Two-in-One Chemogene Assembled from Drug-Integrated Antisense Oligonucleotides To Reverse Chemoresistance
Combinatorial chemo and gene therapy provides a promising way to cure drug-resistant cancer, since the codelivered functional nucleic acids can regulate drug resistance genes, thus restoring sensitivity of the cells to chemotherapeutics. However, the dramatic chemical and physical differences betwee...
Saved in:
Published in | Journal of the American Chemical Society Vol. 141; no. 17; pp. 6955 - 6966 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Combinatorial chemo and gene therapy provides a promising way to cure drug-resistant cancer, since the codelivered functional nucleic acids can regulate drug resistance genes, thus restoring sensitivity of the cells to chemotherapeutics. However, the dramatic chemical and physical differences between chemotherapeutics and nucleic acids greatly hinder the design and construction of an ideal drug delivery system (DDS) to achieve synergistic antitumor effects. Herein, we report a novel approach to synthesize a nanosized DDS using drug-integrated DNA with antisense sequences (termed “chemogene”) to treat drug-resistant cancer. As a proof of concept, floxuridine (F), a typical nucleoside analog antitumor drug, was incorporated in the antisense sequence in the place of thymine (T) based on their structural similarity. After conjugation with polycaprolactone, a spherical nucleic acid (SNA)-like two-in-one chemogene can be self-assembled, which possesses the capabilities of rapid cell entry without the need for a transfection agent, efficient downregulation of drug resistance genes, and chronic release of chemotherapeutics for treating the drug-resistant tumors in both subcutaneous and orthotopic liver transplantation mouse models. |
---|---|
AbstractList | Combinatorial chemo and gene therapy provides a promising way to cure drug-resistant cancer, since the codelivered functional nucleic acids can regulate drug resistance genes, thus restoring sensitivity of the cells to chemotherapeutics. However, the dramatic chemical and physical differences between chemotherapeutics and nucleic acids greatly hinder the design and construction of an ideal drug delivery system (DDS) to achieve synergistic antitumor effects. Herein, we report a novel approach to synthesize a nanosized DDS using drug-integrated DNA with antisense sequences (termed "chemogene") to treat drug-resistant cancer. As a proof of concept, floxuridine (F), a typical nucleoside analog antitumor drug, was incorporated in the antisense sequence in the place of thymine (T) based on their structural similarity. After conjugation with polycaprolactone, a spherical nucleic acid (SNA)-like two-in-one chemogene can be self-assembled, which possesses the capabilities of rapid cell entry without the need for a transfection agent, efficient downregulation of drug resistance genes, and chronic release of chemotherapeutics for treating the drug-resistant tumors in both subcutaneous and orthotopic liver transplantation mouse models. Combinatorial chemo and gene therapy provides a promising way to cure drug-resistant cancer, since the codelivered functional nucleic acids can regulate drug resistance genes, thus restoring sensitivity of the cells to chemotherapeutics. However, the dramatic chemical and physical differences between chemotherapeutics and nucleic acids greatly hinder the design and construction of an ideal drug delivery system (DDS) to achieve synergistic antitumor effects. Herein, we report a novel approach to synthesize a nanosized DDS using drug-integrated DNA with antisense sequences (termed "chemogene") to treat drug-resistant cancer. As a proof of concept, floxuridine (F), a typical nucleoside analog antitumor drug, was incorporated in the antisense sequence in the place of thymine (T) based on their structural similarity. After conjugation with polycaprolactone, a spherical nucleic acid (SNA)-like two-in-one chemogene can be self-assembled, which possesses the capabilities of rapid cell entry without the need for a transfection agent, efficient downregulation of drug resistance genes, and chronic release of chemotherapeutics for treating the drug-resistant tumors in both subcutaneous and orthotopic liver transplantation mouse models.Combinatorial chemo and gene therapy provides a promising way to cure drug-resistant cancer, since the codelivered functional nucleic acids can regulate drug resistance genes, thus restoring sensitivity of the cells to chemotherapeutics. However, the dramatic chemical and physical differences between chemotherapeutics and nucleic acids greatly hinder the design and construction of an ideal drug delivery system (DDS) to achieve synergistic antitumor effects. Herein, we report a novel approach to synthesize a nanosized DDS using drug-integrated DNA with antisense sequences (termed "chemogene") to treat drug-resistant cancer. As a proof of concept, floxuridine (F), a typical nucleoside analog antitumor drug, was incorporated in the antisense sequence in the place of thymine (T) based on their structural similarity. After conjugation with polycaprolactone, a spherical nucleic acid (SNA)-like two-in-one chemogene can be self-assembled, which possesses the capabilities of rapid cell entry without the need for a transfection agent, efficient downregulation of drug resistance genes, and chronic release of chemotherapeutics for treating the drug-resistant tumors in both subcutaneous and orthotopic liver transplantation mouse models. |
Author | Zhang, Chuan Mou, Quanbing Zhu, Xinyuan Gao, Xihui Ma, Yuan Yan, Deyue Ding, Fei |
AuthorAffiliation | School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites |
AuthorAffiliation_xml | – name: School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites |
Author_xml | – sequence: 1 givenname: Quanbing surname: Mou fullname: Mou, Quanbing – sequence: 2 givenname: Yuan surname: Ma fullname: Ma, Yuan – sequence: 3 givenname: Fei surname: Ding fullname: Ding, Fei – sequence: 4 givenname: Xihui surname: Gao fullname: Gao, Xihui – sequence: 5 givenname: Deyue surname: Yan fullname: Yan, Deyue – sequence: 6 givenname: Xinyuan orcidid: 0000-0002-2891-837X surname: Zhu fullname: Zhu, Xinyuan – sequence: 7 givenname: Chuan orcidid: 0000-0002-9311-0799 surname: Zhang fullname: Zhang, Chuan email: chuanzhang@sjtu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30964284$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1r3DAQhkVJSDZpbz0XH3uoE2lk2d7jsv0KBBbK9ixk7XirxZZSjZzSf1-ZOJfQQk_zoWdeNPNesTMfPDL2VvAbwUHcnoylm7YTsm3UK7YSCnipBNRnbMU5h7Jpa3nJrohOuaygFRfsUvJ1ndNqxdz-VyidL3cei-0PHMMRc7YhwrEb8FD0MYzFxzgdyzuf8BhNys2NT47QExa7wR2Dn-yAIbkDUrEPxTd8xEiLXERylIy3-Jqd92YgfLPEa_b986f99mt5v_tyt93cl0aqJpWtUVLVomqkMgehuGqtlXVtoBKgGuB9ful77OZVFNg1dHnXvuuFRAWqNfKavX_SfYjh54SU9OjI4jAYj2EiDaAkyGbN4T9QXgNUjZrRdws6dSMe9EN0o4m_9fMlMwBPgI2BKGKvrUsmueBTNG7QguvZLj3bpRe78tCHF0PPuv_Al__OzVOYos-H_Dv6B8vtowo |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_126245 crossref_primary_10_1021_acsami_2c09406 crossref_primary_10_1039_D2NR05669K crossref_primary_10_1016_j_cclet_2020_12_058 crossref_primary_10_3390_nano14201657 crossref_primary_10_3390_pharmaceutics13050591 crossref_primary_10_1007_s12274_020_2972_9 crossref_primary_10_1002_advs_202001669 crossref_primary_10_1002_ange_202011174 crossref_primary_10_1021_acsami_0c17887 crossref_primary_10_1038_s41467_021_21442_7 crossref_primary_10_1002_adhm_202304130 crossref_primary_10_1016_j_drudis_2020_11_006 crossref_primary_10_1039_D0SC00339E crossref_primary_10_1002_anie_202113619 crossref_primary_10_1002_ange_202402291 crossref_primary_10_1016_j_biopha_2020_109997 crossref_primary_10_1021_acsami_1c02122 crossref_primary_10_1016_j_nantod_2023_102110 crossref_primary_10_1021_jacs_0c10732 crossref_primary_10_1002_ange_202006895 crossref_primary_10_1002_ange_202211505 crossref_primary_10_1002_ange_202006890 crossref_primary_10_1007_s41664_021_00182_z crossref_primary_10_1002_asia_202100505 crossref_primary_10_1002_smll_202206228 crossref_primary_10_1007_s40843_022_2420_y crossref_primary_10_1039_D1NR06353G crossref_primary_10_1039_D1NR00517K crossref_primary_10_1002_smll_202312153 crossref_primary_10_1021_acsami_9b20707 crossref_primary_10_1039_D2NA00222A crossref_primary_10_1002_anie_202402291 crossref_primary_10_1002_anie_202011174 crossref_primary_10_1002_anie_202108393 crossref_primary_10_1039_D2SC01003H crossref_primary_10_1016_j_jconrel_2020_08_058 crossref_primary_10_1039_D4SC01147C crossref_primary_10_1016_j_nantod_2022_101699 crossref_primary_10_1002_advs_202001048 crossref_primary_10_1007_s41664_021_00190_z crossref_primary_10_1021_jacs_4c14818 crossref_primary_10_1021_cbmi_4c00012 crossref_primary_10_1002_adfm_202207845 crossref_primary_10_1002_adhm_202201178 crossref_primary_10_1016_j_jconrel_2020_03_040 crossref_primary_10_1021_acs_nanolett_3c02185 crossref_primary_10_1021_jacs_1c09574 crossref_primary_10_1002_anie_202006895 crossref_primary_10_1016_j_matdes_2022_111159 crossref_primary_10_1021_acsami_9b11340 crossref_primary_10_1039_D0CS00011F crossref_primary_10_1016_j_asems_2024_100104 crossref_primary_10_1002_ange_202108393 crossref_primary_10_1039_D3SC00020F crossref_primary_10_1002_ange_202113619 crossref_primary_10_1002_smll_202306902 crossref_primary_10_1039_D1TB02602J crossref_primary_10_1007_s40242_021_1055_0 crossref_primary_10_1021_acsami_1c00842 crossref_primary_10_1016_j_biomaterials_2021_120846 crossref_primary_10_1016_j_colcom_2021_100386 crossref_primary_10_1021_acsabm_2c00343 crossref_primary_10_1021_acs_jpcb_3c01321 crossref_primary_10_1039_C9NR05233J crossref_primary_10_1002_smsc_202000056 crossref_primary_10_1007_s12274_023_6245_2 crossref_primary_10_1016_j_apmt_2021_101217 crossref_primary_10_1016_j_nantod_2021_101160 crossref_primary_10_1002_EXP_20210172 crossref_primary_10_1038_s41419_020_02820_3 crossref_primary_10_1002_adom_202100966 crossref_primary_10_1016_j_pmatsci_2021_100919 crossref_primary_10_1016_j_matdes_2023_112457 crossref_primary_10_1021_acsabm_4c00886 crossref_primary_10_1039_D3CC02904B crossref_primary_10_1007_s11426_022_1311_3 crossref_primary_10_1016_j_cclet_2021_09_026 crossref_primary_10_1002_cmdc_202400531 crossref_primary_10_1039_D0MH00715C crossref_primary_10_1021_acsnano_1c03072 crossref_primary_10_1021_acsnano_3c09027 crossref_primary_10_2174_1389200224666230410111015 crossref_primary_10_1021_acsami_4c11064 crossref_primary_10_1021_acsnano_0c10045 crossref_primary_10_1016_j_cca_2022_04_993 crossref_primary_10_1002_anie_202211505 crossref_primary_10_1002_slct_202203004 crossref_primary_10_1021_acsami_0c06204 crossref_primary_10_1002_anie_202006890 |
Cites_doi | 10.1038/nrc3819 10.1002/med.21479 10.1073/pnas.1305804110 10.1021/ja503598z 10.1073/pnas.1004604107 10.1016/S0169-409X(99)00062-9 10.1038/nrd3625 10.1016/j.biomaterials.2015.12.015 10.1016/j.jconrel.2017.01.042 10.1038/nrc3297 10.1038/nrd4140 10.1021/acsnano.8b02830 10.1038/nrclinonc.2013.158 10.1021/jacs.6b07554 10.1126/sciadv.1600102 10.1002/anie.201706301 10.1021/acsabm.8b00065 10.1016/j.biomaterials.2017.04.022 10.1039/C8NR01226A 10.1016/j.biomaterials.2017.04.028 10.1021/ja4094617 10.1038/nrd4333 10.1073/pnas.69.11.3360 10.1038/nbt.1547 10.1016/j.jconrel.2016.03.037 10.3390/cancers10020047 10.1021/bm049874u 10.1038/nbt.3506 10.1146/annurev-bioeng-071811-150124 10.1021/ja110833r 10.1038/nrc3599 10.1093/nar/gkx1239 10.1021/jacs.5b07104 10.7150/thno.7193 10.2174/156800909788166600 10.1021/ja503010a 10.1038/nrneurol.2017.148 10.1021/acs.accounts.6b00629 10.1002/adfm.201701027 10.1021/acsnano.8b01440 10.3390/molecules13081551 10.1016/j.jconrel.2017.09.042 10.1016/S0002-9440(10)65505-8 10.1038/nbt.3330 10.1021/acs.nanolett.7b04812 10.1002/adma.201707113 10.1038/nrclinonc.2016.119 10.1016/j.jconrel.2018.11.004 10.1016/j.colsurfb.2006.01.004 10.1002/ijc.10146 10.1016/j.nantod.2012.01.002 10.1016/j.addr.2017.12.011 10.1038/nnano.2015.311 10.1016/j.jconrel.2017.02.006 10.1038/nrc1074 10.1158/1535-7163.MCT-05-0064 10.1126/scitranslmed.3006839 10.1021/jacs.6b13359 10.1038/nmat3253 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.8b13875 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 6966 |
ExternalDocumentID | 30964284 10_1021_jacs_8b13875 c497187760 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a357t-8a535614735ad15058cc366a24125720f473ffeb042852c92b126fbf13e5258a3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 02:29:45 EDT 2025 Fri Jul 11 10:52:56 EDT 2025 Thu Apr 03 06:59:37 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Tue Jul 01 03:21:44 EDT 2025 Thu Aug 27 13:43:30 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-8a535614735ad15058cc366a24125720f473ffeb042852c92b126fbf13e5258a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9311-0799 0000-0002-2891-837X |
PMID | 30964284 |
PQID | 2206224752 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2253237902 proquest_miscellaneous_2206224752 pubmed_primary_30964284 crossref_citationtrail_10_1021_jacs_8b13875 crossref_primary_10_1021_jacs_8b13875 acs_journals_10_1021_jacs_8b13875 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref3/cit3 doi: 10.1038/nrc3819 – ident: ref48/cit48 doi: 10.1002/med.21479 – ident: ref30/cit30 doi: 10.1073/pnas.1305804110 – ident: ref35/cit35 doi: 10.1021/ja503598z – ident: ref6/cit6 doi: 10.1073/pnas.1004604107 – ident: ref55/cit55 doi: 10.1016/S0169-409X(99)00062-9 – ident: ref25/cit25 doi: 10.1038/nrd3625 – ident: ref12/cit12 doi: 10.1016/j.biomaterials.2015.12.015 – ident: ref22/cit22 doi: 10.1016/j.jconrel.2017.01.042 – ident: ref4/cit4 doi: 10.1038/nrc3297 – ident: ref7/cit7 doi: 10.1038/nrd4140 – ident: ref58/cit58 doi: 10.1021/acsnano.8b02830 – ident: ref1/cit1 doi: 10.1038/nrclinonc.2013.158 – ident: ref8/cit8 doi: 10.1021/jacs.6b07554 – ident: ref23/cit23 doi: 10.1126/sciadv.1600102 – ident: ref26/cit26 doi: 10.1002/anie.201706301 – ident: ref44/cit44 doi: 10.1021/acsabm.8b00065 – ident: ref10/cit10 doi: 10.1016/j.biomaterials.2017.04.022 – ident: ref27/cit27 doi: 10.1039/C8NR01226A – ident: ref13/cit13 doi: 10.1016/j.biomaterials.2017.04.028 – ident: ref15/cit15 doi: 10.1021/ja4094617 – ident: ref21/cit21 doi: 10.1038/nrd4333 – ident: ref39/cit39 doi: 10.1073/pnas.69.11.3360 – ident: ref5/cit5 doi: 10.1038/nbt.1547 – ident: ref43/cit43 doi: 10.1016/j.jconrel.2016.03.037 – ident: ref52/cit52 doi: 10.3390/cancers10020047 – ident: ref56/cit56 doi: 10.1021/bm049874u – ident: ref20/cit20 doi: 10.1038/nbt.3506 – ident: ref36/cit36 doi: 10.1146/annurev-bioeng-071811-150124 – ident: ref42/cit42 doi: 10.1021/ja110833r – ident: ref2/cit2 doi: 10.1038/nrc3599 – ident: ref51/cit51 doi: 10.1093/nar/gkx1239 – ident: ref34/cit34 doi: 10.1021/jacs.5b07104 – ident: ref37/cit37 doi: 10.7150/thno.7193 – ident: ref45/cit45 doi: 10.2174/156800909788166600 – ident: ref47/cit47 doi: 10.1021/ja503010a – ident: ref46/cit46 doi: 10.1038/nrneurol.2017.148 – ident: ref49/cit49 doi: 10.1021/acs.accounts.6b00629 – ident: ref11/cit11 doi: 10.1002/adfm.201701027 – ident: ref14/cit14 doi: 10.1021/acsnano.8b01440 – ident: ref40/cit40 doi: 10.3390/molecules13081551 – ident: ref9/cit9 doi: 10.1016/j.jconrel.2017.09.042 – ident: ref28/cit28 doi: 10.1016/S0002-9440(10)65505-8 – ident: ref50/cit50 doi: 10.1038/nbt.3330 – ident: ref16/cit16 doi: 10.1021/acs.nanolett.7b04812 – ident: ref33/cit33 doi: 10.1002/adma.201707113 – ident: ref17/cit17 doi: 10.1038/nrclinonc.2016.119 – ident: ref54/cit54 doi: 10.1016/j.jconrel.2018.11.004 – ident: ref57/cit57 doi: 10.1016/j.colsurfb.2006.01.004 – ident: ref29/cit29 doi: 10.1002/ijc.10146 – ident: ref59/cit59 doi: 10.1016/j.nantod.2012.01.002 – ident: ref24/cit24 doi: 10.1016/j.addr.2017.12.011 – ident: ref19/cit19 doi: 10.1038/nnano.2015.311 – ident: ref53/cit53 doi: 10.1016/j.jconrel.2017.02.006 – ident: ref41/cit41 doi: 10.1038/nrc1074 – ident: ref38/cit38 doi: 10.1158/1535-7163.MCT-05-0064 – ident: ref31/cit31 doi: 10.1126/scitranslmed.3006839 – ident: ref32/cit32 doi: 10.1021/jacs.6b13359 – ident: ref18/cit18 doi: 10.1038/nmat3253 |
SSID | ssj0004281 |
Score | 2.5572197 |
Snippet | Combinatorial chemo and gene therapy provides a promising way to cure drug-resistant cancer, since the codelivered functional nucleic acids can regulate drug... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6955 |
SubjectTerms | animal models antineoplastic activity DNA drug delivery systems drug resistance drug therapy floxuridine gene expression regulation gene therapy liver transplant neoplasms oligonucleotides resistance genes thymine transfection |
Title | Two-in-One Chemogene Assembled from Drug-Integrated Antisense Oligonucleotides To Reverse Chemoresistance |
URI | http://dx.doi.org/10.1021/jacs.8b13875 https://www.ncbi.nlm.nih.gov/pubmed/30964284 https://www.proquest.com/docview/2206224752 https://www.proquest.com/docview/2253237902 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxsxEBapc2gvadJX3CZBgfZUZGxppZWPxm0ehTaQ2uDboqcxcbXBuyaQX5-RdzcmLm5z1c6-RiPmG2bmG4Q-JzKRLoUDSDVzJPFGE6WNJL7LlPXeKpnGfuefv8TFOPkx4ZN1gexmBp9GfiBTdKTuMUDWL9AuFTKNQdZg-Hvd_0hlr4G5qRSsLnDfvDs6IFM8dUBbUOXKu5y9RudNj05VVHLTWZa6Y-7_pmz8z4fvo70aYOJBZREHaMeFN-jlsJnr9hbNRnc5mQVyFRyOyzmYkMMx-ftHz53FseEEf1ssp-SyoZKweBDi0OZQOHw1n03zEFmQ83JmXYFHOb52sbijfhzE7xGTgjG9Q-Oz76PhBakHLhDFeFoSqTiLzKAp48oCUuTSGCaEAi8PJ5t2PVzx3umocE5Nn-oeFV77HnOccqnYe9QKeXCHCAuTcCO4dZZaCOGk7HPJNIQ_OrHaJrqNTkE9WX1gimyVC6cQi8TVWmlt9LXZqczUjOVxcMZ8i_SXR-nbiqlji9xps-kZaD7mR1Rw-bLIKO0KQDQpp_-S4YyytN8FmQ-VxTy-jUE4CJpJPj7j3z6hVwC9-lXp5BFqlYulOwZ4U-qTlW0_AMld9Do |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELY29sBeNrYBYxvDSNvTZNTaceI-VgXUDijSViTeIv9E1ToHkVRI_PXcpUnRkDr11bk4zvksf6e7-46Qb4lKlM_gAHIjPEuCNUwbq1joCO1CcFplWO98MU6HV8nPa3ndFKtjLQwsooSZyjqI_8QugDRBMKhMVwDAfkleAQ7h6Gv1B7-fyiC56rZoN1OpaPLcn7-N95At_72HVoDL-pI5fUvGy-XVuSV_juaVObIPz5gb117_FnnTwE3aX9jHO_LCx_dkc9B2eftAppP7gk0ju4ye4nABBuUphoL_mpl3FMtP6PHd_IaNWmIJR_sRWzjH0tPL2fSmiMiJXFRT50s6Kegvj6kezXTgzSNCBdPaJlenJ5PBkDXtF5gWMquY0lIgT2gmpHaAG6WyVqSphjsfzjnvBHgSgjeod8ltj5suT4MJXeEll0qLHbIRi-g_EpraRNpUOu-4A4dOqZ5UwoAzZBJnXGL2yCGoJ2-OT5nXkXEOngmONkrbIz_aDcttw1-ObTRmK6S_L6VvF7wdK-QO273PQfMYLdHRF_My57yTAr7JJP-fjBRcZL0OyOwuDGf5NQHOIWgm-bTGvx2QzeHk4jw_H43PPpPXAMp6i6TKL2Sjupv7fQA-lflam_sjkt38mw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGJgEv7AMGYww8CZ6Qp8aOE_ex6lZtsA80OmlvkT-niuJMSyok_nru0qSISZ3Yq31x7POd_DvdFyEfU5Uqn4MCciM8S4M1TBurWOgJ7UJwWuWY73x2nh1fpV-u5fUKSbpcGNhEBStVjRMftfrWhbbCAJYKggllEgEg-wlZQ48d2luD4fe_qZBcJR3izVUm2lj3-1_jW2Srf9-iJQCzeWhG6-RyscUmvuTHwaw2B_b3veqNjzrDBnnRwk46mMvJJlnxcYs8G3bd3l6SyfhXySaRXURPcbgEwfIUXcI_zdQ7imko9PBudsNOugITjg4itnKOlacX08lNGbE2cllPnK_ouKSXHkM-2uXAqkekCiL2ilyNjsbDY9a2YWBayLxmSkuB9UJzIbUD_CiVtSLLNLz9oO-8F2AmBG-Q95LbPjcJz4IJifCSS6XFNlmNZfRvCM1sKm0mnXfcgWGnVF8qYcAoMqkzLjU7ZB_YU7RqVBWNh5yDhYKjLdN2yOfu0grb1jHHdhrTJdSfFtS38_odS-j2u_svgPPoNdHRl7Oq4LyXAc7JJX-IRgou8n4PaF7PhWfxNwFGInAmffsfZ_tAnn47HBWnJ-dfd8lzwGb9eWzlO7Ja3838HuCf2rxvJP4P1RT_Hg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-in-One+Chemogene+Assembled+from+Drug-Integrated+Antisense+Oligonucleotides+To+Reverse+Chemoresistance&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Mou%2C+Quanbing&rft.au=Ma%2C+Yuan&rft.au=Ding%2C+Fei&rft.au=Gao%2C+Xihui&rft.date=2019-05-01&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=141&rft.issue=17&rft.spage=6955&rft_id=info:doi/10.1021%2Fjacs.8b13875&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |