Reversible Electrochemical Gelation of Metal Chalcogenide Quantum Dots

The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native q...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 28; pp. 12207 - 12215
Main Authors Hewa-Rahinduwage, Chathuranga C, Geng, Xin, Silva, Karunamuni L, Niu, Xiangfu, Zhang, Liang, Brock, Stephanie L, Luo, Long
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.07.2020
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1520-5126
DOI10.1021/jacs.0c03156

Cover

Abstract The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native quantum confinement characteristics of the QD are lacking. Here we introduce a universal and facile electrochemical gelation method for assembling metal chalcogenide QDs (as demonstrated for CdS, ZnS, and CdSe) into macroscale 3-D connected pore-matter nanoarchitectures that remain quantum confined and in which each QD is accessible to the ambient. Because of the redox-active nature of the bonding between QD building blocks in the gel network, the electrogelation process is reversible. We further demonstrate the application of this electrogelation method for a one-step fabrication of CdS gel gas sensors, producing devices with exceptional performance for NO2 gas sensing at room temperature, thereby enabling the development of low-cost, sensitive, and reliable devices for air quality monitoring.
AbstractList The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native quantum confinement characteristics of the QD are lacking. Here we introduce a universal and facile electrochemical gelation method for assembling metal chalcogenide QDs (as demonstrated for CdS, ZnS, and CdSe) into macroscale 3-D connected pore-matter nanoarchitectures that remain quantum confined and in which each QD is accessible to the ambient. Because of the redox-active nature of the bonding between QD building blocks in the gel network, the electrogelation process is reversible. We further demonstrate the application of this electrogelation method for a one-step fabrication of CdS gel gas sensors, producing devices with exceptional performance for NO2 gas sensing at room temperature, thereby enabling the development of low-cost, sensitive, and reliable devices for air quality monitoring.The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native quantum confinement characteristics of the QD are lacking. Here we introduce a universal and facile electrochemical gelation method for assembling metal chalcogenide QDs (as demonstrated for CdS, ZnS, and CdSe) into macroscale 3-D connected pore-matter nanoarchitectures that remain quantum confined and in which each QD is accessible to the ambient. Because of the redox-active nature of the bonding between QD building blocks in the gel network, the electrogelation process is reversible. We further demonstrate the application of this electrogelation method for a one-step fabrication of CdS gel gas sensors, producing devices with exceptional performance for NO2 gas sensing at room temperature, thereby enabling the development of low-cost, sensitive, and reliable devices for air quality monitoring.
The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native quantum confinement characteristics of the QD are lacking. Here we introduce a universal and facile electrochemical gelation method for assembling metal chalcogenide QDs (as demonstrated for CdS, ZnS, and CdSe) into macroscale 3-D connected pore-matter nanoarchitectures that remain quantum confined and in which each QD is accessible to the ambient. Because of the redox-active nature of the bonding between QD building blocks in the gel network, the electrogelation process is reversible. We further demonstrate the application of this electrogelation method for a one-step fabrication of CdS gel gas sensors, producing devices with exceptional performance for NO gas sensing at room temperature, thereby enabling the development of low-cost, sensitive, and reliable devices for air quality monitoring.
The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native quantum confinement characteristics of the QD are lacking. Here we introduce a universal and facile electrochemical gelation method for assembling metal chalcogenide QDs (as demonstrated for CdS, ZnS, and CdSe) into macroscale 3-D connected pore-matter nanoarchitectures that remain quantum confined and in which each QD is accessible to the ambient. Because of the redox-active nature of the bonding between QD building blocks in the gel network, the electrogelation process is reversible. We further demonstrate the application of this electrogelation method for a one-step fabrication of CdS gel gas sensors, producing devices with exceptional performance for NO₂ gas sensing at room temperature, thereby enabling the development of low-cost, sensitive, and reliable devices for air quality monitoring.
The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native quantum confinement characteristics of the QD are lacking. Here we introduce a universal and facile electrochemical gelation method for assembling metal chalcogenide QDs (as demonstrated for CdS, ZnS, and CdSe) into macroscale 3-D connected pore-matter nanoarchitectures that remain quantum confined and in which each QD is accessible to the ambient. Because of the redox-active nature of the bonding between QD building blocks in the gel network, the electrogelation process is reversible. We further demonstrate the application of this electrogelation method for a one-step fabrication of CdS gel gas sensors, producing devices with exceptional performance for NO2 gas sensing at room temperature, thereby enabling the development of low-cost, sensitive, and reliable devices for air quality monitoring.
Author Zhang, Liang
Brock, Stephanie L
Hewa-Rahinduwage, Chathuranga C
Niu, Xiangfu
Geng, Xin
Silva, Karunamuni L
Luo, Long
AuthorAffiliation Department of Chemistry
Center for Combustion Energy
School of Vehicle and Mobility
AuthorAffiliation_xml – name: School of Vehicle and Mobility
– name: Center for Combustion Energy
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Chathuranga C
  surname: Hewa-Rahinduwage
  fullname: Hewa-Rahinduwage, Chathuranga C
  organization: Department of Chemistry
– sequence: 2
  givenname: Xin
  surname: Geng
  fullname: Geng, Xin
  organization: Department of Chemistry
– sequence: 3
  givenname: Karunamuni L
  surname: Silva
  fullname: Silva, Karunamuni L
  organization: Department of Chemistry
– sequence: 4
  givenname: Xiangfu
  surname: Niu
  fullname: Niu, Xiangfu
  organization: School of Vehicle and Mobility
– sequence: 5
  givenname: Liang
  orcidid: 0000-0002-9718-0436
  surname: Zhang
  fullname: Zhang, Liang
  email: zhangbright@tsinghua.edu.cn
  organization: Center for Combustion Energy
– sequence: 6
  givenname: Stephanie L
  orcidid: 0000-0002-0439-302X
  surname: Brock
  fullname: Brock, Stephanie L
  email: sbrock@chem.wayne.edu
  organization: Department of Chemistry
– sequence: 7
  givenname: Long
  orcidid: 0000-0001-5771-6892
  surname: Luo
  fullname: Luo, Long
  email: long.luo@wayne.edu
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32492331$$D View this record in MEDLINE/PubMed
BookMark eNqF0UtLxDAUBeAgI844unMtXbqwmmebLmV8giKKrsud9NbpkDaapIL_3o6OLkRxFXL5bgjnbJNR5zokZI_RI0Y5O16CCUfUUMFUtkEmTHGaKsazEZlQSnma60yMyXYIy-EquWZbZCy4LLgQbELO7_EVfWjmFpMziyZ6ZxbYNgZscoEWYuO6xNXJDcZhMluANe4Ju6bC5K6HLvZtcupi2CGbNdiAu-tzSh7Pzx5ml-n17cXV7OQ6BaHymObCaJFBrpVmgLxCabKqMkUtq1wZoWoNLJeyAKhBgeRzrWnNQSnMBAhUYkoOPt999u6lxxDLtgkGrYUOXR9KXuhMqyEJ_T-VtMikzAsx0P017ectVuWzb1rwb-VXTAM4_ATGuxA81t-E0XLVQrlqoVy3MHD-g5smfkQZPTT2r6X1f1fDpet9NwT5O30HJOGXQw
CitedBy_id crossref_primary_10_1002_smll_202400769
crossref_primary_10_3390_ma16031317
crossref_primary_10_1039_D2CC03872B
crossref_primary_10_1002_advs_202203162
crossref_primary_10_1038_s41524_024_01329_z
crossref_primary_10_1016_j_cej_2023_141505
crossref_primary_10_1021_acs_analchem_3c01346
crossref_primary_10_1002_ange_202403186
crossref_primary_10_3390_nano12122025
crossref_primary_10_1002_slct_202304361
crossref_primary_10_1021_acs_jpcc_2c06382
crossref_primary_10_1002_aenm_202203751
crossref_primary_10_1021_acs_jpcc_4c02510
crossref_primary_10_1039_D1NR06615C
crossref_primary_10_1002_eom2_12419
crossref_primary_10_1021_acs_analchem_2c00970
crossref_primary_10_1021_acssensors_1c01694
crossref_primary_10_1002_anie_202214487
crossref_primary_10_1016_j_cej_2024_149940
crossref_primary_10_1021_jacs_4c13857
crossref_primary_10_1007_s12274_024_7107_2
crossref_primary_10_1038_s41467_021_25192_4
crossref_primary_10_1142_S2010135X22450023
crossref_primary_10_1021_acs_nanolett_3c05060
crossref_primary_10_1016_j_microc_2021_107038
crossref_primary_10_3390_molecules26144191
crossref_primary_10_3390_nano13172426
crossref_primary_10_1039_D1NA00290B
crossref_primary_10_1002_anie_202403186
crossref_primary_10_3390_nano13111748
crossref_primary_10_1016_j_matdes_2020_109401
crossref_primary_10_1002_ange_202214487
crossref_primary_10_1039_D1QM00699A
crossref_primary_10_1039_D2SM00168C
crossref_primary_10_1021_acs_chemmater_1c00832
crossref_primary_10_1016_j_cej_2022_136449
crossref_primary_10_1021_acs_accounts_3c00042
crossref_primary_10_1021_acs_jpclett_2c02856
crossref_primary_10_1021_acssensors_3c02097
crossref_primary_10_1002_smtd_202200470
crossref_primary_10_1021_acs_nanolett_1c04707
crossref_primary_10_1016_j_snb_2023_133577
Cites_doi 10.1021/ja01145a126
10.1021/acs.chemrev.6b00196
10.1021/acs.jpclett.5b01883
10.1021/am500843p
10.1021/acs.chemrev.5b00063
10.1021/ja066749c
10.1021/jacs.6b11431
10.1021/la9710379
10.1016/S0584-8539(97)00039-1
10.1126/science.1106525
10.1021/jacs.7b05267
10.1021/ar600028s
10.1021/cm010254z
10.1039/c3nr05268k
10.1038/ncomms9632
10.1088/0957-4484/21/11/115502
10.1039/C4CP04761C
10.1021/nn201433r
10.1002/anie.201000034
10.1016/j.snb.2013.11.005
10.1021/acs.langmuir.7b01118
10.1038/nphoton.2012.33
10.1016/j.snb.2004.12.075
10.1021/cm9901966
10.1021/nl034010k
10.1021/la971110v
10.1021/ja058269b
10.1021/nn5015215
10.1021/ja900042y
10.1021/cm402675k
10.1016/0039-6028(80)90666-4
10.1021/acs.chemrev.8b00158
10.1021/cm00017a031
10.1021/nn304563j
10.1016/j.jcis.2017.05.053
10.1021/ja801212e
10.1039/c2cc34188c
10.1016/0925-4005(91)80207-Z
10.1126/science.1170524
10.1021/acs.chemrev.6b00169
10.1038/nmat1891
10.1126/science.aac5523
10.1021/ja200422s
10.1039/C7CC03862C
10.1021/jp305378u
10.1039/c2ce06405g
10.5194/amt-9-5281-2016
10.1021/ja061561e
10.1126/science.1072086
10.1039/C4RA02684E
10.1021/acsnano.8b08778
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.0c03156
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 12215
ExternalDocumentID 32492331
10_1021_jacs_0c03156
c395486311
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAYWT
7S9
L.6
ID FETCH-LOGICAL-a357t-73c836a78581ae2de4c6ddc9f4d75c35f8a17449aafa5a42b880f2a55e63a3e53
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Mon Jul 21 10:27:28 EDT 2025
Fri Sep 05 06:53:21 EDT 2025
Thu Apr 03 06:59:13 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Tue Jul 01 02:08:52 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-73c836a78581ae2de4c6ddc9f4d75c35f8a17449aafa5a42b880f2a55e63a3e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9718-0436
0000-0002-0439-302X
0000-0001-5771-6892
PMID 32492331
PQID 2409644793
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2986851568
proquest_miscellaneous_2409644793
pubmed_primary_32492331
crossref_primary_10_1021_jacs_0c03156
crossref_citationtrail_10_1021_jacs_0c03156
acs_journals_10_1021_jacs_0c03156
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-15
PublicationDateYYYYMMDD 2020-07-15
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
Bard A. J. (ref27/cit27) 1980
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.1021/ja01145a126
– ident: ref9/cit9
  doi: 10.1021/acs.chemrev.6b00196
– ident: ref5/cit5
  doi: 10.1021/acs.jpclett.5b01883
– ident: ref39/cit39
  doi: 10.1021/am500843p
– ident: ref3/cit3
  doi: 10.1021/acs.chemrev.5b00063
– ident: ref21/cit21
  doi: 10.1021/ja066749c
– ident: ref2/cit2
  doi: 10.1021/jacs.6b11431
– ident: ref23/cit23
  doi: 10.1021/la9710379
– ident: ref29/cit29
  doi: 10.1016/S0584-8539(97)00039-1
– ident: ref19/cit19
  doi: 10.1126/science.1106525
– ident: ref1/cit1
  doi: 10.1021/jacs.7b05267
– ident: ref17/cit17
  doi: 10.1021/ar600028s
– ident: ref25/cit25
  doi: 10.1021/cm010254z
– ident: ref40/cit40
  doi: 10.1039/c3nr05268k
– ident: ref48/cit48
  doi: 10.1038/ncomms9632
– ident: ref36/cit36
  doi: 10.1088/0957-4484/21/11/115502
– ident: ref31/cit31
  doi: 10.1039/C4CP04761C
– ident: ref46/cit46
  doi: 10.1021/nn201433r
– ident: ref18/cit18
  doi: 10.1002/anie.201000034
– ident: ref38/cit38
  doi: 10.1016/j.snb.2013.11.005
– ident: ref22/cit22
  doi: 10.1021/acs.langmuir.7b01118
– ident: ref4/cit4
  doi: 10.1038/nphoton.2012.33
– ident: ref49/cit49
  doi: 10.1016/j.snb.2004.12.075
– ident: ref50/cit50
  doi: 10.1021/cm9901966
– ident: ref47/cit47
  doi: 10.1021/nl034010k
– ident: ref30/cit30
  doi: 10.1021/la971110v
– ident: ref10/cit10
  doi: 10.1021/ja058269b
– ident: ref43/cit43
  doi: 10.1021/nn5015215
– ident: ref26/cit26
  doi: 10.1021/ja900042y
– ident: ref16/cit16
  doi: 10.1021/cm402675k
– ident: ref32/cit32
  doi: 10.1016/0039-6028(80)90666-4
– ident: ref13/cit13
  doi: 10.1021/acs.chemrev.8b00158
– ident: ref52/cit52
  doi: 10.1021/cm00017a031
– ident: ref35/cit35
  doi: 10.1021/nn304563j
– ident: ref45/cit45
  doi: 10.1016/j.jcis.2017.05.053
– ident: ref20/cit20
  doi: 10.1021/ja801212e
– ident: ref34/cit34
  doi: 10.1039/c2cc34188c
– ident: ref51/cit51
  doi: 10.1016/0925-4005(91)80207-Z
– ident: ref14/cit14
  doi: 10.1126/science.1170524
– ident: ref6/cit6
  doi: 10.1021/acs.chemrev.6b00169
– ident: ref42/cit42
  doi: 10.1038/nmat1891
– ident: ref7/cit7
  doi: 10.1126/science.aac5523
– ident: ref11/cit11
  doi: 10.1021/ja200422s
– ident: ref8/cit8
  doi: 10.1039/C7CC03862C
– ident: ref28/cit28
  doi: 10.1021/jp305378u
– ident: ref41/cit41
  doi: 10.1039/c2ce06405g
– ident: ref37/cit37
  doi: 10.5194/amt-9-5281-2016
– ident: ref33/cit33
  doi: 10.1021/ja061561e
– volume-title: Electrochemical methods: fundamentals and applications
  year: 1980
  ident: ref27/cit27
– ident: ref12/cit12
  doi: 10.1126/science.1072086
– ident: ref15/cit15
  doi: 10.1039/C4RA02684E
– ident: ref44/cit44
  doi: 10.1021/acsnano.8b08778
SSID ssj0004281
Score 2.5171492
Snippet The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12207
SubjectTerms air quality
ambient temperature
Cadmium Compounds - chemical synthesis
Cadmium Compounds - chemistry
cadmium sulfide
Electrochemical Techniques
electrochemistry
electronic equipment
gelation
gels
Gels - chemical synthesis
Gels - chemistry
monitoring
nitrogen dioxide
Particle Size
quantum dots
Quantum Dots - chemistry
Selenium Compounds - chemical synthesis
Selenium Compounds - chemistry
Sulfides - chemical synthesis
Sulfides - chemistry
Surface Properties
Zinc Compounds - chemical synthesis
Zinc Compounds - chemistry
zinc sulfide
Title Reversible Electrochemical Gelation of Metal Chalcogenide Quantum Dots
URI http://dx.doi.org/10.1021/jacs.0c03156
https://www.ncbi.nlm.nih.gov/pubmed/32492331
https://www.proquest.com/docview/2409644793
https://www.proquest.com/docview/2986851568
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEA4eD_rifawXEfRJuri5mj7K6iqCghf4VtJkiuK6Fdu--Oud9FBUVn0t0yP5Js03zOQbQvYOAVm85TIw1kgMUBIRRCBE4BKrHLfWppXs4sWlOrsT5_fy_rNA9nsGn3l9IJt3D63vRqAmyTRT6GGeAvVvPs8_Mt1raW6oFW8K3L_f7Tcgm3_dgMawymp3GcyT0_aMTl1U8tQti6Rr335KNv7x4QtkriGY9Kj2iEUyAaMlMtNv-7otk8E1VKUYyRDoSd0ExzaqAfS0KY2jWUovAHk57T-Yoc3Qyx4d0KsScSif6XFW5CvkbnBy2z8Lmm4KgeEyLIKQW82VCbXUPQPMgUA0nI1S4UKJaKXaYHQiImNSI41gCa7slBkpQXHDQfJVMjXKRrBOKHNKGO1E5IVIBYcojBQAPsqAdgh6h-zi2ONmNeRxlehmGGj4q82MdMhBC0NsGzly3xVjOMZ6_8P6pZbhGGO32yIa47T65IcZQVbmMTKXCLkf_o5-sYm0QgYqle6QtdodPt7GvbQi572Nf4xtk8wyH5Z7_U25RaaK1xK2kbsUyU7luO9opuhO
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCa27tBdunebPVVgPRUuEuth-VhkybKtCbCtBXIzZInGhqZ2UduX_fpRjpJgBTLkKtB6kbI-gtRHgI99JBRvuYyMNZIclFxEKQoRudwqx621RUe7OJ2pyZX4Opfz8Fjdv4WhSdTUU90F8TfsAp4miBr71hclUA_hEeGQ2FdqOB_-3DyDjPVghXYTrXjIc7__tb-HbP3vPbQFXHaXzPgJzNbT63JLrs_aJj-zf-4xN-48_6dwEOAmO1_axzN4gOVz2B-uqry9gPEP7BIz8gWy0bIkjg0cAuxzSJRjVcGmSCidDX-Zha3I5n47ZN9b0kp7wz5VTf0Srsajy-EkCrUVIsNl0kQJt5ork2ipBwZjh4J042xaCJdI0l2hDfkqIjWmMNKIOKdzXsRGSlTccJT8FeyVVYlHwGKnhNFOpJ6WVHBMk1QhUlcGtSMT6MExrT0LZ6POurB3TG6Hbw070oPTlTYyG8jJfY2MxRbpk7X07ZKUY4vc8UqxGW2rD4WYEqu2zgjHpIQE6ef0H5lUK8KjUukeHC6tYj0a90SLnA9e77C2D7A_uZxeZBdfZt_ewOPYO-yemVO-hb3mrsV3hGqa_H1ny38B3I7wrw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BlQqXPijQbSk1EpxQVmz8iHNEC1toARUoErfIsSdq1e0GNcmlv77jrLMIpEVwTcaO7RnH32jG3wDs7COheMtlZKyR5KDkIkpRiMjlVjlurS1a2sWzc3V8Lb7eyJsFGHR3YWgQFfVUtUF8v6tvXREYBjxVEL3Yt74wgVqEFz5i56s1HAyv7q5CxnrQId5EKx5y3R-29meRre6fRXMAZnvQjF7D5WyIbX7J735T53377wF747Pm8AZeBdjJDqZ28hYWcLIKy8Ou2ts7GF1im6CRj5EdTUvj2MAlwL6EhDlWFuwMCa2z4U8ztiXZ3i-H7KIh7TR_2GFZV2twPTr6MTyOQo2FyHCZ1FHCrebKJFrqgcHYoSAdOZsWwiWSdFhoQz6LSI0pjDQizmm_F7GREhU3HCVfh6VJOcH3wGKnhNFOpJ6eVHBMk1QhUlcGtSNT6ME2zT0Le6TK2vB3TO6HfxpWpAd7nUYyG0jKfa2M8Rzp3Zn07ZScY47cdqfcjJbVh0TMBMumygjPpIQI6Sf1iEyqFeFSqXQPNqaWMfsa94SLnA8-PGFun-Hl98NRdnpy_u0jrMTeb_cEnXITluq_DX4icFPnW605_wfCF_My
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversible+Electrochemical+Gelation+of+Metal+Chalcogenide+Quantum+Dots&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Hewa-Rahinduwage%2C+Chathuranga+C&rft.au=Geng%2C+Xin&rft.au=Silva%2C+Karunamuni+L&rft.au=Niu%2C+Xiangfu&rft.date=2020-07-15&rft.eissn=1520-5126&rft.volume=142&rft.issue=28&rft.spage=12207&rft_id=info:doi/10.1021%2Fjacs.0c03156&rft_id=info%3Apmid%2F32492331&rft.externalDocID=32492331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon