Supramolecular Photosensitizer Enables Oxygen-Independent Generation of Hydroxyl Radicals for Photodynamic Therapy
The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent problem to be solved. Herein, we develop an oxygen-independent supramolecular photodynamic agent that produces hydroxyl radical (•OH) by oxidiz...
Saved in:
Published in | Journal of the American Chemical Society Vol. 145; no. 7; pp. 4081 - 4087 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent problem to be solved. Herein, we develop an oxygen-independent supramolecular photodynamic agent that produces hydroxyl radical (•OH) by oxidizing water in the presence of intracellularly abundant pyruvic acid under oxygen-free conditions. A fluorene-substituted BODIPY was designed as the electron donor and coassembled with perylene diimide as the electron acceptor to form the quadruple hydrogen-bonded supramolecular photodynamic agent. Detailed mechanism studies reveal that intermolecular electron transfer and charge separation upon light irradiation result in an efficient generation of radical ion pairs. Under oxygen-free conditions, the cationic radicals directly oxidize water to generate highly cytotoxic •OH, and the anionic radicals transfer electrons to pyruvic acid, realizing the catalytic cycle. Thus, this photodynamic agent exhibited superb photocytotoxicity even under severe hypoxic environments and excellent in vivo antitumor efficacy on HeLa-bearing mouse models. This work provides a strategy for constructing oxygen-independent photodynamic agents, which opens up an avenue for effective PDT against hypoxic tumors. |
---|---|
AbstractList | The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent problem to be solved. Herein, we develop an oxygen-independent supramolecular photodynamic agent that produces hydroxyl radical (
OH) by oxidizing water in the presence of intracellularly abundant pyruvic acid under oxygen-free conditions. A fluorene-substituted BODIPY was designed as the electron donor and coassembled with perylene diimide as the electron acceptor to form the quadruple hydrogen-bonded supramolecular photodynamic agent. Detailed mechanism studies reveal that intermolecular electron transfer and charge separation upon light irradiation result in an efficient generation of radical ion pairs. Under oxygen-free conditions, the cationic radicals directly oxidize water to generate highly cytotoxic
OH, and the anionic radicals transfer electrons to pyruvic acid, realizing the catalytic cycle. Thus, this photodynamic agent exhibited superb photocytotoxicity even under severe hypoxic environments and excellent
antitumor efficacy on HeLa-bearing mouse models. This work provides a strategy for constructing oxygen-independent photodynamic agents, which opens up an avenue for effective PDT against hypoxic tumors. The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent problem to be solved. Herein, we develop an oxygen-independent supramolecular photodynamic agent that produces hydroxyl radical (•OH) by oxidizing water in the presence of intracellularly abundant pyruvic acid under oxygen-free conditions. A fluorene-substituted BODIPY was designed as the electron donor and coassembled with perylene diimide as the electron acceptor to form the quadruple hydrogen-bonded supramolecular photodynamic agent. Detailed mechanism studies reveal that intermolecular electron transfer and charge separation upon light irradiation result in an efficient generation of radical ion pairs. Under oxygen-free conditions, the cationic radicals directly oxidize water to generate highly cytotoxic •OH, and the anionic radicals transfer electrons to pyruvic acid, realizing the catalytic cycle. Thus, this photodynamic agent exhibited superb photocytotoxicity even under severe hypoxic environments and excellent in vivo antitumor efficacy on HeLa-bearing mouse models. This work provides a strategy for constructing oxygen-independent photodynamic agents, which opens up an avenue for effective PDT against hypoxic tumors. The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent problem to be solved. Herein, we develop an oxygen-independent supramolecular photodynamic agent that produces hydroxyl radical (•OH) by oxidizing water in the presence of intracellularly abundant pyruvic acid under oxygen-free conditions. A fluorene-substituted BODIPY was designed as the electron donor and coassembled with perylene diimide as the electron acceptor to form the quadruple hydrogen-bonded supramolecular photodynamic agent. Detailed mechanism studies reveal that intermolecular electron transfer and charge separation upon light irradiation result in an efficient generation of radical ion pairs. Under oxygen-free conditions, the cationic radicals directly oxidize water to generate highly cytotoxic •OH, and the anionic radicals transfer electrons to pyruvic acid, realizing the catalytic cycle. Thus, this photodynamic agent exhibited superb photocytotoxicity even under severe hypoxic environments and excellent in vivo antitumor efficacy on HeLa-bearing mouse models. This work provides a strategy for constructing oxygen-independent photodynamic agents, which opens up an avenue for effective PDT against hypoxic tumors.The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent problem to be solved. Herein, we develop an oxygen-independent supramolecular photodynamic agent that produces hydroxyl radical (•OH) by oxidizing water in the presence of intracellularly abundant pyruvic acid under oxygen-free conditions. A fluorene-substituted BODIPY was designed as the electron donor and coassembled with perylene diimide as the electron acceptor to form the quadruple hydrogen-bonded supramolecular photodynamic agent. Detailed mechanism studies reveal that intermolecular electron transfer and charge separation upon light irradiation result in an efficient generation of radical ion pairs. Under oxygen-free conditions, the cationic radicals directly oxidize water to generate highly cytotoxic •OH, and the anionic radicals transfer electrons to pyruvic acid, realizing the catalytic cycle. Thus, this photodynamic agent exhibited superb photocytotoxicity even under severe hypoxic environments and excellent in vivo antitumor efficacy on HeLa-bearing mouse models. This work provides a strategy for constructing oxygen-independent photodynamic agents, which opens up an avenue for effective PDT against hypoxic tumors. |
Author | Yang, Qing-Zheng Teng, Kun-Xu Niu, Li-Ya |
AuthorAffiliation | Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry |
AuthorAffiliation_xml | – name: Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry |
Author_xml | – sequence: 1 givenname: Kun-Xu surname: Teng fullname: Teng, Kun-Xu – sequence: 2 givenname: Li-Ya orcidid: 0000-0002-5376-6902 surname: Niu fullname: Niu, Li-Ya email: niuly@bnu.edu.cn – sequence: 3 givenname: Qing-Zheng orcidid: 0000-0002-9131-4907 surname: Yang fullname: Yang, Qing-Zheng email: qzyang@bnu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36779824$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1TAQhS1URG8LO9bISxak-JXYWaKqtJUqFUFZW44zpr5K7GAnUtNfjy9NNwjEZkZjf3M0OucEHYUYAKG3lJxRwujHvbH5jFlKVaNeoB2tGalqypojtCOEsEqqhh-jk5z3ZRRM0VfomDdStoqJHUrflimZMQ5gl8Ek_OU-zjFDyH72j5DwRTDdABnfPqw_IFTXoYcJSgkzvoQAycw-Bhwdvlr7FB_WAX81vbdmyNjFTa5fgxm9xXf3hZ_W1-ilK__wZuun6Pvni7vzq-rm9vL6_NNNZXgt56qTojeyAUNbRwBYJ9paSe4Mc5RIy0SpVAnO-wZUIx2XxlHRycYKQoEoforeP-lOKf5cIM969NnCMJgAccmaE0FEQ1jx538ok7Jua05ZW9B3G7p0I_R6Sn40adXPlhaAPQE2xZwTOG39_NumORk_aEr0ITd9yE1vuZWlD38sPev-A9_uPTzu45JCMfLv6C-eHKg0 |
CitedBy_id | crossref_primary_10_1002_adhm_202401904 crossref_primary_10_1002_ange_202401036 crossref_primary_10_1039_D4QM00399C crossref_primary_10_1021_acsmaterialslett_4c01564 crossref_primary_10_1038_s41467_024_46987_1 crossref_primary_10_1002_adhm_202301732 crossref_primary_10_1039_D4TB00099D crossref_primary_10_1016_j_ejmech_2025_117523 crossref_primary_10_1039_D3TB00545C crossref_primary_10_1016_j_nantod_2024_102498 crossref_primary_10_1021_acsami_4c20278 crossref_primary_10_1021_acsami_5c01822 crossref_primary_10_1002_advs_202207736 crossref_primary_10_1002_smll_202410816 crossref_primary_10_1002_asia_202401276 crossref_primary_10_1021_acsmaterialslett_4c00592 crossref_primary_10_1002_adom_202302834 crossref_primary_10_1038_s41467_025_55905_y crossref_primary_10_1002_ange_202319073 crossref_primary_10_1002_ange_202318783 crossref_primary_10_1021_acsami_4c02175 crossref_primary_10_1021_jacsau_3c00268 crossref_primary_10_1039_D4CC01240B crossref_primary_10_1002_anie_202309786 crossref_primary_10_1039_D4SC00874J crossref_primary_10_1002_ange_202400049 crossref_primary_10_1016_j_dyepig_2024_112049 crossref_primary_10_1002_advs_202409157 crossref_primary_10_1021_acs_jmedchem_4c02916 crossref_primary_10_1002_adhm_202303336 crossref_primary_10_1007_s12274_024_6917_6 crossref_primary_10_1002_ange_202410522 crossref_primary_10_1021_jacs_4c18400 crossref_primary_10_1016_j_ccr_2024_215718 crossref_primary_10_1016_j_ijbiomac_2025_141213 crossref_primary_10_1016_j_matdes_2023_112566 crossref_primary_10_1002_ange_202413595 crossref_primary_10_1021_acs_nanolett_4c05497 crossref_primary_10_1002_smll_202402439 crossref_primary_10_1016_j_nantod_2024_102596 crossref_primary_10_1021_acs_jmedchem_4c00624 crossref_primary_10_1021_acs_joc_4c00034 crossref_primary_10_1002_anie_202319488 crossref_primary_10_1016_j_cclet_2024_109957 crossref_primary_10_1021_acsnano_3c04256 crossref_primary_10_1002_advs_202307569 crossref_primary_10_1021_acsnano_3c05106 crossref_primary_10_1038_s41467_024_46768_w crossref_primary_10_1002_adom_202401463 crossref_primary_10_1039_D4MH01167H crossref_primary_10_1002_smo_20230014 crossref_primary_10_1039_D4SC02756F crossref_primary_10_1002_adfm_202423408 crossref_primary_10_1002_ange_202315599 crossref_primary_10_1039_D3SC05820D crossref_primary_10_3788_CJL240454 crossref_primary_10_1039_D3CC06019E crossref_primary_10_1038_s41467_024_55060_w crossref_primary_10_1039_D3DT04063A crossref_primary_10_1039_D3BM01130E crossref_primary_10_3390_molecules30061274 crossref_primary_10_1002_advs_202409506 crossref_primary_10_1007_s40843_024_3268_6 crossref_primary_10_1039_D4RA00928B crossref_primary_10_1002_anie_202401036 crossref_primary_10_1002_smll_202412249 crossref_primary_10_1007_s11426_024_2533_4 crossref_primary_10_1021_acsami_4c14754 crossref_primary_10_1021_acs_inorgchem_4c03219 crossref_primary_10_1021_acs_inorgchem_4c01914 crossref_primary_10_1007_s11426_024_2411_7 crossref_primary_10_1002_adtp_202300330 crossref_primary_10_1016_j_biomaterials_2023_122391 crossref_primary_10_34133_bmr_0138 crossref_primary_10_1021_acsami_4c04361 crossref_primary_10_1007_s43630_024_00669_5 crossref_primary_10_1039_D3QI01666H crossref_primary_10_1038_s41467_024_49311_z crossref_primary_10_1016_j_matt_2024_09_001 crossref_primary_10_1039_D3CC04460B crossref_primary_10_1021_acs_inorgchem_3c03216 crossref_primary_10_1038_s41467_023_43890_z crossref_primary_10_1021_acs_langmuir_4c01113 crossref_primary_10_1002_anie_202315599 crossref_primary_10_1002_advs_202307920 crossref_primary_10_1039_D3QI02047A crossref_primary_10_1002_adfm_202313755 crossref_primary_10_1002_anie_202413595 crossref_primary_10_1002_anie_202410522 crossref_primary_10_1002_adma_202418978 crossref_primary_10_1002_advs_202410405 crossref_primary_10_1002_smsc_202400220 crossref_primary_10_1021_jacs_4c09508 crossref_primary_10_1002_adhm_202403009 crossref_primary_10_1021_acsmaterialslett_3c01511 crossref_primary_10_1002_advs_202413365 crossref_primary_10_1039_D4CS00599F crossref_primary_10_1016_j_cclet_2025_110832 crossref_primary_10_1016_j_cclet_2023_108518 crossref_primary_10_1002_smll_202307414 crossref_primary_10_1021_acs_nanolett_5c00946 crossref_primary_10_1002_ange_202309786 crossref_primary_10_1039_D5SC00360A crossref_primary_10_1016_j_dyepig_2024_112350 crossref_primary_10_1002_adfm_202407349 crossref_primary_10_1039_D4SC02179G crossref_primary_10_1002_adhm_202304067 crossref_primary_10_1002_chem_202301313 crossref_primary_10_1016_j_dyepig_2024_112359 crossref_primary_10_1021_acsmaterialslett_3c00436 crossref_primary_10_1021_acs_inorgchem_4c03013 crossref_primary_10_1039_D4SC08685F crossref_primary_10_1016_j_dyepig_2023_111881 crossref_primary_10_3389_fonc_2023_1114042 crossref_primary_10_1039_D3TB02132G crossref_primary_10_1002_anie_202416963 crossref_primary_10_1016_j_ccr_2023_215367 crossref_primary_10_1002_agt2_514 crossref_primary_10_1016_j_ccr_2023_215481 crossref_primary_10_1021_acs_jmedchem_4c01307 crossref_primary_10_26599_NR_2025_94907281 crossref_primary_10_1016_j_cclet_2023_108862 crossref_primary_10_1002_advs_202409551 crossref_primary_10_1021_acs_biomac_4c00775 crossref_primary_10_1007_s11426_024_1971_4 crossref_primary_10_1002_anie_202318783 crossref_primary_10_1016_j_actbio_2024_02_005 crossref_primary_10_1016_j_cclet_2024_110536 crossref_primary_10_1002_anie_202319073 crossref_primary_10_1021_acs_langmuir_3c03231 crossref_primary_10_1021_acsmaterialslett_4c00614 crossref_primary_10_1002_anie_202303476 crossref_primary_10_1002_ange_202319488 crossref_primary_10_1002_anie_202423023 crossref_primary_10_1016_j_scib_2025_02_037 crossref_primary_10_1021_acsapm_4c01833 crossref_primary_10_1039_D3QM00753G crossref_primary_10_1021_acsmaterialslett_4c00600 crossref_primary_10_1002_adhm_202404253 crossref_primary_10_1016_j_xcrp_2024_102074 crossref_primary_10_1002_anie_202400049 crossref_primary_10_1002_advs_202417179 crossref_primary_10_1002_cnma_202300384 crossref_primary_10_1016_j_biomaterials_2024_122536 crossref_primary_10_1002_adma_202305163 crossref_primary_10_1016_j_mtbio_2025_101587 crossref_primary_10_1002_ange_202303476 crossref_primary_10_1002_adfm_202315692 crossref_primary_10_1016_j_jsamd_2024_100718 crossref_primary_10_1021_acs_chemmater_4c01257 crossref_primary_10_1039_D4OB00706A crossref_primary_10_1021_acsmaterialslett_3c01315 crossref_primary_10_1039_D4SC05345A crossref_primary_10_1016_j_jcis_2023_08_176 crossref_primary_10_1002_ange_202423023 crossref_primary_10_1021_acsmaterialslett_4c00162 crossref_primary_10_1038_s41467_025_57822_6 crossref_primary_10_1002_smll_202401073 crossref_primary_10_1039_D4TB01767F crossref_primary_10_1016_j_recm_2024_01_001 crossref_primary_10_1002_adhm_202404265 crossref_primary_10_1016_j_snb_2024_135806 crossref_primary_10_1002_ange_202416963 crossref_primary_10_1039_D3NR05801H crossref_primary_10_1021_acs_orglett_3c02962 crossref_primary_10_1002_advs_202407727 crossref_primary_10_1021_jacs_3c02379 crossref_primary_10_1039_D4SC02199A crossref_primary_10_1039_D3CC04051H crossref_primary_10_1016_j_jcis_2025_01_118 crossref_primary_10_1021_jacs_3c14387 crossref_primary_10_1093_nsr_nwae038 crossref_primary_10_1002_agt2_676 crossref_primary_10_1039_D4CC02551B crossref_primary_10_1039_D4CC06509C crossref_primary_10_6023_A23050243 crossref_primary_10_1021_acs_jmedchem_4c02836 crossref_primary_10_1002_adfm_202415087 crossref_primary_10_1016_j_bioorg_2023_107067 crossref_primary_10_1016_j_ccr_2024_216054 crossref_primary_10_1002_smll_202405457 crossref_primary_10_1038_s41467_024_55575_2 crossref_primary_10_1016_j_cclet_2024_109631 crossref_primary_10_1039_D3MD00396E crossref_primary_10_1021_jacsau_4c00815 crossref_primary_10_1021_jacs_4c15216 crossref_primary_10_1021_acs_analchem_3c02777 crossref_primary_10_1002_smll_202407408 crossref_primary_10_1039_D4QO00708E crossref_primary_10_1002_adfm_202411838 crossref_primary_10_1016_j_ccr_2024_215756 crossref_primary_10_1039_D4CC02702G crossref_primary_10_1021_acsaom_3c00400 crossref_primary_10_1021_acsmaterialslett_3c00933 crossref_primary_10_1016_j_dyepig_2024_112133 crossref_primary_10_1002_chem_202401916 crossref_primary_10_1039_D3TB01422C crossref_primary_10_3389_fbioe_2023_1289323 crossref_primary_10_1021_acsnano_4c01600 crossref_primary_10_1039_D4RA00041B crossref_primary_10_1007_s11426_024_2559_1 crossref_primary_10_1016_j_jphotobiol_2024_113052 crossref_primary_10_1016_j_snb_2024_135931 |
Cites_doi | 10.1021/ja511420n 10.1021/acs.accounts.2c00531 10.1007/s11523-012-0233-x 10.1002/VIW.20200121 10.1038/s41467-022-33924-3 10.1007/s40843-021-1706-4 10.1002/anie.202204330 10.1021/acs.chemrev.6b00057 10.1021/acs.nanolett.2c02983 10.1126/science.278.5343.1601 10.1002/anie.202001047 10.1021/acs.biomac.5b00571 10.1039/C6CS00616G 10.1002/anie.202201815 10.1016/j.mattod.2022.06.024 10.1002/adfm.201700626 10.1021/jacs.8b04912 10.1002/advs.202002504 10.1038/s41557-019-0328-4 10.1038/s41467-022-29862-9 10.1021/acs.chemmater.9b01338 10.1126/science.1160809 10.1016/j.chempr.2021.10.006 10.1021/jacs.1c07479 10.1021/jacs.2c03256 10.1038/nrc1070 10.1039/D2CS00102K 10.1002/adma.201801216 10.1039/D2SC01469F 10.1002/smll.202006742 10.1021/acsami.7b12063 10.1021/jacs.1c13067 10.1002/anie.202106748 10.1021/acsami.8b07090 10.1016/j.ccr.2021.213888 10.1021/acs.nanolett.6b02365 10.1002/anie.202105206 10.1016/S1011-1344(96)07428-3 10.1021/jacs.0c00734 10.31635/ccschem.021.202101302 10.1021/jacs.0c02129 10.3322/caac.20114 10.1002/adma.202108146 10.1021/acs.chemrev.1c00381 10.1002/adma.202103978 10.1002/anie.201805138 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.2c11868 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 4087 |
ExternalDocumentID | 36779824 10_1021_jacs_2c11868 a087510433 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 55A 5GY 5RE 5VS 7~N 85S 8W4 AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZCA ~02 53G AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA AGXLV AHGAQ CITATION CUPRZ NPM 7X8 AAYWT 7S9 L.6 |
ID | FETCH-LOGICAL-a357t-b74da76ea19f0ee2b495873fa2f107c2410718433d6e867f37af14b76c401e083 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 07:05:38 EDT 2025 Sun Aug 24 03:56:45 EDT 2025 Thu Apr 03 06:58:12 EDT 2025 Tue Jul 01 03:54:26 EDT 2025 Thu Apr 24 23:10:53 EDT 2025 Fri Feb 24 03:10:42 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-b74da76ea19f0ee2b495873fa2f107c2410718433d6e867f37af14b76c401e083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5376-6902 0000-0002-9131-4907 |
PMID | 36779824 |
PQID | 2775953129 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_3040460286 proquest_miscellaneous_2775953129 pubmed_primary_36779824 crossref_citationtrail_10_1021_jacs_2c11868 crossref_primary_10_1021_jacs_2c11868 acs_journals_10_1021_jacs_2c11868 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-22 |
PublicationDateYYYYMMDD | 2023-02-22 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref19/cit19 doi: 10.1021/ja511420n – ident: ref27/cit27 doi: 10.1021/acs.accounts.2c00531 – ident: ref21/cit21 doi: 10.1007/s11523-012-0233-x – ident: ref29/cit29 doi: 10.1002/VIW.20200121 – ident: ref37/cit37 doi: 10.1038/s41467-022-33924-3 – ident: ref34/cit34 doi: 10.1007/s40843-021-1706-4 – ident: ref36/cit36 doi: 10.1002/anie.202204330 – ident: ref46/cit46 doi: 10.1021/acs.chemrev.6b00057 – ident: ref22/cit22 doi: 10.1021/acs.nanolett.2c02983 – ident: ref41/cit41 doi: 10.1126/science.278.5343.1601 – ident: ref44/cit44 doi: 10.1002/anie.202001047 – ident: ref17/cit17 doi: 10.1021/acs.biomac.5b00571 – ident: ref5/cit5 doi: 10.1039/C6CS00616G – ident: ref11/cit11 doi: 10.1002/anie.202201815 – ident: ref26/cit26 doi: 10.1016/j.mattod.2022.06.024 – ident: ref24/cit24 doi: 10.1002/adfm.201700626 – ident: ref3/cit3 doi: 10.1021/jacs.8b04912 – ident: ref9/cit9 doi: 10.1002/advs.202002504 – ident: ref25/cit25 doi: 10.1038/s41557-019-0328-4 – ident: ref32/cit32 doi: 10.1038/s41467-022-29862-9 – ident: ref42/cit42 doi: 10.1021/acs.chemmater.9b01338 – ident: ref8/cit8 doi: 10.1126/science.1160809 – ident: ref38/cit38 doi: 10.1016/j.chempr.2021.10.006 – ident: ref28/cit28 doi: 10.1021/jacs.1c07479 – ident: ref35/cit35 doi: 10.1021/jacs.2c03256 – ident: ref1/cit1 doi: 10.1038/nrc1070 – ident: ref4/cit4 doi: 10.1039/D2CS00102K – ident: ref6/cit6 doi: 10.1002/adma.201801216 – ident: ref40/cit40 doi: 10.1039/D2SC01469F – ident: ref33/cit33 doi: 10.1002/smll.202006742 – ident: ref43/cit43 doi: 10.1021/acsami.7b12063 – ident: ref10/cit10 doi: 10.1021/jacs.1c13067 – ident: ref30/cit30 doi: 10.1002/anie.202106748 – ident: ref16/cit16 doi: 10.1021/acsami.8b07090 – ident: ref15/cit15 doi: 10.1016/j.ccr.2021.213888 – ident: ref18/cit18 doi: 10.1021/acs.nanolett.6b02365 – ident: ref20/cit20 doi: 10.1002/anie.202105206 – ident: ref45/cit45 doi: 10.1016/S1011-1344(96)07428-3 – ident: ref23/cit23 doi: 10.1021/jacs.0c00734 – ident: ref39/cit39 doi: 10.31635/ccschem.021.202101302 – ident: ref14/cit14 doi: 10.1021/jacs.0c02129 – ident: ref2/cit2 doi: 10.3322/caac.20114 – ident: ref31/cit31 doi: 10.1002/adma.202108146 – ident: ref7/cit7 doi: 10.1021/acs.chemrev.1c00381 – ident: ref13/cit13 doi: 10.1002/adma.202103978 – ident: ref12/cit12 doi: 10.1002/anie.201805138 |
SSID | ssj0004281 |
Score | 2.71016 |
Snippet | The highly oxygen-dependent nature of photodynamic therapy (PDT) limits its therapeutic efficacy against hypoxic solid tumors in clinics, which is an urgent... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4081 |
SubjectTerms | cytotoxicity electron transfer hydrogen bonding hydroxyl radicals irradiation mice photochemotherapy photosensitizing agents pyruvic acid |
Title | Supramolecular Photosensitizer Enables Oxygen-Independent Generation of Hydroxyl Radicals for Photodynamic Therapy |
URI | http://dx.doi.org/10.1021/jacs.2c11868 https://www.ncbi.nlm.nih.gov/pubmed/36779824 https://www.proquest.com/docview/2775953129 https://www.proquest.com/docview/3040460286 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODC-zFeChKcUKc1SZP0OE2DwQEQD2m3KclSgRgtWjsJ9utx-hhiaIJr5aZt7MafZfszQqdNpSUPjYYwlWqPUR14rqXEY1ZrosIgUFFebXHDu0_suhf0vgtkZzP4xPEDmbRBjO943RfREuFSuCCr1X747n8k0q9grpCclgXus3c7B2TSnw5oDqrMvcvFGrqsenSKopLXxjjTDTP5Tdn4x4uvo9USYOJWYREbaMHGm2i5Xc1120Kjh_H7SL1VY3Hx3XOSJamrY89eJnaEO3k3VYpvPz7BuLyr6ZzcDBcc1U6VOIlw93PgXneI71We7EkxAOBiuUEx5x4_FpwF2-jpovPY7nrl5AVP0UBknhZsoAS3yg-jprVEQxglBY0UiSBcNOD1AZlIRumAW8lFRIWKfKYFNxCuWUB1O6gWJ7HdQ5jJ0DRdstEIwlREpRWwDOBUX6pQ-7qOTmCf-uWfk_bzpDiBoMRdLXevjs4rlfVNSV3uJmgM50ifTaXfC8qOOXInlfb7oAKXKFGxTcYgIEQQwuFEwvkyFE4_xgGd8TraLUxn-jTKhQglYfv_-LYDtOIm2Odd8uQQ1bLR2B4Bzsn0cW7kX8aY-GI |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED_x8QAvbLANOjYw0vY0BTW2YzuPqAKVrzKNIvEW2a4jENCgJpWAv56zkxQNqRKv1sW52Bf7d7q73wH86mqjRGoNuqnMRJyZJPIlJRF3xlCdJonOQ7bFQPSv-Ml1ct0Uq_taGFSixJnKEMR_YxfwNEE4SG3s6d0XYRlxCPW-1kHv8q0Mkqq4RbtSCdbkub9_2t9Dtvz_HpoDLsMlc_QJBjP1Qm7J3f60Mvv25R1z44f1_wxrDdwkB7V9rMOCG2_ASq_t8vYFJpfTx4l-aJvkkr83RVWUPqu9un1xE3IYaqtKcvH0jKYWHc-65lakZqz2G0uKnPSfR17re_JPh9BPSRAO19ON6q73ZFgzGHyFq6PDYa8fNX0YIs0SWUVG8pGWwuk4zbvOUYNOlZIs1zRH59EiBkCcojhjI-GUkDmTOo-5kcKi8-YQ432DpXExdltAuEpt14ceraRc50w5idMgao2VTk1sOrCH65Q1_1GZhRA5RRfFjzar14E_7c5ltiEy9_007udI_55JP9YEHnPk9lojyHALfNhEj10xRQEpkxSPKprOl2F4FnKBWE10YLO2oNnbmJAyVZR__8C37cJKf3h-lp0dD063YdX3tg_18_QHLFWTqfuJCKgyO8HuXwHsOQDS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3oXl6UpwQqk2tmM7x2rpaguoVH1IvUW2Y4uKNlltshLbX8_YSRZRaSW4JhPHj7H9jWbmG4APY22UyK1BM5WZhDOTJSGlJOHOGKrzLNM-Rlscidk5_3KRXWxBOuTCYCcabKmJTvywq-el7xkGAlUQvqA2DRTvd-Bu8NgFe2t_cvonFZKqdEC8UgnWx7rf_jrcRbb5-y7aADDjRTN9BCfrLsb4kp97y9bs2Ztb7I3_NYbH8LCHnWS_05MnsOWqp3B_MlR7ewaL0-V8oa-HYrnk-Efd1k2Ibm8vb9yCHMQcq4Z8_7VClUsO19VzW9IxV4cFJrUns1UZen5FTnR0ATUEYXHXXLmq9PWlJWcdk8FzOJ8enE1mSV-PIdEsk21iJC-1FE6nuR87Rw0aV0oyr6lHI9IiFkC8ojhjpXBKSM-k9ik3Ulg04hxivR3YrurKvQTCVW7HwQVpJeXaM-UkNoPoNVU6N6kZwS7OU9Hvp6aIrnKKpkp42s_eCD4Nq1fYntA81NW42iD9cS0974g8NsjtDopQ4BIE94muXL1EASmzHI8smm-WYXgmcoGYTYzgRadF678xIWWuKH_1D2N7D_eOP0-Lb4dHX1_Dg1DiPqbR0zew3S6W7i0Coda8i6r_G0ARA1U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supramolecular+Photosensitizer+Enables+Oxygen-Independent+Generation+of+Hydroxyl+Radicals+for+Photodynamic+Therapy&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Teng%2C+Kun-Xu&rft.au=Niu%2C+Li-Ya&rft.au=Yang%2C+Qing-Zheng&rft.date=2023-02-22&rft.eissn=1520-5126&rft_id=info:doi/10.1021%2Fjacs.2c11868&rft_id=info%3Apmid%2F36779824&rft.externalDocID=36779824 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |