Employing Forbidden Transitions as Qubits in a Nuclear Spin-Free Chromium Complex

The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, wh...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 138; no. 4; pp. 1344 - 1348
Main Authors Fataftah, Majed S, Zadrozny, Joseph M, Coste, Scott C, Graham, Michael J, Rogers, Dylan M, Freedman, Danna E
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many M S levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr­(C3S5)3]3– with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T 2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = 3/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules.
AbstractList The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many M S levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr­(C3S5)3]3– with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T 2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = 3/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules.
The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many MS levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr(C3S5)3](3-) with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = (3)/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules.
The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many MS levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr(C₃S₅)₃]³– with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T₂) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = ³/₂ spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules.
The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many MS levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr(C3S5)3](3-) with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = (3)/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules.The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many MS levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr(C3S5)3](3-) with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = (3)/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules.
Author Rogers, Dylan M
Freedman, Danna E
Zadrozny, Joseph M
Graham, Michael J
Fataftah, Majed S
Coste, Scott C
AuthorAffiliation Department of Chemistry
Northwestern University
AuthorAffiliation_xml – name: Department of Chemistry
– name: Northwestern University
Author_xml – sequence: 1
  givenname: Majed S
  surname: Fataftah
  fullname: Fataftah, Majed S
– sequence: 2
  givenname: Joseph M
  surname: Zadrozny
  fullname: Zadrozny, Joseph M
– sequence: 3
  givenname: Scott C
  surname: Coste
  fullname: Coste, Scott C
– sequence: 4
  givenname: Michael J
  surname: Graham
  fullname: Graham, Michael J
– sequence: 5
  givenname: Dylan M
  surname: Rogers
  fullname: Rogers, Dylan M
– sequence: 6
  givenname: Danna E
  surname: Freedman
  fullname: Freedman, Danna E
  email: danna.freedman@northwestern.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26739626$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFr3DAQhUVJaDZJbz0XHXuoE41kS_axLNm2EBJCkrMZybOtFlvaSjYk_7422fZQUnoaZvjmMfPeKTsKMRBj70FcgJBwuUOXLyoLUAv5hq2gkqKoQOojthJCyMLUWp2w05x3c1vKGt6yE6mNarTUK3Z3Nez7-OzDd76Jyfquo8AfEobsRx9D5pj53WT9mLkPHPnN5HrCxO_3PhSbRMTXP1Ic_DTwdZyl6OmcHW-xz_TuUM_Y4-bqYf21uL798m39-bpAVZmxqG1Zupq21pUggJrSWuw61SgHqGStDYIsSYM1BmmrUYIGRQ1i7TqJ2Kgz9vFFd5_iz4ny2A4-O-p7DBSn3Mr5XWWMbqr_omBmL4wpxaL64YBOdqCu3Sc_YHpufzs2A59eAJdizom2fxAQ7RJIuwTSHgKZcfkX7vyIi7VjQt__a-lw7zLcxSmF2cjX0V-YhJtA
CitedBy_id crossref_primary_10_1016_j_isci_2020_100926
crossref_primary_10_1021_acs_chemmater_6b05433
crossref_primary_10_1002_chem_201702171
crossref_primary_10_1021_acs_jpca_6b10253
crossref_primary_10_1021_acs_jpclett_0c02213
crossref_primary_10_1063_5_0084072
crossref_primary_10_1021_acs_chemrev_0c00620
crossref_primary_10_1021_acs_jpclett_1c01447
crossref_primary_10_1039_C6SC04465D
crossref_primary_10_1039_D2CP01228F
crossref_primary_10_1039_C9SC02899D
crossref_primary_10_1002_ange_202213207
crossref_primary_10_1021_acs_inorgchem_1c01267
crossref_primary_10_1002_anie_201807256
crossref_primary_10_1016_j_physb_2021_412863
crossref_primary_10_1007_s00723_020_01304_z
crossref_primary_10_1039_D3TC04395A
crossref_primary_10_1021_jacs_8b05934
crossref_primary_10_1021_jacs_6b08467
crossref_primary_10_1002_qute_202300367
crossref_primary_10_1016_j_jlumin_2020_117548
crossref_primary_10_1080_00958972_2025_2453067
crossref_primary_10_1039_D4SC05304D
crossref_primary_10_1039_C5CS00933B
crossref_primary_10_1021_acs_inorgchem_3c02186
crossref_primary_10_1021_acs_inorgchem_4c04180
crossref_primary_10_1021_jacs_0c08986
crossref_primary_10_1016_j_ccr_2017_03_004
crossref_primary_10_1088_2058_9565_ad985e
crossref_primary_10_1039_D0DT02448A
crossref_primary_10_1039_C8SC04435J
crossref_primary_10_1039_D0SC03107K
crossref_primary_10_1039_D1TC00851J
crossref_primary_10_1039_C8CC07939K
crossref_primary_10_1007_s43630_022_00186_3
crossref_primary_10_1039_C7SC03749J
crossref_primary_10_1038_s41534_021_00466_3
crossref_primary_10_1039_C8NJ02955E
crossref_primary_10_1007_s00723_021_01392_5
crossref_primary_10_1021_acs_jctc_1c01115
crossref_primary_10_1002_ange_201807256
crossref_primary_10_1039_D3CY00417A
crossref_primary_10_1007_s00723_020_01285_z
crossref_primary_10_1021_acs_inorgchem_4c01672
crossref_primary_10_1039_C6CC09824J
crossref_primary_10_1021_jacs_9b12797
crossref_primary_10_1039_C8SC04500C
crossref_primary_10_1039_D0CP00852D
crossref_primary_10_3390_magnetochemistry2040040
crossref_primary_10_1039_C9CC01123D
crossref_primary_10_1039_C9CP00745H
crossref_primary_10_1039_D4CP02263G
crossref_primary_10_1021_acs_inorgchem_0c02121
crossref_primary_10_1039_C9DT02187F
crossref_primary_10_1039_C6SC02170K
crossref_primary_10_1016_j_ica_2019_119299
crossref_primary_10_3390_magnetochemistry2030031
crossref_primary_10_1002_chem_201604872
crossref_primary_10_1039_C6CC05094H
crossref_primary_10_1039_D1SC01358K
crossref_primary_10_1016_j_ccr_2023_215213
crossref_primary_10_1021_jacs_6b05574
crossref_primary_10_1103_PhysRevResearch_4_043135
crossref_primary_10_1039_D3CP04072K
crossref_primary_10_1039_D0SC02182B
crossref_primary_10_1039_C7CP05533A
crossref_primary_10_1039_D4MH00454J
crossref_primary_10_1021_acs_inorgchem_6b02312
crossref_primary_10_1103_PhysRevB_96_024428
crossref_primary_10_1039_C8DT02145G
crossref_primary_10_1002_ejic_201700977
crossref_primary_10_3390_magnetochemistry10120107
crossref_primary_10_1021_jacs_6b02702
crossref_primary_10_1039_D0RA00676A
crossref_primary_10_1088_1361_6633_ad1f81
crossref_primary_10_3762_bjnano_8_96
crossref_primary_10_1038_s42254_021_00340_3
crossref_primary_10_1021_jacs_7b11397
crossref_primary_10_1039_C9CC09817H
crossref_primary_10_1103_PhysRevA_110_062602
crossref_primary_10_1002_anie_202213207
crossref_primary_10_1039_D0QI00098A
Cites_doi 10.1038/nnano.2006.174
10.1103/PhysRevB.76.052407
10.1038/nnano.2008.404
10.1021/ja507809w
10.1126/science.1231364
10.1088/0957-4484/16/4/R01
10.1103/PhysRevLett.101.147203
10.1038/nature12597
10.1039/c2dt31674a
10.1021/ic501906z
10.1039/c3cc44838j
10.1038/35071024
10.1002/anie.200390099
10.1021/acs.inorgchem.5b02429
10.1016/j.jmr.2005.08.013
10.1006/jmre.1997.1285
10.1103/PhysRevLett.108.067206
10.1038/ncomms6304
10.1021/ja5037397
10.1016/0301-0104(91)80018-D
10.1002/anie.201204489
10.1021/ja507846k
10.1007/0-306-47109-4_2
10.1038/nnano.2010.252
10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
10.1103/PhysRevLett.98.057201
10.1002/anie.201301435
10.1103/PhysRevLett.108.107204
10.1103/PhysRevLett.108.230501
10.1021/ja5044374
10.1038/nature06962
10.1039/C3CC46326E
10.1039/C1CS15115K
10.1021/acscentsci.5b00338
10.1093/oso/9780198506348.001.0001
10.1039/C5SC04295J
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.5b11802
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 1348
ExternalDocumentID 26739626
10_1021_jacs_5b11802
d061821112
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a357t-8b44c8efbc4101e94bbadd393c1a32867a124e61b77aef6a21613e9aa8cd2aa93
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 02:02:19 EDT 2025
Fri Jul 11 02:37:40 EDT 2025
Mon Jul 21 05:57:25 EDT 2025
Tue Jul 01 04:33:22 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-8b44c8efbc4101e94bbadd393c1a32867a124e61b77aef6a21613e9aa8cd2aa93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26739626
PQID 1762677409
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_2000377695
proquest_miscellaneous_1762677409
pubmed_primary_26739626
crossref_primary_10_1021_jacs_5b11802
crossref_citationtrail_10_1021_jacs_5b11802
acs_journals_10_1021_jacs_5b11802
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160203
2016-02-03
2016-Feb-03
PublicationDateYYYYMMDD 2016-02-03
PublicationDate_xml – month: 02
  year: 2016
  text: 20160203
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref23/cit23
ref39/cit39
Schweiger A. (ref2/cit2) 2001
ref14/cit14
ref8/cit8
Abragam A. (ref19/cit19) 1986
ref5/cit5
ref31/cit31
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref21/cit21
ref12/cit12
ref15/cit15
Boča R. (ref20/cit20) 1999; 1
Nielson A. M. (ref1/cit1) 2010
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref15/cit15
  doi: 10.1038/nnano.2006.174
– volume-title: Electron Paramagnetic Resonance of Transition Ions
  year: 1986
  ident: ref19/cit19
– ident: ref21/cit21
  doi: 10.1103/PhysRevB.76.052407
– ident: ref13/cit13
  doi: 10.1038/nnano.2008.404
– ident: ref12/cit12
  doi: 10.1021/ja507809w
– ident: ref4/cit4
  doi: 10.1126/science.1231364
– ident: ref3/cit3
  doi: 10.1088/0957-4484/16/4/R01
– ident: ref33/cit33
  doi: 10.1103/PhysRevLett.101.147203
– ident: ref37/cit37
  doi: 10.1038/nature12597
– ident: ref17/cit17
  doi: 10.1039/c2dt31674a
– ident: ref24/cit24
  doi: 10.1021/ic501906z
– ident: ref36/cit36
  doi: 10.1039/c3cc44838j
– ident: ref7/cit7
  doi: 10.1038/35071024
– ident: ref22/cit22
  doi: 10.1002/anie.200390099
– ident: ref29/cit29
  doi: 10.1021/acs.inorgchem.5b02429
– ident: ref30/cit30
  doi: 10.1016/j.jmr.2005.08.013
– ident: ref40/cit40
  doi: 10.1006/jmre.1997.1285
– ident: ref10/cit10
  doi: 10.1103/PhysRevLett.108.067206
– ident: ref27/cit27
  doi: 10.1038/ncomms6304
– ident: ref26/cit26
  doi: 10.1021/ja5037397
– volume-title: Quantum Computation and Quantum Information
  year: 2010
  ident: ref1/cit1
– volume: 1
  volume-title: Theoretical Foundations of Molecular Magnetism, Current Methods in Inorganic Chemistry
  year: 1999
  ident: ref20/cit20
– ident: ref25/cit25
  doi: 10.1016/0301-0104(91)80018-D
– ident: ref14/cit14
  doi: 10.1002/anie.201204489
– ident: ref16/cit16
  doi: 10.1021/ja507846k
– ident: ref23/cit23
  doi: 10.1007/0-306-47109-4_2
– ident: ref6/cit6
  doi: 10.1038/nnano.2010.252
– ident: ref39/cit39
  doi: 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
– ident: ref8/cit8
  doi: 10.1103/PhysRevLett.98.057201
– ident: ref18/cit18
  doi: 10.1002/anie.201301435
– ident: ref35/cit35
  doi: 10.1103/PhysRevLett.108.107204
– ident: ref11/cit11
  doi: 10.1103/PhysRevLett.108.230501
– ident: ref31/cit31
  doi: 10.1021/ja5044374
– ident: ref9/cit9
  doi: 10.1038/nature06962
– ident: ref34/cit34
  doi: 10.1039/C3CC46326E
– ident: ref5/cit5
  doi: 10.1039/C1CS15115K
– ident: ref28/cit28
  doi: 10.1021/acscentsci.5b00338
– volume-title: Principles of Pulsed Magnetic Resonance
  year: 2001
  ident: ref2/cit2
  doi: 10.1093/oso/9780198506348.001.0001
– ident: ref38/cit38
  doi: 10.1039/C5SC04295J
SSID ssj0004281
Score 2.46811
Snippet The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1344
SubjectTerms chromium
computers
electron paramagnetic resonance spectroscopy
Title Employing Forbidden Transitions as Qubits in a Nuclear Spin-Free Chromium Complex
URI http://dx.doi.org/10.1021/jacs.5b11802
https://www.ncbi.nlm.nih.gov/pubmed/26739626
https://www.proquest.com/docview/1762677409
https://www.proquest.com/docview/2000377695
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5eHvTF-2XeyECfpCNN0qR9lOEUQUF04NtIsgSGWzfWFsRf70kvisrQ13LSpsk5-b6Qk-8gdM6dM36nHBDtaMCVJIGOtQnCoeGRFs7GZdWS-wdx2-d3L9HLV4LszxN86vWBTNaJdClVtoxWqYD49RSo-_R1_5HGYUNzZSxYneD-s7UHIJN9B6AFrLJEl94mumnu6FRJJa-dItcd8_5bsvGPjm-hjZpg4qvKI7bRkk130Fq3qeu2ix6rIr8AWbg3nWsvIZLiErKq7C2sMvxY6FGe4VGKFX7wisdqjp9mozToza3FXlB3Miom2C8mY_u2h_q96-fubVAXVggUi2QexJpzE1unDYeItAnXGpY5ljATKkZjIRWgvhWhllJZJxQFWshsolRshlSphO2jlXSa2kOEpbRMEkd06AhXoYDlwFDhwtCSoRgS0kJtGIZBHRjZoDzzprDn8E_rwWmhy2ZGBqZWJvcFMsYLrC8-rWeVIscCu3YzuQMYYX8OolI7LaAPAAACaC9JFtvQUplHiiRqoYPKMz6_Bo1ZAq84-se_HaN1oFhVnjc7QSv5vLCnQGNyfVb68AfmLOse
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fSxwxEB6qfdAX21p_XFtrhPaprGSTbLL7KEePs9UDUcG3JcklcKh7crsLpX99J9m9kwoHvoZJdjaZZL4wk28AvgnvbbgpJ9R4lgitaGJyY5N0akVmpHd5rFpyOZHjW_HrLrvrH6uHtzCoRI0j1TGI_8wuEGiCsDEzkbFsA94iDmHBoM-G18_PIFmeLtGuyiXv89xf9g5-yNb_-6E14DI6mdE7mKzUi7kl96dtY07t3xfMja_W_z3s9HCTnHX28QHeuGoXtobLKm8f4aor-YsOjIzmCxMIRSoSHViXy0V0Ta5aM2tqMquIJpPAf6wX5PppViWjhXMk0Os-ztpHEo6WB_dnD25HP2-G46Qvs5BonqkmyY0QNnfeWIH70xXCGDz0eMFtqjnLpdKIAZxMjVLaeakZgkTuCq1zO2VaF3wfNqt55Q6BKOW4op6a1FOhU4mHg2XSp6mjUzmldAAnOA1lv03qMkbAGd5AQms_OQP4sVyY0vY85aFcxsMa6e8r6aeOn2ON3MlyjUuc4RAV0ZWbt6gDugOJIJgW62VY5OlRssgGcNAZyOpr2JkXOMSnV_zbMWyNby4vyovzye_PsI3gq8sA519gs1m07ggBTmO-RrP-B7WE838
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEB7SFNq-9D62pwLtU3GQLFmyH8O2Jr2Wpmkgb0aSJViaeJe1DaW_viPZ3tLAQvtqjWQdI80nZvQNwGvhvQ035YQanyZCK5qY3NiE1VZkRnqXx6wlXxby-Ex8PM_O94BNb2GwEy221EYnftjV69qPDAOBKggLMhNZy67B9eCxC0p9ND_98xQyzdmEeFUu-RjrfrV2sEW2_dsW7QCY0dCUd-DbtosxvuTHYd-ZQ_vrCnvjf43hLtweYSc5GvTkHuy55j7cnE_Z3h7AyZD6Fw0ZKVcbE4hFGhIN2RDTRXRLTnqz7FqybIgmi8CDrDfkdL1sknLjHAk0u5fL_pKEI-bC_XwIZ-X77_PjZEy3kGieqS7JjRA2d95YgfvUFcIYPPx4wS3TPM2l0ogFnGRGKe281CmCRe4KrXNbp1oX_BHsN6vGPQGilOOKemqYp0IziYeETaVnzNFa1pTO4ACnoRq3S1tFT3iKN5HwdZycGbydFqeyI195SJtxsUP6zVZ6PfB07JA7mNa5whkO3hHduFWPfUCzIBEM02K3TBr5epQsshk8HpRk-zeszAts4uk_jO0V3Pj6rqw-f1h8ega3EIMNgeD8Oex3m969QJzTmZdRs38Dtk_2Ag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Employing+Forbidden+Transitions+as+Qubits+in+a+Nuclear+Spin-Free+Chromium+Complex&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Fataftah%2C+Majed+S.&rft.au=Zadrozny%2C+Joseph+M.&rft.au=Coste%2C+Scott+C.&rft.au=Graham%2C+Michael+J.&rft.date=2016-02-03&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=138&rft.issue=4&rft.spage=1344&rft.epage=1348&rft_id=info:doi/10.1021%2Fjacs.5b11802&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_5b11802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon