Structure of the Major G‑Quadruplex in the Human EGFR Oncogene Promoter Adopts a Unique Folding Topology with a Distinctive Snap-Back Loop
EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefor...
Saved in:
Published in | Journal of the American Chemical Society Vol. 145; no. 29; pp. 16228 - 16237 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit EGFR signaling. Herein, we found that the EGFR oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back EGFR-G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5′-end and 3′-end. The snap-back loop located at the 3′-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved EGFR-G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back EGFR-G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution EGFR-G4 structure has thus contributed a promising molecular target for developing alternative EGFR signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting. |
---|---|
AbstractList | EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit EGFR signaling. Herein, we found that the EGFR oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back EGFR-G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5′-end and 3′-end. The snap-back loop located at the 3′-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved EGFR-G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back EGFR-G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution EGFR-G4 structure has thus contributed a promising molecular target for developing alternative EGFR signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting. EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit signaling. Herein, we found that the oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back -G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5'-end and 3'-end. The snap-back loop located at the 3'-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved -G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back -G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution -G4 structure has thus contributed a promising molecular target for developing alternative signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting. EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit EGFR signaling. Herein, we found that the EGFR oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back EGFR-G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5'-end and 3'-end. The snap-back loop located at the 3'-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved EGFR-G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back EGFR-G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution EGFR-G4 structure has thus contributed a promising molecular target for developing alternative EGFR signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting.EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit EGFR signaling. Herein, we found that the EGFR oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back EGFR-G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5'-end and 3'-end. The snap-back loop located at the 3'-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved EGFR-G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back EGFR-G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution EGFR-G4 structure has thus contributed a promising molecular target for developing alternative EGFR signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting. |
Author | Kong, Ling-Yi Wang, Yingying Wang, Kai-Bo Yang, Ming-Hua Li, Jinzhu Bian, Yuting Liu, Yushuang Xia, Yuanzheng Chen, Juannan Zheng, Kewei Zhang, Yongqiang |
AuthorAffiliation | School of Biomedical Sciences Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines |
AuthorAffiliation_xml | – name: School of Biomedical Sciences – name: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines |
Author_xml | – sequence: 1 givenname: Yushuang orcidid: 0000-0002-2706-3066 surname: Liu fullname: Liu, Yushuang organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines – sequence: 2 givenname: Jinzhu surname: Li fullname: Li, Jinzhu organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines – sequence: 3 givenname: Yongqiang surname: Zhang fullname: Zhang, Yongqiang organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines – sequence: 4 givenname: Yingying surname: Wang fullname: Wang, Yingying organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines – sequence: 5 givenname: Juannan surname: Chen fullname: Chen, Juannan organization: School of Biomedical Sciences – sequence: 6 givenname: Yuting surname: Bian fullname: Bian, Yuting organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines – sequence: 7 givenname: Yuanzheng surname: Xia fullname: Xia, Yuanzheng organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines – sequence: 8 givenname: Ming-Hua orcidid: 0000-0001-6063-8397 surname: Yang fullname: Yang, Ming-Hua organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines – sequence: 9 givenname: Kewei surname: Zheng fullname: Zheng, Kewei organization: School of Biomedical Sciences – sequence: 10 givenname: Kai-Bo orcidid: 0000-0002-2934-9906 surname: Wang fullname: Wang, Kai-Bo email: kbwang@cpu.edu.cn organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines – sequence: 11 givenname: Ling-Yi orcidid: 0000-0001-9712-2618 surname: Kong fullname: Kong, Ling-Yi email: cpu_lykong@126.com organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37460135$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFG2fkIwdS_BUneyylu0VaVKDtOXJsZ-sl8QR_0PbGD-DCX-SXkKULBwTiNJqZZ0Yz73uA9jx4i9BTSo4oYfTlRul4xDUpGRUP0IyWjBQlZXIPzQghrKhqyffRQYybKRWspo_QPq-EJJSXM_T1IoWsUw4WQ4fTtcVv1QYCXn7_8u19Vibksbe32PmfvbM8KI9Pl4sP-NxrWFtv8bsAAyQb8LGBMUWs8JV3n7LFC-iN82t8CSP0sL7DNy5dT-3XLibndXKfLb7waixeKf0RrwDGx-hhp_pon-ziIbpanF6enBWr8-Wbk-NVoXhZpaLWlans9KdmUmoqJVValLVsu5YTZsWcMCJtbYgua2KZEFK3lHadNKY1TM_5IXp-v3cMMF0aUzO4qG3fK28hx4YTQcSkmyj_i7Kaz5mYV9UWfbZDcztY04zBDSrcNb_EnoAX94AOEGOw3W-EkmbrZbP1stl5OeHsD1y7pJIDn4Jy_b-GdvduixvIwU9C_h39AcnpsDA |
CitedBy_id | crossref_primary_10_1016_j_eng_2024_03_015 crossref_primary_10_1021_jacs_3c08336 crossref_primary_10_1021_acs_langmuir_4c00418 crossref_primary_10_1002_advs_202401748 crossref_primary_10_1016_j_drudis_2023_103808 crossref_primary_10_1002_advs_202406230 crossref_primary_10_3390_genes14091720 crossref_primary_10_1016_j_ijbiomac_2024_131055 |
Cites_doi | 10.1021/bi048242p 10.1021/jacs.0c11708 10.1038/s41467-022-33761-4 10.1093/nar/gkv1357 10.1038/35030019 10.1021/jacs.9b12770 10.1021/jacs.1c05468 10.1021/jacs.1c06200 10.1021/ja305764d 10.1021/jacs.2c00435 10.1038/s41586-021-03898-1 10.1038/ng.3662 10.1038/s41556-021-00654-5 10.1002/anie.202207384 10.1038/s41591-022-01886-0 10.1093/nar/gkt784 10.1038/s41467-020-20379-7 10.1021/jacs.5b08596 10.2217/imt-2022-0027 10.1038/s41557-021-00736-9 10.1093/nar/gkaa841 10.1039/D0CB00211A 10.1021/acs.jpclett.0c02969 10.1038/s41556-021-00639-4 10.1038/nchembio723 10.1021/jacs.0c00774 10.1021/ja310251r 10.1002/hep.26404 10.1073/pnas.182256799 10.1038/s41588-020-0672-8 10.1021/ja068739h 10.1021/jacs.6b07598 10.1093/nar/gkx678 10.1021/ja055636a 10.1016/j.trechm.2019.07.002 10.1038/s41467-022-29292-7 10.1021/jacs.9b05642 10.1093/nar/gks1331 10.1016/S1470-2045(22)00382-5 10.1186/s12943-021-01328-4 10.1038/s41586-021-03741-7 10.1002/anie.202203553 10.1021/acs.accounts.0c00431 10.1038/s43018-021-00195-8 10.1021/acs.jmedchem.5b01835 10.1021/acs.accounts.2c00337 10.1093/nar/gki917 10.1093/nar/gkv355 10.1093/nar/gkaa387 10.1021/ja050823u 10.1093/nar/gkl286 10.1038/s41467-021-22531-3 10.1093/nar/gki609 10.1038/s43018-022-00508-5 10.1021/jacs.2c04775 10.1093/nar/gkab609 10.1038/s41571-021-00558-1 10.1038/nrm.2017.3 10.1038/nchem.1548 10.1021/jacs.9b02679 10.1021/bi100330w 10.1093/nar/gkm009 10.1002/cac2.12005 10.1021/jacs.2c05312 10.1038/s41467-022-32159-6 10.1002/chem.202002985 10.1056/NEJMoa1913662 10.1021/ja4118945 10.1038/s41556-022-00962-4 10.1038/s41418-020-00633-7 10.1093/nar/gkab1154 10.1002/anie.201709184 10.1073/pnas.1516925112 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.3c05214 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 16237 |
ExternalDocumentID | 37460135 10_1021_jacs_3c05214 d089936408 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFRP ABMVS ABPPZ ABPTK ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZCA ~02 53G AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA CITATION CUPRZ AAYWT NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a357t-8c7d7e520c266c1661ac4586bfb302e490206e8d0c580e2446cb11ff6ddbd2c93 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Tue Aug 05 10:42:03 EDT 2025 Fri Jul 11 09:35:16 EDT 2025 Mon Jul 21 05:32:58 EDT 2025 Thu Apr 24 22:50:51 EDT 2025 Tue Jul 01 03:54:36 EDT 2025 Fri Jul 28 03:16:50 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-8c7d7e520c266c1661ac4586bfb302e490206e8d0c580e2446cb11ff6ddbd2c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2934-9906 0000-0002-2706-3066 0000-0001-9712-2618 0000-0001-6063-8397 |
PMID | 37460135 |
PQID | 2839249775 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3040478645 proquest_miscellaneous_2839249775 pubmed_primary_37460135 crossref_primary_10_1021_jacs_3c05214 crossref_citationtrail_10_1021_jacs_3c05214 acs_journals_10_1021_jacs_3c05214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-26 |
PublicationDateYYYYMMDD | 2023-07-26 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref49/cit49 doi: 10.1021/bi048242p – ident: ref26/cit26 doi: 10.1021/jacs.0c11708 – ident: ref36/cit36 doi: 10.1038/s41467-022-33761-4 – ident: ref53/cit53 doi: 10.1093/nar/gkv1357 – ident: ref70/cit70 doi: 10.1038/35030019 – ident: ref42/cit42 doi: 10.1021/jacs.9b12770 – ident: ref45/cit45 doi: 10.1021/jacs.1c05468 – ident: ref43/cit43 doi: 10.1021/jacs.1c06200 – ident: ref54/cit54 doi: 10.1021/ja305764d – ident: ref62/cit62 doi: 10.1021/jacs.2c00435 – ident: ref10/cit10 doi: 10.1038/s41586-021-03898-1 – ident: ref27/cit27 doi: 10.1038/ng.3662 – ident: ref15/cit15 doi: 10.1038/s41556-021-00654-5 – ident: ref23/cit23 doi: 10.1002/anie.202207384 – ident: ref6/cit6 doi: 10.1038/s41591-022-01886-0 – ident: ref40/cit40 doi: 10.1093/nar/gkt784 – ident: ref7/cit7 doi: 10.1038/s41467-020-20379-7 – ident: ref59/cit59 doi: 10.1021/jacs.5b08596 – ident: ref73/cit73 doi: 10.2217/imt-2022-0027 – ident: ref29/cit29 doi: 10.1038/s41557-021-00736-9 – ident: ref28/cit28 doi: 10.1093/nar/gkaa841 – ident: ref51/cit51 doi: 10.1039/D0CB00211A – ident: ref67/cit67 doi: 10.1021/acs.jpclett.0c02969 – ident: ref4/cit4 doi: 10.1038/s41556-021-00639-4 – ident: ref55/cit55 doi: 10.1038/nchembio723 – ident: ref64/cit64 doi: 10.1021/jacs.0c00774 – ident: ref57/cit57 doi: 10.1021/ja310251r – ident: ref72/cit72 doi: 10.1002/hep.26404 – ident: ref33/cit33 doi: 10.1073/pnas.182256799 – ident: ref47/cit47 doi: 10.1038/s41588-020-0672-8 – ident: ref38/cit38 doi: 10.1021/ja068739h – ident: ref46/cit46 doi: 10.1021/jacs.6b07598 – ident: ref17/cit17 doi: 10.1093/nar/gkx678 – ident: ref50/cit50 doi: 10.1021/ja055636a – ident: ref18/cit18 doi: 10.1016/j.trechm.2019.07.002 – ident: ref13/cit13 doi: 10.1038/s41467-022-29292-7 – ident: ref61/cit61 doi: 10.1021/jacs.9b05642 – ident: ref69/cit69 doi: 10.1093/nar/gks1331 – ident: ref12/cit12 doi: 10.1016/S1470-2045(22)00382-5 – ident: ref19/cit19 doi: 10.1186/s12943-021-01328-4 – ident: ref9/cit9 doi: 10.1038/s41586-021-03741-7 – ident: ref32/cit32 doi: 10.1002/anie.202203553 – ident: ref22/cit22 doi: 10.1021/acs.accounts.0c00431 – ident: ref2/cit2 doi: 10.1038/s43018-021-00195-8 – ident: ref20/cit20 doi: 10.1021/acs.jmedchem.5b01835 – ident: ref24/cit24 doi: 10.1021/acs.accounts.2c00337 – ident: ref39/cit39 doi: 10.1093/nar/gki917 – ident: ref60/cit60 doi: 10.1093/nar/gkv355 – ident: ref56/cit56 doi: 10.1093/nar/gkaa387 – ident: ref37/cit37 doi: 10.1021/ja050823u – ident: ref35/cit35 doi: 10.1093/nar/gkl286 – ident: ref16/cit16 doi: 10.1038/s41467-021-22531-3 – ident: ref48/cit48 doi: 10.1093/nar/gki609 – ident: ref8/cit8 doi: 10.1038/s43018-022-00508-5 – ident: ref44/cit44 doi: 10.1021/jacs.2c04775 – ident: ref30/cit30 doi: 10.1093/nar/gkab609 – ident: ref1/cit1 doi: 10.1038/s41571-021-00558-1 – ident: ref21/cit21 doi: 10.1038/nrm.2017.3 – ident: ref25/cit25 doi: 10.1038/nchem.1548 – ident: ref34/cit34 doi: 10.1021/jacs.9b02679 – ident: ref41/cit41 doi: 10.1021/bi100330w – ident: ref68/cit68 doi: 10.1093/nar/gkm009 – ident: ref5/cit5 doi: 10.1002/cac2.12005 – ident: ref31/cit31 doi: 10.1021/jacs.2c05312 – ident: ref14/cit14 doi: 10.1038/s41467-022-32159-6 – ident: ref65/cit65 doi: 10.1002/chem.202002985 – ident: ref11/cit11 doi: 10.1056/NEJMoa1913662 – ident: ref58/cit58 doi: 10.1021/ja4118945 – ident: ref3/cit3 doi: 10.1038/s41556-022-00962-4 – ident: ref71/cit71 doi: 10.1038/s41418-020-00633-7 – ident: ref63/cit63 doi: 10.1093/nar/gkab1154 – ident: ref66/cit66 doi: 10.1002/anie.201709184 – ident: ref52/cit52 doi: 10.1073/pnas.1516925112 |
SSID | ssj0004281 |
Score | 2.478119 |
Snippet | EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16228 |
SubjectTerms | cancer therapy colorectal neoplasms DNA DNA-directed DNA polymerase glioblastoma hepatoma humans hydrogen oncogenes promoter regions topology tyrosine |
Title | Structure of the Major G‑Quadruplex in the Human EGFR Oncogene Promoter Adopts a Unique Folding Topology with a Distinctive Snap-Back Loop |
URI | http://dx.doi.org/10.1021/jacs.3c05214 https://www.ncbi.nlm.nih.gov/pubmed/37460135 https://www.proquest.com/docview/2839249775 https://www.proquest.com/docview/3040478645 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHODCm1JemkpwQlll_Ui8x2XpboV4b1fqLXLGjgStkmizkYATP4ALf5FfwthJWlG0gqs9VhJ74vnGM_6GsaemiNFqyyNhJ-SgiHwSGVXoyBK0VTJFT3Lusy3eJocr-epYHZ8nyF6M4HPPD4TNSKC_ZCovsys80al3sqaz5fn9R67HA8xNdSL6BPeLo70BwuZPA7QFVQbrMr_BFsMdnS6p5GTUbvIRfvubsvEfL36TXe8BJkw7jbjFLrnyNrs6G-q63WE_loEytl07qAog_AdvzOdqDYtf339-aI1dt_Wp-wKfytAXDvnhYDH_CO9KrEjdHLwPKXxuDVNb1ZsGDKwCDSzMu1AWHHWVF76CP-Wl7pd-IynDzgrL0tTRC4Mn8Lqq6rtsNT84mh1GfU2GyAiVbiKNqU2d4jGSZccxWXeDUukkL3IRcycnBD8Tp22MSseOsEOC-XhcFIm1ueU4EffYTlmV7j4D0h1JrSpFz6umZR4bG4iSJWoakO-xfZrBrP-nmiyEyzm5K761n9c99nxYzAx7UnNfW-N0i_SzM-m6I_PYIrc_6EVGi-NDKKZ0Vdtk3ONJSZhZbZcRtC9KUkNJMrudUp09TaSSPGChHvzHtz1k13xte3-QzJNHbIeUwz0mBLTJnwT1_w1DzQCG |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbtswECWCdJFu-v8k6WcCNKtCgUyREr3ownXiOI2TfmwD2SkUSQFtAkmwLLTpqgfopgfoVXqYnqRDSnLQAAa6CdAtOZIocsh5wxk-EvJCpr7SQlMv0F10UIKk60meCk8jtOUsUpbk3GZbHIfDKXtzwk9WyM_2LAw2osQ3lS6If8kuYGmCsDBQ9qwpa3IoD83FZ_TQylcHuzic25QO9ib9oddcIuDJgEdzT6hIR4ZTX6EpUh00R1IxLsIkTQKfGtZFvBQaoX3FhW_Q2IUq6XTSNNQ60VRZriVc4W8g7qHWt-v1x5fHLqnotOg6EmHQ5NVfba21e6r82-4tAbPOqA1uk1-L7nC5LGc71TzZUV-vMEX-t_11h9xq4DT0av2_S1ZMdo-s9dtb7O6T72NHkFvNDOQpINqFI_kpn8H-728_3ldSz6ri3HyBj5mrcyEN2NsffIC3mcpxchl45xIWzQx6Oi_mJUiYOtJbGNSBO5jU90xcgN3Txupdu2xmzo7AOJOF91qqMxjlefGATK-lMx6S1SzPzGMCOFMYlvJIWRY5wRJfakcLzZTAB5J1soUjFjcrSBm75ACKzpktbcZxnbxsdShWDYW7vUnkfIn09kK6qKlLlshtteoY4-DYgJHMTF6VMbXomaGHwJfLBGgFGGo_Q5lHtS4vvhZEDP39gG_8w789J2vDydEoHh0cH26SmxSxpN1Cp-ETsoqKYp4i9psnz9wMBHJ63Sr8B1_tYqo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELaqIgEX_n_K71SiJ5Qq69iJ98Bh2W3a0lIK25V6C47tSNAqiTYbteXUB-iFR-BVeBSehLGTLKLSSlwqcY0nf_aM5xvP-DMhr2TmKy009QLdxwAlSPue5JnwNEJbziJlSc5ttcVeuDVh7w754RL50e2FwY-o8EmVS-Jbqy511jIMWKogbAiU3W_K2jrKHXN2glFa9WZ7hEO6Rmm8cTDc8tqDBDwZ8GjmCRXpyHDqK3RHqocuSSrGRZhmaeBTw_qImUIjtK-48A06vFClvV6WhVqnmirLt4Sz_DWbIbTx3WA4_rP1kopeh7AjEQZtbf3lr7W-T1V_-74FgNY5tvg2-TnvElfPcrRez9J19e0SW-R_3Wd3yK0WVsOgsYO7ZMnk98iNYXea3X1yMXZEufXUQJEBol54L78WU9j8df79Yy31tC6PzSl8yV2bS23Axmb8CT7kqkAjM7DvChfNFAa6KGcVSJg48luImwQeHDTnTZyBXdvG5pGdPnPnT2Ccy9J7K9UR7BZF-YBMrqQzHpLlvMjNYwJoMQyv8khZNjnBUl9qRw_NlMAb0hWyiiOWtDNJlbgiAYpBmr3ajuMKed3pUaJaKnd7osjxAum1uXTZUJgskFvtVDLBwbGJI5mboq4SalE0w0iBL5YJ0BswtACGMo8afZ6_LYgYxv0Bf_IP__aSXN8fxcnu9t7OU3KTIqS0K-k0fEaWUU_Mc4SAs_SFM0Ign69ag38DDptlLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+of+the+Major+G-Quadruplex+in+the+Human+EGFR+Oncogene+Promoter+Adopts+a+Unique+Folding+Topology+with+a+Distinctive+Snap-Back+Loop&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Liu%2C+Yushuang&rft.au=Li%2C+Jinzhu&rft.au=Zhang%2C+Yongqiang&rft.au=Wang%2C+Yingying&rft.date=2023-07-26&rft.eissn=1520-5126&rft.volume=145&rft.issue=29&rft.spage=16228&rft_id=info:doi/10.1021%2Fjacs.3c05214&rft_id=info%3Apmid%2F37460135&rft.externalDocID=37460135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |