Structure of the Major G‑Quadruplex in the Human EGFR Oncogene Promoter Adopts a Unique Folding Topology with a Distinctive Snap-Back Loop

EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefor...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 145; no. 29; pp. 16228 - 16237
Main Authors Liu, Yushuang, Li, Jinzhu, Zhang, Yongqiang, Wang, Yingying, Chen, Juannan, Bian, Yuting, Xia, Yuanzheng, Yang, Ming-Hua, Zheng, Kewei, Wang, Kai-Bo, Kong, Ling-Yi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit EGFR signaling. Herein, we found that the EGFR oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back EGFR-G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5′-end and 3′-end. The snap-back loop located at the 3′-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved EGFR-G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back EGFR-G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution EGFR-G4 structure has thus contributed a promising molecular target for developing alternative EGFR signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting.
AbstractList EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit EGFR signaling. Herein, we found that the EGFR oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back EGFR-G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5′-end and 3′-end. The snap-back loop located at the 3′-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved EGFR-G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back EGFR-G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution EGFR-G4 structure has thus contributed a promising molecular target for developing alternative EGFR signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting.
EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit signaling. Herein, we found that the oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back -G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5'-end and 3'-end. The snap-back loop located at the 3'-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved -G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back -G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution -G4 structure has thus contributed a promising molecular target for developing alternative signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting.
EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit EGFR signaling. Herein, we found that the EGFR oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back EGFR-G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5'-end and 3'-end. The snap-back loop located at the 3'-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved EGFR-G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back EGFR-G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution EGFR-G4 structure has thus contributed a promising molecular target for developing alternative EGFR signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting.EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit EGFR signaling. Herein, we found that the EGFR oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back EGFR-G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5'-end and 3'-end. The snap-back loop located at the 3'-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved EGFR-G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back EGFR-G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution EGFR-G4 structure has thus contributed a promising molecular target for developing alternative EGFR signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting.
Author Kong, Ling-Yi
Wang, Yingying
Wang, Kai-Bo
Yang, Ming-Hua
Li, Jinzhu
Bian, Yuting
Liu, Yushuang
Xia, Yuanzheng
Chen, Juannan
Zheng, Kewei
Zhang, Yongqiang
AuthorAffiliation School of Biomedical Sciences
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
AuthorAffiliation_xml – name: School of Biomedical Sciences
– name: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
Author_xml – sequence: 1
  givenname: Yushuang
  orcidid: 0000-0002-2706-3066
  surname: Liu
  fullname: Liu, Yushuang
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
– sequence: 2
  givenname: Jinzhu
  surname: Li
  fullname: Li, Jinzhu
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
– sequence: 3
  givenname: Yongqiang
  surname: Zhang
  fullname: Zhang, Yongqiang
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
– sequence: 4
  givenname: Yingying
  surname: Wang
  fullname: Wang, Yingying
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
– sequence: 5
  givenname: Juannan
  surname: Chen
  fullname: Chen, Juannan
  organization: School of Biomedical Sciences
– sequence: 6
  givenname: Yuting
  surname: Bian
  fullname: Bian, Yuting
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
– sequence: 7
  givenname: Yuanzheng
  surname: Xia
  fullname: Xia, Yuanzheng
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
– sequence: 8
  givenname: Ming-Hua
  orcidid: 0000-0001-6063-8397
  surname: Yang
  fullname: Yang, Ming-Hua
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
– sequence: 9
  givenname: Kewei
  surname: Zheng
  fullname: Zheng, Kewei
  organization: School of Biomedical Sciences
– sequence: 10
  givenname: Kai-Bo
  orcidid: 0000-0002-2934-9906
  surname: Wang
  fullname: Wang, Kai-Bo
  email: kbwang@cpu.edu.cn
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
– sequence: 11
  givenname: Ling-Yi
  orcidid: 0000-0001-9712-2618
  surname: Kong
  fullname: Kong, Ling-Yi
  email: cpu_lykong@126.com
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37460135$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFG2fkIwdS_BUneyylu0VaVKDtOXJsZ-sl8QR_0PbGD-DCX-SXkKULBwTiNJqZZ0Yz73uA9jx4i9BTSo4oYfTlRul4xDUpGRUP0IyWjBQlZXIPzQghrKhqyffRQYybKRWspo_QPq-EJJSXM_T1IoWsUw4WQ4fTtcVv1QYCXn7_8u19Vibksbe32PmfvbM8KI9Pl4sP-NxrWFtv8bsAAyQb8LGBMUWs8JV3n7LFC-iN82t8CSP0sL7DNy5dT-3XLibndXKfLb7waixeKf0RrwDGx-hhp_pon-ziIbpanF6enBWr8-Wbk-NVoXhZpaLWlans9KdmUmoqJVValLVsu5YTZsWcMCJtbYgua2KZEFK3lHadNKY1TM_5IXp-v3cMMF0aUzO4qG3fK28hx4YTQcSkmyj_i7Kaz5mYV9UWfbZDcztY04zBDSrcNb_EnoAX94AOEGOw3W-EkmbrZbP1stl5OeHsD1y7pJIDn4Jy_b-GdvduixvIwU9C_h39AcnpsDA
CitedBy_id crossref_primary_10_1016_j_eng_2024_03_015
crossref_primary_10_1021_jacs_3c08336
crossref_primary_10_1021_acs_langmuir_4c00418
crossref_primary_10_1002_advs_202401748
crossref_primary_10_1016_j_drudis_2023_103808
crossref_primary_10_1002_advs_202406230
crossref_primary_10_3390_genes14091720
crossref_primary_10_1016_j_ijbiomac_2024_131055
Cites_doi 10.1021/bi048242p
10.1021/jacs.0c11708
10.1038/s41467-022-33761-4
10.1093/nar/gkv1357
10.1038/35030019
10.1021/jacs.9b12770
10.1021/jacs.1c05468
10.1021/jacs.1c06200
10.1021/ja305764d
10.1021/jacs.2c00435
10.1038/s41586-021-03898-1
10.1038/ng.3662
10.1038/s41556-021-00654-5
10.1002/anie.202207384
10.1038/s41591-022-01886-0
10.1093/nar/gkt784
10.1038/s41467-020-20379-7
10.1021/jacs.5b08596
10.2217/imt-2022-0027
10.1038/s41557-021-00736-9
10.1093/nar/gkaa841
10.1039/D0CB00211A
10.1021/acs.jpclett.0c02969
10.1038/s41556-021-00639-4
10.1038/nchembio723
10.1021/jacs.0c00774
10.1021/ja310251r
10.1002/hep.26404
10.1073/pnas.182256799
10.1038/s41588-020-0672-8
10.1021/ja068739h
10.1021/jacs.6b07598
10.1093/nar/gkx678
10.1021/ja055636a
10.1016/j.trechm.2019.07.002
10.1038/s41467-022-29292-7
10.1021/jacs.9b05642
10.1093/nar/gks1331
10.1016/S1470-2045(22)00382-5
10.1186/s12943-021-01328-4
10.1038/s41586-021-03741-7
10.1002/anie.202203553
10.1021/acs.accounts.0c00431
10.1038/s43018-021-00195-8
10.1021/acs.jmedchem.5b01835
10.1021/acs.accounts.2c00337
10.1093/nar/gki917
10.1093/nar/gkv355
10.1093/nar/gkaa387
10.1021/ja050823u
10.1093/nar/gkl286
10.1038/s41467-021-22531-3
10.1093/nar/gki609
10.1038/s43018-022-00508-5
10.1021/jacs.2c04775
10.1093/nar/gkab609
10.1038/s41571-021-00558-1
10.1038/nrm.2017.3
10.1038/nchem.1548
10.1021/jacs.9b02679
10.1021/bi100330w
10.1093/nar/gkm009
10.1002/cac2.12005
10.1021/jacs.2c05312
10.1038/s41467-022-32159-6
10.1002/chem.202002985
10.1056/NEJMoa1913662
10.1021/ja4118945
10.1038/s41556-022-00962-4
10.1038/s41418-020-00633-7
10.1093/nar/gkab1154
10.1002/anie.201709184
10.1073/pnas.1516925112
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.3c05214
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 16237
ExternalDocumentID 37460135
10_1021_jacs_3c05214
d089936408
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFRP
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
CITATION
CUPRZ
AAYWT
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a357t-8c7d7e520c266c1661ac4586bfb302e490206e8d0c580e2446cb11ff6ddbd2c93
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Tue Aug 05 10:42:03 EDT 2025
Fri Jul 11 09:35:16 EDT 2025
Mon Jul 21 05:32:58 EDT 2025
Thu Apr 24 22:50:51 EDT 2025
Tue Jul 01 03:54:36 EDT 2025
Fri Jul 28 03:16:50 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-8c7d7e520c266c1661ac4586bfb302e490206e8d0c580e2446cb11ff6ddbd2c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2934-9906
0000-0002-2706-3066
0000-0001-9712-2618
0000-0001-6063-8397
PMID 37460135
PQID 2839249775
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3040478645
proquest_miscellaneous_2839249775
pubmed_primary_37460135
crossref_primary_10_1021_jacs_3c05214
crossref_citationtrail_10_1021_jacs_3c05214
acs_journals_10_1021_jacs_3c05214
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-26
PublicationDateYYYYMMDD 2023-07-26
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref49/cit49
  doi: 10.1021/bi048242p
– ident: ref26/cit26
  doi: 10.1021/jacs.0c11708
– ident: ref36/cit36
  doi: 10.1038/s41467-022-33761-4
– ident: ref53/cit53
  doi: 10.1093/nar/gkv1357
– ident: ref70/cit70
  doi: 10.1038/35030019
– ident: ref42/cit42
  doi: 10.1021/jacs.9b12770
– ident: ref45/cit45
  doi: 10.1021/jacs.1c05468
– ident: ref43/cit43
  doi: 10.1021/jacs.1c06200
– ident: ref54/cit54
  doi: 10.1021/ja305764d
– ident: ref62/cit62
  doi: 10.1021/jacs.2c00435
– ident: ref10/cit10
  doi: 10.1038/s41586-021-03898-1
– ident: ref27/cit27
  doi: 10.1038/ng.3662
– ident: ref15/cit15
  doi: 10.1038/s41556-021-00654-5
– ident: ref23/cit23
  doi: 10.1002/anie.202207384
– ident: ref6/cit6
  doi: 10.1038/s41591-022-01886-0
– ident: ref40/cit40
  doi: 10.1093/nar/gkt784
– ident: ref7/cit7
  doi: 10.1038/s41467-020-20379-7
– ident: ref59/cit59
  doi: 10.1021/jacs.5b08596
– ident: ref73/cit73
  doi: 10.2217/imt-2022-0027
– ident: ref29/cit29
  doi: 10.1038/s41557-021-00736-9
– ident: ref28/cit28
  doi: 10.1093/nar/gkaa841
– ident: ref51/cit51
  doi: 10.1039/D0CB00211A
– ident: ref67/cit67
  doi: 10.1021/acs.jpclett.0c02969
– ident: ref4/cit4
  doi: 10.1038/s41556-021-00639-4
– ident: ref55/cit55
  doi: 10.1038/nchembio723
– ident: ref64/cit64
  doi: 10.1021/jacs.0c00774
– ident: ref57/cit57
  doi: 10.1021/ja310251r
– ident: ref72/cit72
  doi: 10.1002/hep.26404
– ident: ref33/cit33
  doi: 10.1073/pnas.182256799
– ident: ref47/cit47
  doi: 10.1038/s41588-020-0672-8
– ident: ref38/cit38
  doi: 10.1021/ja068739h
– ident: ref46/cit46
  doi: 10.1021/jacs.6b07598
– ident: ref17/cit17
  doi: 10.1093/nar/gkx678
– ident: ref50/cit50
  doi: 10.1021/ja055636a
– ident: ref18/cit18
  doi: 10.1016/j.trechm.2019.07.002
– ident: ref13/cit13
  doi: 10.1038/s41467-022-29292-7
– ident: ref61/cit61
  doi: 10.1021/jacs.9b05642
– ident: ref69/cit69
  doi: 10.1093/nar/gks1331
– ident: ref12/cit12
  doi: 10.1016/S1470-2045(22)00382-5
– ident: ref19/cit19
  doi: 10.1186/s12943-021-01328-4
– ident: ref9/cit9
  doi: 10.1038/s41586-021-03741-7
– ident: ref32/cit32
  doi: 10.1002/anie.202203553
– ident: ref22/cit22
  doi: 10.1021/acs.accounts.0c00431
– ident: ref2/cit2
  doi: 10.1038/s43018-021-00195-8
– ident: ref20/cit20
  doi: 10.1021/acs.jmedchem.5b01835
– ident: ref24/cit24
  doi: 10.1021/acs.accounts.2c00337
– ident: ref39/cit39
  doi: 10.1093/nar/gki917
– ident: ref60/cit60
  doi: 10.1093/nar/gkv355
– ident: ref56/cit56
  doi: 10.1093/nar/gkaa387
– ident: ref37/cit37
  doi: 10.1021/ja050823u
– ident: ref35/cit35
  doi: 10.1093/nar/gkl286
– ident: ref16/cit16
  doi: 10.1038/s41467-021-22531-3
– ident: ref48/cit48
  doi: 10.1093/nar/gki609
– ident: ref8/cit8
  doi: 10.1038/s43018-022-00508-5
– ident: ref44/cit44
  doi: 10.1021/jacs.2c04775
– ident: ref30/cit30
  doi: 10.1093/nar/gkab609
– ident: ref1/cit1
  doi: 10.1038/s41571-021-00558-1
– ident: ref21/cit21
  doi: 10.1038/nrm.2017.3
– ident: ref25/cit25
  doi: 10.1038/nchem.1548
– ident: ref34/cit34
  doi: 10.1021/jacs.9b02679
– ident: ref41/cit41
  doi: 10.1021/bi100330w
– ident: ref68/cit68
  doi: 10.1093/nar/gkm009
– ident: ref5/cit5
  doi: 10.1002/cac2.12005
– ident: ref31/cit31
  doi: 10.1021/jacs.2c05312
– ident: ref14/cit14
  doi: 10.1038/s41467-022-32159-6
– ident: ref65/cit65
  doi: 10.1002/chem.202002985
– ident: ref11/cit11
  doi: 10.1056/NEJMoa1913662
– ident: ref58/cit58
  doi: 10.1021/ja4118945
– ident: ref3/cit3
  doi: 10.1038/s41556-022-00962-4
– ident: ref71/cit71
  doi: 10.1038/s41418-020-00633-7
– ident: ref63/cit63
  doi: 10.1093/nar/gkab1154
– ident: ref66/cit66
  doi: 10.1002/anie.201709184
– ident: ref52/cit52
  doi: 10.1073/pnas.1516925112
SSID ssj0004281
Score 2.478119
Snippet EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16228
SubjectTerms cancer therapy
colorectal neoplasms
DNA
DNA-directed DNA polymerase
glioblastoma
hepatoma
humans
hydrogen
oncogenes
promoter regions
topology
tyrosine
Title Structure of the Major G‑Quadruplex in the Human EGFR Oncogene Promoter Adopts a Unique Folding Topology with a Distinctive Snap-Back Loop
URI http://dx.doi.org/10.1021/jacs.3c05214
https://www.ncbi.nlm.nih.gov/pubmed/37460135
https://www.proquest.com/docview/2839249775
https://www.proquest.com/docview/3040478645
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHODCm1JemkpwQlll_Ui8x2XpboV4b1fqLXLGjgStkmizkYATP4ALf5FfwthJWlG0gqs9VhJ74vnGM_6GsaemiNFqyyNhJ-SgiHwSGVXoyBK0VTJFT3Lusy3eJocr-epYHZ8nyF6M4HPPD4TNSKC_ZCovsys80al3sqaz5fn9R67HA8xNdSL6BPeLo70BwuZPA7QFVQbrMr_BFsMdnS6p5GTUbvIRfvubsvEfL36TXe8BJkw7jbjFLrnyNrs6G-q63WE_loEytl07qAog_AdvzOdqDYtf339-aI1dt_Wp-wKfytAXDvnhYDH_CO9KrEjdHLwPKXxuDVNb1ZsGDKwCDSzMu1AWHHWVF76CP-Wl7pd-IynDzgrL0tTRC4Mn8Lqq6rtsNT84mh1GfU2GyAiVbiKNqU2d4jGSZccxWXeDUukkL3IRcycnBD8Tp22MSseOsEOC-XhcFIm1ueU4EffYTlmV7j4D0h1JrSpFz6umZR4bG4iSJWoakO-xfZrBrP-nmiyEyzm5K761n9c99nxYzAx7UnNfW-N0i_SzM-m6I_PYIrc_6EVGi-NDKKZ0Vdtk3ONJSZhZbZcRtC9KUkNJMrudUp09TaSSPGChHvzHtz1k13xte3-QzJNHbIeUwz0mBLTJnwT1_w1DzQCG
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbtswECWCdJFu-v8k6WcCNKtCgUyREr3ownXiOI2TfmwD2SkUSQFtAkmwLLTpqgfopgfoVXqYnqRDSnLQAAa6CdAtOZIocsh5wxk-EvJCpr7SQlMv0F10UIKk60meCk8jtOUsUpbk3GZbHIfDKXtzwk9WyM_2LAw2osQ3lS6If8kuYGmCsDBQ9qwpa3IoD83FZ_TQylcHuzic25QO9ib9oddcIuDJgEdzT6hIR4ZTX6EpUh00R1IxLsIkTQKfGtZFvBQaoX3FhW_Q2IUq6XTSNNQ60VRZriVc4W8g7qHWt-v1x5fHLqnotOg6EmHQ5NVfba21e6r82-4tAbPOqA1uk1-L7nC5LGc71TzZUV-vMEX-t_11h9xq4DT0av2_S1ZMdo-s9dtb7O6T72NHkFvNDOQpINqFI_kpn8H-728_3ldSz6ri3HyBj5mrcyEN2NsffIC3mcpxchl45xIWzQx6Oi_mJUiYOtJbGNSBO5jU90xcgN3Txupdu2xmzo7AOJOF91qqMxjlefGATK-lMx6S1SzPzGMCOFMYlvJIWRY5wRJfakcLzZTAB5J1soUjFjcrSBm75ACKzpktbcZxnbxsdShWDYW7vUnkfIn09kK6qKlLlshtteoY4-DYgJHMTF6VMbXomaGHwJfLBGgFGGo_Q5lHtS4vvhZEDP39gG_8w789J2vDydEoHh0cH26SmxSxpN1Cp-ETsoqKYp4i9psnz9wMBHJ63Sr8B1_tYqo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELaqIgEX_n_K71SiJ5Qq69iJ98Bh2W3a0lIK25V6C47tSNAqiTYbteXUB-iFR-BVeBSehLGTLKLSSlwqcY0nf_aM5xvP-DMhr2TmKy009QLdxwAlSPue5JnwNEJbziJlSc5ttcVeuDVh7w754RL50e2FwY-o8EmVS-Jbqy511jIMWKogbAiU3W_K2jrKHXN2glFa9WZ7hEO6Rmm8cTDc8tqDBDwZ8GjmCRXpyHDqK3RHqocuSSrGRZhmaeBTw_qImUIjtK-48A06vFClvV6WhVqnmirLt4Sz_DWbIbTx3WA4_rP1kopeh7AjEQZtbf3lr7W-T1V_-74FgNY5tvg2-TnvElfPcrRez9J19e0SW-R_3Wd3yK0WVsOgsYO7ZMnk98iNYXea3X1yMXZEufXUQJEBol54L78WU9j8df79Yy31tC6PzSl8yV2bS23Axmb8CT7kqkAjM7DvChfNFAa6KGcVSJg48luImwQeHDTnTZyBXdvG5pGdPnPnT2Ccy9J7K9UR7BZF-YBMrqQzHpLlvMjNYwJoMQyv8khZNjnBUl9qRw_NlMAb0hWyiiOWtDNJlbgiAYpBmr3ajuMKed3pUaJaKnd7osjxAum1uXTZUJgskFvtVDLBwbGJI5mboq4SalE0w0iBL5YJ0BswtACGMo8afZ6_LYgYxv0Bf_IP__aSXN8fxcnu9t7OU3KTIqS0K-k0fEaWUU_Mc4SAs_SFM0Ign69ag38DDptlLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+of+the+Major+G-Quadruplex+in+the+Human+EGFR+Oncogene+Promoter+Adopts+a+Unique+Folding+Topology+with+a+Distinctive+Snap-Back+Loop&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Liu%2C+Yushuang&rft.au=Li%2C+Jinzhu&rft.au=Zhang%2C+Yongqiang&rft.au=Wang%2C+Yingying&rft.date=2023-07-26&rft.eissn=1520-5126&rft.volume=145&rft.issue=29&rft.spage=16228&rft_id=info:doi/10.1021%2Fjacs.3c05214&rft_id=info%3Apmid%2F37460135&rft.externalDocID=37460135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon