Employing Forbidden Transitions as Qubits in a Nuclear Spin-Free Chromium Complex
The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, wh...
Saved in:
Published in | Journal of the American Chemical Society Vol. 138; no. 4; pp. 1344 - 1348 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
03.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many M S levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr(C3S5)3]3– with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T 2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = 3/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules. |
---|---|
AbstractList | The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many M S levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr(C3S5)3]3– with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T 2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = 3/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules. The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many MS levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr(C3S5)3](3-) with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = (3)/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules. The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many MS levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr(C₃S₅)₃]³– with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T₂) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = ³/₂ spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules. The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many MS levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr(C3S5)3](3-) with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = (3)/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules.The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many MS levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr(C3S5)3](3-) with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = (3)/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules. |
Author | Rogers, Dylan M Freedman, Danna E Zadrozny, Joseph M Graham, Michael J Fataftah, Majed S Coste, Scott C |
AuthorAffiliation | Department of Chemistry Northwestern University |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Northwestern University |
Author_xml | – sequence: 1 givenname: Majed S surname: Fataftah fullname: Fataftah, Majed S – sequence: 2 givenname: Joseph M surname: Zadrozny fullname: Zadrozny, Joseph M – sequence: 3 givenname: Scott C surname: Coste fullname: Coste, Scott C – sequence: 4 givenname: Michael J surname: Graham fullname: Graham, Michael J – sequence: 5 givenname: Dylan M surname: Rogers fullname: Rogers, Dylan M – sequence: 6 givenname: Danna E surname: Freedman fullname: Freedman, Danna E email: danna.freedman@northwestern.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26739626$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFr3DAQhUVJaDZJbz0XHXuoE41kS_axLNm2EBJCkrMZybOtFlvaSjYk_7422fZQUnoaZvjmMfPeKTsKMRBj70FcgJBwuUOXLyoLUAv5hq2gkqKoQOojthJCyMLUWp2w05x3c1vKGt6yE6mNarTUK3Z3Nez7-OzDd76Jyfquo8AfEobsRx9D5pj53WT9mLkPHPnN5HrCxO_3PhSbRMTXP1Ic_DTwdZyl6OmcHW-xz_TuUM_Y4-bqYf21uL798m39-bpAVZmxqG1Zupq21pUggJrSWuw61SgHqGStDYIsSYM1BmmrUYIGRQ1i7TqJ2Kgz9vFFd5_iz4ny2A4-O-p7DBSn3Mr5XWWMbqr_omBmL4wpxaL64YBOdqCu3Sc_YHpufzs2A59eAJdizom2fxAQ7RJIuwTSHgKZcfkX7vyIi7VjQt__a-lw7zLcxSmF2cjX0V-YhJtA |
CitedBy_id | crossref_primary_10_1016_j_isci_2020_100926 crossref_primary_10_1021_acs_chemmater_6b05433 crossref_primary_10_1002_chem_201702171 crossref_primary_10_1021_acs_jpca_6b10253 crossref_primary_10_1021_acs_jpclett_0c02213 crossref_primary_10_1063_5_0084072 crossref_primary_10_1021_acs_chemrev_0c00620 crossref_primary_10_1021_acs_jpclett_1c01447 crossref_primary_10_1039_C6SC04465D crossref_primary_10_1039_D2CP01228F crossref_primary_10_1039_C9SC02899D crossref_primary_10_1002_ange_202213207 crossref_primary_10_1021_acs_inorgchem_1c01267 crossref_primary_10_1002_anie_201807256 crossref_primary_10_1016_j_physb_2021_412863 crossref_primary_10_1007_s00723_020_01304_z crossref_primary_10_1039_D3TC04395A crossref_primary_10_1021_jacs_8b05934 crossref_primary_10_1021_jacs_6b08467 crossref_primary_10_1002_qute_202300367 crossref_primary_10_1016_j_jlumin_2020_117548 crossref_primary_10_1080_00958972_2025_2453067 crossref_primary_10_1039_D4SC05304D crossref_primary_10_1039_C5CS00933B crossref_primary_10_1021_acs_inorgchem_3c02186 crossref_primary_10_1021_acs_inorgchem_4c04180 crossref_primary_10_1021_jacs_0c08986 crossref_primary_10_1016_j_ccr_2017_03_004 crossref_primary_10_1088_2058_9565_ad985e crossref_primary_10_1039_D0DT02448A crossref_primary_10_1039_C8SC04435J crossref_primary_10_1039_D0SC03107K crossref_primary_10_1039_D1TC00851J crossref_primary_10_1039_C8CC07939K crossref_primary_10_1007_s43630_022_00186_3 crossref_primary_10_1039_C7SC03749J crossref_primary_10_1038_s41534_021_00466_3 crossref_primary_10_1039_C8NJ02955E crossref_primary_10_1007_s00723_021_01392_5 crossref_primary_10_1021_acs_jctc_1c01115 crossref_primary_10_1002_ange_201807256 crossref_primary_10_1039_D3CY00417A crossref_primary_10_1007_s00723_020_01285_z crossref_primary_10_1021_acs_inorgchem_4c01672 crossref_primary_10_1039_C6CC09824J crossref_primary_10_1021_jacs_9b12797 crossref_primary_10_1039_C8SC04500C crossref_primary_10_1039_D0CP00852D crossref_primary_10_3390_magnetochemistry2040040 crossref_primary_10_1039_C9CC01123D crossref_primary_10_1039_C9CP00745H crossref_primary_10_1039_D4CP02263G crossref_primary_10_1021_acs_inorgchem_0c02121 crossref_primary_10_1039_C9DT02187F crossref_primary_10_1039_C6SC02170K crossref_primary_10_1016_j_ica_2019_119299 crossref_primary_10_3390_magnetochemistry2030031 crossref_primary_10_1002_chem_201604872 crossref_primary_10_1039_C6CC05094H crossref_primary_10_1039_D1SC01358K crossref_primary_10_1016_j_ccr_2023_215213 crossref_primary_10_1021_jacs_6b05574 crossref_primary_10_1103_PhysRevResearch_4_043135 crossref_primary_10_1039_D3CP04072K crossref_primary_10_1039_D0SC02182B crossref_primary_10_1039_C7CP05533A crossref_primary_10_1039_D4MH00454J crossref_primary_10_1021_acs_inorgchem_6b02312 crossref_primary_10_1103_PhysRevB_96_024428 crossref_primary_10_1039_C8DT02145G crossref_primary_10_1002_ejic_201700977 crossref_primary_10_3390_magnetochemistry10120107 crossref_primary_10_1021_jacs_6b02702 crossref_primary_10_1039_D0RA00676A crossref_primary_10_1088_1361_6633_ad1f81 crossref_primary_10_3762_bjnano_8_96 crossref_primary_10_1038_s42254_021_00340_3 crossref_primary_10_1021_jacs_7b11397 crossref_primary_10_1039_C9CC09817H crossref_primary_10_1103_PhysRevA_110_062602 crossref_primary_10_1002_anie_202213207 crossref_primary_10_1039_D0QI00098A |
Cites_doi | 10.1038/nnano.2006.174 10.1103/PhysRevB.76.052407 10.1038/nnano.2008.404 10.1021/ja507809w 10.1126/science.1231364 10.1088/0957-4484/16/4/R01 10.1103/PhysRevLett.101.147203 10.1038/nature12597 10.1039/c2dt31674a 10.1021/ic501906z 10.1039/c3cc44838j 10.1038/35071024 10.1002/anie.200390099 10.1021/acs.inorgchem.5b02429 10.1016/j.jmr.2005.08.013 10.1006/jmre.1997.1285 10.1103/PhysRevLett.108.067206 10.1038/ncomms6304 10.1021/ja5037397 10.1016/0301-0104(91)80018-D 10.1002/anie.201204489 10.1021/ja507846k 10.1007/0-306-47109-4_2 10.1038/nnano.2010.252 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E 10.1103/PhysRevLett.98.057201 10.1002/anie.201301435 10.1103/PhysRevLett.108.107204 10.1103/PhysRevLett.108.230501 10.1021/ja5044374 10.1038/nature06962 10.1039/C3CC46326E 10.1039/C1CS15115K 10.1021/acscentsci.5b00338 10.1093/oso/9780198506348.001.0001 10.1039/C5SC04295J |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.5b11802 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 1348 |
ExternalDocumentID | 26739626 10_1021_jacs_5b11802 d061821112 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a357t-8b44c8efbc4101e94bbadd393c1a32867a124e61b77aef6a21613e9aa8cd2aa93 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 02:02:19 EDT 2025 Fri Jul 11 02:37:40 EDT 2025 Mon Jul 21 05:57:25 EDT 2025 Tue Jul 01 04:33:22 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-8b44c8efbc4101e94bbadd393c1a32867a124e61b77aef6a21613e9aa8cd2aa93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26739626 |
PQID | 1762677409 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2000377695 proquest_miscellaneous_1762677409 pubmed_primary_26739626 crossref_primary_10_1021_jacs_5b11802 crossref_citationtrail_10_1021_jacs_5b11802 acs_journals_10_1021_jacs_5b11802 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160203 2016-02-03 2016-Feb-03 |
PublicationDateYYYYMMDD | 2016-02-03 |
PublicationDate_xml | – month: 02 year: 2016 text: 20160203 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref23/cit23 ref39/cit39 Schweiger A. (ref2/cit2) 2001 ref14/cit14 ref8/cit8 Abragam A. (ref19/cit19) 1986 ref5/cit5 ref31/cit31 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref21/cit21 ref12/cit12 ref15/cit15 Boča R. (ref20/cit20) 1999; 1 Nielson A. M. (ref1/cit1) 2010 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref15/cit15 doi: 10.1038/nnano.2006.174 – volume-title: Electron Paramagnetic Resonance of Transition Ions year: 1986 ident: ref19/cit19 – ident: ref21/cit21 doi: 10.1103/PhysRevB.76.052407 – ident: ref13/cit13 doi: 10.1038/nnano.2008.404 – ident: ref12/cit12 doi: 10.1021/ja507809w – ident: ref4/cit4 doi: 10.1126/science.1231364 – ident: ref3/cit3 doi: 10.1088/0957-4484/16/4/R01 – ident: ref33/cit33 doi: 10.1103/PhysRevLett.101.147203 – ident: ref37/cit37 doi: 10.1038/nature12597 – ident: ref17/cit17 doi: 10.1039/c2dt31674a – ident: ref24/cit24 doi: 10.1021/ic501906z – ident: ref36/cit36 doi: 10.1039/c3cc44838j – ident: ref7/cit7 doi: 10.1038/35071024 – ident: ref22/cit22 doi: 10.1002/anie.200390099 – ident: ref29/cit29 doi: 10.1021/acs.inorgchem.5b02429 – ident: ref30/cit30 doi: 10.1016/j.jmr.2005.08.013 – ident: ref40/cit40 doi: 10.1006/jmre.1997.1285 – ident: ref10/cit10 doi: 10.1103/PhysRevLett.108.067206 – ident: ref27/cit27 doi: 10.1038/ncomms6304 – ident: ref26/cit26 doi: 10.1021/ja5037397 – volume-title: Quantum Computation and Quantum Information year: 2010 ident: ref1/cit1 – volume: 1 volume-title: Theoretical Foundations of Molecular Magnetism, Current Methods in Inorganic Chemistry year: 1999 ident: ref20/cit20 – ident: ref25/cit25 doi: 10.1016/0301-0104(91)80018-D – ident: ref14/cit14 doi: 10.1002/anie.201204489 – ident: ref16/cit16 doi: 10.1021/ja507846k – ident: ref23/cit23 doi: 10.1007/0-306-47109-4_2 – ident: ref6/cit6 doi: 10.1038/nnano.2010.252 – ident: ref39/cit39 doi: 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E – ident: ref8/cit8 doi: 10.1103/PhysRevLett.98.057201 – ident: ref18/cit18 doi: 10.1002/anie.201301435 – ident: ref35/cit35 doi: 10.1103/PhysRevLett.108.107204 – ident: ref11/cit11 doi: 10.1103/PhysRevLett.108.230501 – ident: ref31/cit31 doi: 10.1021/ja5044374 – ident: ref9/cit9 doi: 10.1038/nature06962 – ident: ref34/cit34 doi: 10.1039/C3CC46326E – ident: ref5/cit5 doi: 10.1039/C1CS15115K – ident: ref28/cit28 doi: 10.1021/acscentsci.5b00338 – volume-title: Principles of Pulsed Magnetic Resonance year: 2001 ident: ref2/cit2 doi: 10.1093/oso/9780198506348.001.0001 – ident: ref38/cit38 doi: 10.1039/C5SC04295J |
SSID | ssj0004281 |
Score | 2.46811 |
Snippet | The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1344 |
SubjectTerms | chromium computers electron paramagnetic resonance spectroscopy |
Title | Employing Forbidden Transitions as Qubits in a Nuclear Spin-Free Chromium Complex |
URI | http://dx.doi.org/10.1021/jacs.5b11802 https://www.ncbi.nlm.nih.gov/pubmed/26739626 https://www.proquest.com/docview/1762677409 https://www.proquest.com/docview/2000377695 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5eHvTF-2XeyECfpCNN0qR9lOEUQUF04NtIsgSGWzfWFsRf70kvisrQ13LSpsk5-b6Qk-8gdM6dM36nHBDtaMCVJIGOtQnCoeGRFs7GZdWS-wdx2-d3L9HLV4LszxN86vWBTNaJdClVtoxWqYD49RSo-_R1_5HGYUNzZSxYneD-s7UHIJN9B6AFrLJEl94mumnu6FRJJa-dItcd8_5bsvGPjm-hjZpg4qvKI7bRkk130Fq3qeu2ix6rIr8AWbg3nWsvIZLiErKq7C2sMvxY6FGe4VGKFX7wisdqjp9mozToza3FXlB3Miom2C8mY_u2h_q96-fubVAXVggUi2QexJpzE1unDYeItAnXGpY5ljATKkZjIRWgvhWhllJZJxQFWshsolRshlSphO2jlXSa2kOEpbRMEkd06AhXoYDlwFDhwtCSoRgS0kJtGIZBHRjZoDzzprDn8E_rwWmhy2ZGBqZWJvcFMsYLrC8-rWeVIscCu3YzuQMYYX8OolI7LaAPAAACaC9JFtvQUplHiiRqoYPKMz6_Bo1ZAq84-se_HaN1oFhVnjc7QSv5vLCnQGNyfVb68AfmLOse |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fSxwxEB6qfdAX21p_XFtrhPaprGSTbLL7KEePs9UDUcG3JcklcKh7crsLpX99J9m9kwoHvoZJdjaZZL4wk28AvgnvbbgpJ9R4lgitaGJyY5N0akVmpHd5rFpyOZHjW_HrLrvrH6uHtzCoRI0j1TGI_8wuEGiCsDEzkbFsA94iDmHBoM-G18_PIFmeLtGuyiXv89xf9g5-yNb_-6E14DI6mdE7mKzUi7kl96dtY07t3xfMja_W_z3s9HCTnHX28QHeuGoXtobLKm8f4aor-YsOjIzmCxMIRSoSHViXy0V0Ta5aM2tqMquIJpPAf6wX5PppViWjhXMk0Os-ztpHEo6WB_dnD25HP2-G46Qvs5BonqkmyY0QNnfeWIH70xXCGDz0eMFtqjnLpdKIAZxMjVLaeakZgkTuCq1zO2VaF3wfNqt55Q6BKOW4op6a1FOhU4mHg2XSp6mjUzmldAAnOA1lv03qMkbAGd5AQms_OQP4sVyY0vY85aFcxsMa6e8r6aeOn2ON3MlyjUuc4RAV0ZWbt6gDugOJIJgW62VY5OlRssgGcNAZyOpr2JkXOMSnV_zbMWyNby4vyovzye_PsI3gq8sA519gs1m07ggBTmO-RrP-B7WE838 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEB7SFNq-9D62pwLtU3GQLFmyH8O2Jr2Wpmkgb0aSJViaeJe1DaW_viPZ3tLAQvtqjWQdI80nZvQNwGvhvQ035YQanyZCK5qY3NiE1VZkRnqXx6wlXxby-Ex8PM_O94BNb2GwEy221EYnftjV69qPDAOBKggLMhNZy67B9eCxC0p9ND_98xQyzdmEeFUu-RjrfrV2sEW2_dsW7QCY0dCUd-DbtosxvuTHYd-ZQ_vrCnvjf43hLtweYSc5GvTkHuy55j7cnE_Z3h7AyZD6Fw0ZKVcbE4hFGhIN2RDTRXRLTnqz7FqybIgmi8CDrDfkdL1sknLjHAk0u5fL_pKEI-bC_XwIZ-X77_PjZEy3kGieqS7JjRA2d95YgfvUFcIYPPx4wS3TPM2l0ogFnGRGKe281CmCRe4KrXNbp1oX_BHsN6vGPQGilOOKemqYp0IziYeETaVnzNFa1pTO4ACnoRq3S1tFT3iKN5HwdZycGbydFqeyI195SJtxsUP6zVZ6PfB07JA7mNa5whkO3hHduFWPfUCzIBEM02K3TBr5epQsshk8HpRk-zeszAts4uk_jO0V3Pj6rqw-f1h8ega3EIMNgeD8Oex3m969QJzTmZdRs38Dtk_2Ag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Employing+Forbidden+Transitions+as+Qubits+in+a+Nuclear+Spin-Free+Chromium+Complex&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Fataftah%2C+Majed+S.&rft.au=Zadrozny%2C+Joseph+M.&rft.au=Coste%2C+Scott+C.&rft.au=Graham%2C+Michael+J.&rft.date=2016-02-03&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=138&rft.issue=4&rft.spage=1344&rft.epage=1348&rft_id=info:doi/10.1021%2Fjacs.5b11802&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_5b11802 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |