881
crossref_primary_10_3389_fonc_2023_1114042
crossref_primary_10_1039_D3TB02132G
crossref_primary_10_1002_anie_202416963
crossref_primary_10_1016_j_ccr_2023_215367
crossref_primary_10_1002_agt2_514
crossref_primary_10_1016_j_ccr_2023_215481
crossref_primary_10_1021_acs_jmedchem_4c01307
crossref_primary_10_26599_NR_2025_94907281
crossref_primary_10_1016_j_cclet_2023_108862
crossref_primary_10_1002_advs_202409551
crossref_primary_10_1021_acs_biomac_4c00775
crossref_primary_10_1007_s11426_024_1971_4
crossref_primary_10_1002_anie_202318783
crossref_primary_10_1016_j_actbio_2024_02_005
crossref_primary_10_1016_j_cclet_2024_110536
crossref_primary_10_1002_anie_202319073
crossref_primary_10_1021_acs_langmuir_3c03231
crossref_primary_10_1021_acsmaterialslett_4c00614
crossref_primary_10_1002_anie_202303476
crossref_primary_10_1002_ange_202319488
crossref_primary_10_1002_anie_202423023
crossref_primary_10_1016_j_scib_2025_02_037
crossref_primary_10_1021_acsapm_4c01833
crossref_primary_10_1039_D3QM00753G
crossref_primary_10_1021_acsmaterialslett_4c00600
crossref_primary_10_1002_adhm_202404253
crossref_primary_10_1016_j_xcrp_2024_102074
crossref_primary_10_1002_anie_202400049
crossref_primary_10_1002_advs_202417179
crossref_primary_10_1002_cnma_202300384
crossref_primary_10_1016_j_biomaterials_2024_122536
crossref_primary_10_1002_adma_202305163
crossref_primary_10_1016_j_mtbio_2025_101587
crossref_primary_10_1002_ange_202303476
crossref_primary_10_1002_adfm_202315692
crossref_primary_10_1016_j_jsamd_2024_100718
crossref_primary_10_1021_acs_chemmater_4c01257
crossref_primary_10_1039_D4OB00706A
crossref_primary_10_1021_acsmaterialslett_3c01315
crossref_primary_10_1039_D4SC05345A
crossref_primary_10_1016_j_jcis_2023_08_176
crossref_primary_10_1002_ange_202423023
crossref_primary_10_1021_acsmaterialslett_4c00162
crossref_primary_10_1038_s41467_025_57822_6
crossref_primary_10_1002_smll_202401073
crossref_primary_10_1039_D4TB01767F
crossref_primary_10_1016_j_recm_2024_01_001
crossref_primary_10_1002_adhm_202404265
crossref_primary_10_1016_j_snb_2024_135806
crossref_primary_10_1002_ange_202416963
crossref_primary_10_1039_D3NR05801H
crossref_primary_10_1021_acs_orglett_3c02962
crossref_primary_10_1002_advs_202407727
crossref_primary_10_1021_jacs_3c02379
crossref_primary_10_1039_D4SC02199A
crossref_primary_10_1039_D3CC04051H
crossref_primary_10_1016_j_jcis_2025_01_118
crossref_primary_10_1021_jacs_3c14387
crossref_primary_10_1093_nsr_nwae038
crossref_primary_10_1002_agt2_676
crossref_primary_10_1039_D4CC02551B
crossref_primary_10_1039_D4CC06509C
crossref_primary_10_6023_A23050243
crossref_primary_10_1021_acs_jmedchem_4c02836
crossref_primary_10_1002_adfm_202415087
crossref_primary_10_1016_j_bioorg_2023_107067
crossref_primary_10_1016_j_ccr_2024_216054
crossref_primary_10_1002_smll_202405457
crossref_primary_10_1038_s41467_024_55575_2
crossref_primary_10_1016_j_cclet_2024_109631
crossref_primary_10_1039_D3MD00396E
crossref_primary_10_1021_jacsau_4c00815
crossref_primary_10_1021_jacs_4c15216
crossref_primary_10_1021_acs_analchem_3c02777
crossref_primary_10_1002_smll_202407408
crossref_primary_10_1039_D4QO00708E
crossref_primary_10_1002_adfm_202411838
crossref_primary_10_1016_j_ccr_2024_215756
crossref_primary_10_1039_D4CC02702G
crossref_primary_10_1021_acsaom_3c00400
crossref_primary_10_1021_acsmaterialslett_3c00933
crossref_primary_10_1016_j_dyepig_2024_112133
crossref_primary_10_1002_chem_202401916
crossref_primary_10_1039_D3TB01422C
crossref_primary_10_3389_fbioe_2023_1289323
crossref_primary_10_1021_acsnano_4c01600
crossref_primary_10_1039_D4RA00041B
crossref_primary_10_1007_s11426_024_2559_1
crossref_primary_10_1016_j_jphotobiol_2024_113052
crossref_primary_10_1016_j_snb_2024_135931
Cites_doi 10.1021/ja511420n
10.1021/acs.accounts.2c00531
10.1007/s11523-012-0233-x
10.1002/VIW.20200121
10.1038/s41467-022-33924-3
10.1007/s40843-021-1706-4
10.1002/anie.202204330
10.1021/acs.chemrev.6b00057
10.1021/acs.nanolett.2c02983
10.1126/science.278.5343.1601
10.1002/anie.202001047
10.1021/acs.biomac.5b00571
10.1039/C6CS00616G
10.1002/anie.202201815
10.1016/j.mattod.2022.06.024
10.1002/adfm.201700626
10.1021/jacs.8b04912
10.1002/advs.202002504
10.1038/s41557-019-0328-4
10.1038/s41467-022-29862-9
10.1021/acs.chemmater.9b01338
10.1126/science.1160809
10.1016/j.chempr.2021.10.006
10.1021/jacs.1c07479
10.1021/jacs.2c03256
10.1038/nrc1070
10.1039/D2CS00102K
10.1002/adma.201801216
10.1039/D2SC01469F
10.1002/smll.202006742
10.1021/acsami.7b12063
10.1021/jacs.1c13067
10.1002/anie.202106748
10.1021/acsami.8b07090
10.1016/j.ccr.2021.213888
10.1021/acs.nanolett.6b02365
10.1002/anie.202105206
10.1016/S1011-1344(96)07428-3
10.1021/jacs.0c00734
10.31635/ccschem.021.202101302
10.1021/jacs.0c02129
10.3322/caac.20114
10.1002/adma.202108146
10.1021/acs.chemrev.1c00381
10.1002/adma.202103978
10.1002/anie.201805138
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.2c11868
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 4087
ExternalDocumentID 36779824
10_1021_jacs_2c11868
a087510433
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
55A
5GY
5RE
5VS
7~N
85S
8W4
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
AGXLV
AHGAQ
CITATION
CUPRZ
NPM
7X8
AAYWT
7S9
L.6
ID FETCH-LOGICAL-a357t-b74da76ea19f0ee2b495873fa2f107c2410718433d6e867f37af14b76c401e083
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 07:05:38 EDT 2025
Sun Aug 24 03:56:45 EDT 2025
Thu Apr 03 06:58:12 EDT 2025
Tue Jul 01 03:54:26 EDT 2025
Thu Apr 24 23:10:53 EDT 2025
Fri Feb 24 03:10:42 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-b74da76ea19f0ee2b495873fa2f107c2410718433d6e867f37af14b76c401e083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5376-6902
0000-0002-9131-4907
PMID 36779824
PQID 2775953129
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_3040460286
proquest_miscellaneous_2775953129
pubmed_primary_36779824
crossref_citationtrail_10_1021_jacs_2c11868
crossref_primary_10_1021_jacs_2c11868
acs_journals_10_1021_jacs_2c11868
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-22
PublicationDateYYYYMMDD 2023-02-22
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref19/cit19
  doi: 10.1021/ja511420n
– ident: ref27/cit27
  doi: 10.1021/acs.accounts.2c00531
– ident: ref21/cit21
  doi: 10.1007/s11523-012-0233-x
– ident: ref29/cit29
  doi: 10.1002/VIW.20200121
– ident: ref37/cit37
  doi: 10.1038/s41467-022-33924-3
– ident: ref34/cit34
  doi: 10.1007/s40843-021-1706-4
– ident: ref36/cit36
  doi: 10.1002/anie.202204330
– ident: ref46/cit46
  doi: 10.1021/acs.chemrev.6b00057
– ident: ref22/cit22
  doi: 10.1021/acs.nanolett.2c02983
– ident: ref41/cit41
  doi: 10.1126/science.278.5343.1601
– ident: ref44/cit44
  doi: 10.1002/anie.202001047
– ident: ref17/cit17
  doi: 10.1021/acs.biomac.5b00571
– ident: ref5/cit5
  doi: 10.1039/C6CS00616G
– ident: ref11/cit11
  doi: 10.1002/anie.202201815
– ident: ref26/cit26
  doi: 10.1016/j.mattod.2022.06.024
– ident: ref24/cit24
  doi: 10.1002/adfm.201700626
– ident: ref3/cit3
  doi: 10.1021/jacs.8b04912
– ident: ref9/cit9
  doi: 10.1002/advs.202002504
– ident: ref25/cit25
  doi: 10.1038/s41557-019-0328-4
– ident: ref32/cit32
  doi: 10.1038/s41467-022-29862-9
– ident: ref42/cit42
  doi: 10.1021/acs.chemmater.9b01338
– ident: ref8/cit8
  doi: 10.1126/science.1160809
– ident: ref38/cit38
  doi: 10.1016/j.chempr.2021.10.006
– ident: ref28/cit28
  doi: 10.1021/jacs.1c07479
– ident: ref35/cit35
  doi: 10.1021/jacs.2c03256
– ident: ref1/cit1
  doi: 10.1038/nrc1070
– ident: ref4/cit4
  doi: 10.1039/D2CS00102K
– ident: ref6/cit6
  doi: 10.1002/adma.201801216
– ident: ref40/cit40
  doi: 10.1039/D2SC01469F
– ident: ref33/cit33
  doi: 10.1002/smll.202006742
– ident: ref43/cit43
  doi: 10.1021/acsami.7b12063
– ident: ref10/cit10
  doi: 10.1021/jacs.1c13067
– ident: ref30/cit30
  doi: 10.1002/anie.202106748
– ident: ref16/cit16
  doi: 10.1021/acsami.8b07090
– ident: ref15/cit15
  doi: 10.1016/j.ccr.2021.213888
– ident: ref18/cit18
  doi: 10.1021/acs.nanolett.6b02365
– ident: ref20/cit20
  doi: 10.1002/anie.202105206
– ident: ref45/cit45
  doi: 10.1016/S1011-1344(96)07428-3
– ident: ref23/cit23
  doi: 10.1021/jacs.0c00734
– ident: ref39/cit39
  doi: 10.31635/ccschem.021.202101302
– ident: ref14/cit14
  doi: 10.1021/jacs.0c02129
– ident: ref2/cit2
  doi: 10.3322/caac.20114
– ident: ref31/cit31
  doi: 10.1002/adma.202108146
– ident: ref7/cit7
  doi: 10.1021/acs.chemrev.1c00381
– ident: ref13/cit13
  doi: 10.1002/adma.202103978
– ident: ref12/cit12
  doi: 10.1002/anie.201805138
SSID ssj0004281
Score 2.71016
Snippet The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4081
SubjectTerms cytotoxicity
electron transfer
hydrogen bonding
hydroxyl radicals
irradiation
mice
photochemotherapy
photosensitizing agents
pyruvic acid
Title Supramolecular Photosensitizer Enables Oxygen-Independent Generation of Hydroxyl Radicals for Photodynamic Therapy
URI http://dx.doi.org/10.1021/jacs.2c11868
https://www.ncbi.nlm.nih.gov/pubmed/36779824
https://www.proquest.com/docview/2775953129
https://www.proquest.com/docview/3040460286
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODC-zFeChKcUKc1SZP0OE2DwQEQD2m3KclSgRgtWjsJ9utx-hhiaIJr5aZt7MafZfszQqdNpSUPjYYwlWqPUR14rqXEY1ZrosIgUFFebXHDu0_suhf0vgtkZzP4xPEDmbRBjO943RfREuFSuCCr1X747n8k0q9grpCclgXus3c7B2TSnw5oDqrMvcvFGrqsenSKopLXxjjTDTP5Tdn4x4uvo9USYOJWYREbaMHGm2i5Xc1120Kjh_H7SL1VY3Hx3XOSJamrY89eJnaEO3k3VYpvPz7BuLyr6ZzcDBcc1U6VOIlw93PgXneI71We7EkxAOBiuUEx5x4_FpwF2-jpovPY7nrl5AVP0UBknhZsoAS3yg-jprVEQxglBY0UiSBcNOD1AZlIRumAW8lFRIWKfKYFNxCuWUB1O6gWJ7HdQ5jJ0DRdstEIwlREpRWwDOBUX6pQ-7qOTmCf-uWfk_bzpDiBoMRdLXevjs4rlfVNSV3uJmgM50ifTaXfC8qOOXInlfb7oAKXKFGxTcYgIEQQwuFEwvkyFE4_xgGd8TraLUxn-jTKhQglYfv_-LYDtOIm2Odd8uQQ1bLR2B4Bzsn0cW7kX8aY-GI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED_x8QAvbLANOjYw0vY0BTW2YzuPqAKVrzKNIvEW2a4jENCgJpWAv56zkxQNqRKv1sW52Bf7d7q73wH86mqjRGoNuqnMRJyZJPIlJRF3xlCdJonOQ7bFQPSv-Ml1ct0Uq_taGFSixJnKEMR_YxfwNEE4SG3s6d0XYRlxCPW-1kHv8q0Mkqq4RbtSCdbkub9_2t9Dtvz_HpoDLsMlc_QJBjP1Qm7J3f60Mvv25R1z44f1_wxrDdwkB7V9rMOCG2_ASq_t8vYFJpfTx4l-aJvkkr83RVWUPqu9un1xE3IYaqtKcvH0jKYWHc-65lakZqz2G0uKnPSfR17re_JPh9BPSRAO19ON6q73ZFgzGHyFq6PDYa8fNX0YIs0SWUVG8pGWwuk4zbvOUYNOlZIs1zRH59EiBkCcojhjI-GUkDmTOo-5kcKi8-YQ432DpXExdltAuEpt14ceraRc50w5idMgao2VTk1sOrCH65Q1_1GZhRA5RRfFjzar14E_7c5ltiEy9_007udI_55JP9YEHnPk9lojyHALfNhEj10xRQEpkxSPKprOl2F4FnKBWE10YLO2oNnbmJAyVZR__8C37cJKf3h-lp0dD063YdX3tg_18_QHLFWTqfuJCKgyO8HuXwHsOQDS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3oXl6UpwQqk2tmM7x2rpaguoVH1IvUW2Y4uKNlltshLbX8_YSRZRaSW4JhPHj7H9jWbmG4APY22UyK1BM5WZhDOTJSGlJOHOGKrzLNM-Rlscidk5_3KRXWxBOuTCYCcabKmJTvywq-el7xkGAlUQvqA2DRTvd-Bu8NgFe2t_cvonFZKqdEC8UgnWx7rf_jrcRbb5-y7aADDjRTN9BCfrLsb4kp97y9bs2Ztb7I3_NYbH8LCHnWS_05MnsOWqp3B_MlR7ewaL0-V8oa-HYrnk-Efd1k2Ibm8vb9yCHMQcq4Z8_7VClUsO19VzW9IxV4cFJrUns1UZen5FTnR0ATUEYXHXXLmq9PWlJWcdk8FzOJ8enE1mSV-PIdEsk21iJC-1FE6nuR87Rw0aV0oyr6lHI9IiFkC8ojhjpXBKSM-k9ik3Ulg04hxivR3YrurKvQTCVW7HwQVpJeXaM-UkNoPoNVU6N6kZwS7OU9Hvp6aIrnKKpkp42s_eCD4Nq1fYntA81NW42iD9cS0974g8NsjtDopQ4BIE94muXL1EASmzHI8smm-WYXgmcoGYTYzgRadF678xIWWuKH_1D2N7D_eOP0-Lb4dHX1_Dg1DiPqbR0zew3S6W7i0Coda8i6r_G0ARA1U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supramolecular+Photosensitizer+Enables+Oxygen-Independent+Generation+of+Hydroxyl+Radicals+for+Photodynamic+Therapy&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Teng%2C+Kun-Xu&rft.au=Niu%2C+Li-Ya&rft.au=Yang%2C+Qing-Zheng&rft.date=2023-02-22&rft.eissn=1520-5126&rft_id=info:doi/10.1021%2Fjacs.2c11868&rft_id=info%3Apmid%2F36779824&rft.externalDocID=36779824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon