Reversible Electrochemical Gelation of Metal Chalcogenide Quantum Dots
The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native q...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 28; pp. 12207 - 12215 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.0c03156 |
Cover
Abstract | The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native quantum confinement characteristics of the QD are lacking. Here we introduce a universal and facile electrochemical gelation method for assembling metal chalcogenide QDs (as demonstrated for CdS, ZnS, and CdSe) into macroscale 3-D connected pore-matter nanoarchitectures that remain quantum confined and in which each QD is accessible to the ambient. Because of the redox-active nature of the bonding between QD building blocks in the gel network, the electrogelation process is reversible. We further demonstrate the application of this electrogelation method for a one-step fabrication of CdS gel gas sensors, producing devices with exceptional performance for NO2 gas sensing at room temperature, thereby enabling the development of low-cost, sensitive, and reliable devices for air quality monitoring. |
---|---|
AbstractList | The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native quantum confinement characteristics of the QD are lacking. Here we introduce a universal and facile electrochemical gelation method for assembling metal chalcogenide QDs (as demonstrated for CdS, ZnS, and CdSe) into macroscale 3-D connected pore-matter nanoarchitectures that remain quantum confined and in which each QD is accessible to the ambient. Because of the redox-active nature of the bonding between QD building blocks in the gel network, the electrogelation process is reversible. We further demonstrate the application of this electrogelation method for a one-step fabrication of CdS gel gas sensors, producing devices with exceptional performance for NO2 gas sensing at room temperature, thereby enabling the development of low-cost, sensitive, and reliable devices for air quality monitoring.The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native quantum confinement characteristics of the QD are lacking. Here we introduce a universal and facile electrochemical gelation method for assembling metal chalcogenide QDs (as demonstrated for CdS, ZnS, and CdSe) into macroscale 3-D connected pore-matter nanoarchitectures that remain quantum confined and in which each QD is accessible to the ambient. Because of the redox-active nature of the bonding between QD building blocks in the gel network, the electrogelation process is reversible. We further demonstrate the application of this electrogelation method for a one-step fabrication of CdS gel gas sensors, producing devices with exceptional performance for NO2 gas sensing at room temperature, thereby enabling the development of low-cost, sensitive, and reliable devices for air quality monitoring. The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native quantum confinement characteristics of the QD are lacking. Here we introduce a universal and facile electrochemical gelation method for assembling metal chalcogenide QDs (as demonstrated for CdS, ZnS, and CdSe) into macroscale 3-D connected pore-matter nanoarchitectures that remain quantum confined and in which each QD is accessible to the ambient. Because of the redox-active nature of the bonding between QD building blocks in the gel network, the electrogelation process is reversible. We further demonstrate the application of this electrogelation method for a one-step fabrication of CdS gel gas sensors, producing devices with exceptional performance for NO gas sensing at room temperature, thereby enabling the development of low-cost, sensitive, and reliable devices for air quality monitoring. The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native quantum confinement characteristics of the QD are lacking. Here we introduce a universal and facile electrochemical gelation method for assembling metal chalcogenide QDs (as demonstrated for CdS, ZnS, and CdSe) into macroscale 3-D connected pore-matter nanoarchitectures that remain quantum confined and in which each QD is accessible to the ambient. Because of the redox-active nature of the bonding between QD building blocks in the gel network, the electrogelation process is reversible. We further demonstrate the application of this electrogelation method for a one-step fabrication of CdS gel gas sensors, producing devices with exceptional performance for NO₂ gas sensing at room temperature, thereby enabling the development of low-cost, sensitive, and reliable devices for air quality monitoring. The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native quantum confinement characteristics of the QD are lacking. Here we introduce a universal and facile electrochemical gelation method for assembling metal chalcogenide QDs (as demonstrated for CdS, ZnS, and CdSe) into macroscale 3-D connected pore-matter nanoarchitectures that remain quantum confined and in which each QD is accessible to the ambient. Because of the redox-active nature of the bonding between QD building blocks in the gel network, the electrogelation process is reversible. We further demonstrate the application of this electrogelation method for a one-step fabrication of CdS gel gas sensors, producing devices with exceptional performance for NO2 gas sensing at room temperature, thereby enabling the development of low-cost, sensitive, and reliable devices for air quality monitoring. |
Author | Zhang, Liang Brock, Stephanie L Hewa-Rahinduwage, Chathuranga C Niu, Xiangfu Geng, Xin Silva, Karunamuni L Luo, Long |
AuthorAffiliation | Department of Chemistry Center for Combustion Energy School of Vehicle and Mobility |
AuthorAffiliation_xml | – name: School of Vehicle and Mobility – name: Center for Combustion Energy – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Chathuranga C surname: Hewa-Rahinduwage fullname: Hewa-Rahinduwage, Chathuranga C organization: Department of Chemistry – sequence: 2 givenname: Xin surname: Geng fullname: Geng, Xin organization: Department of Chemistry – sequence: 3 givenname: Karunamuni L surname: Silva fullname: Silva, Karunamuni L organization: Department of Chemistry – sequence: 4 givenname: Xiangfu surname: Niu fullname: Niu, Xiangfu organization: School of Vehicle and Mobility – sequence: 5 givenname: Liang orcidid: 0000-0002-9718-0436 surname: Zhang fullname: Zhang, Liang email: zhangbright@tsinghua.edu.cn organization: Center for Combustion Energy – sequence: 6 givenname: Stephanie L orcidid: 0000-0002-0439-302X surname: Brock fullname: Brock, Stephanie L email: sbrock@chem.wayne.edu organization: Department of Chemistry – sequence: 7 givenname: Long orcidid: 0000-0001-5771-6892 surname: Luo fullname: Luo, Long email: long.luo@wayne.edu organization: Department of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32492331$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UtLxDAUBeAgI844unMtXbqwmmebLmV8giKKrsud9NbpkDaapIL_3o6OLkRxFXL5bgjnbJNR5zokZI_RI0Y5O16CCUfUUMFUtkEmTHGaKsazEZlQSnma60yMyXYIy-EquWZbZCy4LLgQbELO7_EVfWjmFpMziyZ6ZxbYNgZscoEWYuO6xNXJDcZhMluANe4Ju6bC5K6HLvZtcupi2CGbNdiAu-tzSh7Pzx5ml-n17cXV7OQ6BaHymObCaJFBrpVmgLxCabKqMkUtq1wZoWoNLJeyAKhBgeRzrWnNQSnMBAhUYkoOPt999u6lxxDLtgkGrYUOXR9KXuhMqyEJ_T-VtMikzAsx0P017ectVuWzb1rwb-VXTAM4_ATGuxA81t-E0XLVQrlqoVy3MHD-g5smfkQZPTT2r6X1f1fDpet9NwT5O30HJOGXQw |
CitedBy_id | crossref_primary_10_1002_smll_202400769 crossref_primary_10_3390_ma16031317 crossref_primary_10_1039_D2CC03872B crossref_primary_10_1002_advs_202203162 crossref_primary_10_1038_s41524_024_01329_z crossref_primary_10_1016_j_cej_2023_141505 crossref_primary_10_1021_acs_analchem_3c01346 crossref_primary_10_1002_ange_202403186 crossref_primary_10_3390_nano12122025 crossref_primary_10_1002_slct_202304361 crossref_primary_10_1021_acs_jpcc_2c06382 crossref_primary_10_1002_aenm_202203751 crossref_primary_10_1021_acs_jpcc_4c02510 crossref_primary_10_1039_D1NR06615C crossref_primary_10_1002_eom2_12419 crossref_primary_10_1021_acs_analchem_2c00970 crossref_primary_10_1021_acssensors_1c01694 crossref_primary_10_1002_anie_202214487 crossref_primary_10_1016_j_cej_2024_149940 crossref_primary_10_1021_jacs_4c13857 crossref_primary_10_1007_s12274_024_7107_2 crossref_primary_10_1038_s41467_021_25192_4 crossref_primary_10_1142_S2010135X22450023 crossref_primary_10_1021_acs_nanolett_3c05060 crossref_primary_10_1016_j_microc_2021_107038 crossref_primary_10_3390_molecules26144191 crossref_primary_10_3390_nano13172426 crossref_primary_10_1039_D1NA00290B crossref_primary_10_1002_anie_202403186 crossref_primary_10_3390_nano13111748 crossref_primary_10_1016_j_matdes_2020_109401 crossref_primary_10_1002_ange_202214487 crossref_primary_10_1039_D1QM00699A crossref_primary_10_1039_D2SM00168C crossref_primary_10_1021_acs_chemmater_1c00832 crossref_primary_10_1016_j_cej_2022_136449 crossref_primary_10_1021_acs_accounts_3c00042 crossref_primary_10_1021_acs_jpclett_2c02856 crossref_primary_10_1021_acssensors_3c02097 crossref_primary_10_1002_smtd_202200470 crossref_primary_10_1021_acs_nanolett_1c04707 crossref_primary_10_1016_j_snb_2023_133577 |
Cites_doi | 10.1021/ja01145a126 10.1021/acs.chemrev.6b00196 10.1021/acs.jpclett.5b01883 10.1021/am500843p 10.1021/acs.chemrev.5b00063 10.1021/ja066749c 10.1021/jacs.6b11431 10.1021/la9710379 10.1016/S0584-8539(97)00039-1 10.1126/science.1106525 10.1021/jacs.7b05267 10.1021/ar600028s 10.1021/cm010254z 10.1039/c3nr05268k 10.1038/ncomms9632 10.1088/0957-4484/21/11/115502 10.1039/C4CP04761C 10.1021/nn201433r 10.1002/anie.201000034 10.1016/j.snb.2013.11.005 10.1021/acs.langmuir.7b01118 10.1038/nphoton.2012.33 10.1016/j.snb.2004.12.075 10.1021/cm9901966 10.1021/nl034010k 10.1021/la971110v 10.1021/ja058269b 10.1021/nn5015215 10.1021/ja900042y 10.1021/cm402675k 10.1016/0039-6028(80)90666-4 10.1021/acs.chemrev.8b00158 10.1021/cm00017a031 10.1021/nn304563j 10.1016/j.jcis.2017.05.053 10.1021/ja801212e 10.1039/c2cc34188c 10.1016/0925-4005(91)80207-Z 10.1126/science.1170524 10.1021/acs.chemrev.6b00169 10.1038/nmat1891 10.1126/science.aac5523 10.1021/ja200422s 10.1039/C7CC03862C 10.1021/jp305378u 10.1039/c2ce06405g 10.5194/amt-9-5281-2016 10.1021/ja061561e 10.1126/science.1072086 10.1039/C4RA02684E 10.1021/acsnano.8b08778 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.0c03156 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 12215 |
ExternalDocumentID | 32492331 10_1021_jacs_0c03156 c395486311 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 AAYWT 7S9 L.6 |
ID | FETCH-LOGICAL-a357t-73c836a78581ae2de4c6ddc9f4d75c35f8a17449aafa5a42b880f2a55e63a3e53 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Mon Jul 21 10:27:28 EDT 2025 Fri Sep 05 06:53:21 EDT 2025 Thu Apr 03 06:59:13 EDT 2025 Thu Apr 24 22:57:16 EDT 2025 Tue Jul 01 02:08:52 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-73c836a78581ae2de4c6ddc9f4d75c35f8a17449aafa5a42b880f2a55e63a3e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9718-0436 0000-0002-0439-302X 0000-0001-5771-6892 |
PMID | 32492331 |
PQID | 2409644793 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2986851568 proquest_miscellaneous_2409644793 pubmed_primary_32492331 crossref_primary_10_1021_jacs_0c03156 crossref_citationtrail_10_1021_jacs_0c03156 acs_journals_10_1021_jacs_0c03156 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-15 |
PublicationDateYYYYMMDD | 2020-07-15 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 Bard A. J. (ref27/cit27) 1980 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref24/cit24 doi: 10.1021/ja01145a126 – ident: ref9/cit9 doi: 10.1021/acs.chemrev.6b00196 – ident: ref5/cit5 doi: 10.1021/acs.jpclett.5b01883 – ident: ref39/cit39 doi: 10.1021/am500843p – ident: ref3/cit3 doi: 10.1021/acs.chemrev.5b00063 – ident: ref21/cit21 doi: 10.1021/ja066749c – ident: ref2/cit2 doi: 10.1021/jacs.6b11431 – ident: ref23/cit23 doi: 10.1021/la9710379 – ident: ref29/cit29 doi: 10.1016/S0584-8539(97)00039-1 – ident: ref19/cit19 doi: 10.1126/science.1106525 – ident: ref1/cit1 doi: 10.1021/jacs.7b05267 – ident: ref17/cit17 doi: 10.1021/ar600028s – ident: ref25/cit25 doi: 10.1021/cm010254z – ident: ref40/cit40 doi: 10.1039/c3nr05268k – ident: ref48/cit48 doi: 10.1038/ncomms9632 – ident: ref36/cit36 doi: 10.1088/0957-4484/21/11/115502 – ident: ref31/cit31 doi: 10.1039/C4CP04761C – ident: ref46/cit46 doi: 10.1021/nn201433r – ident: ref18/cit18 doi: 10.1002/anie.201000034 – ident: ref38/cit38 doi: 10.1016/j.snb.2013.11.005 – ident: ref22/cit22 doi: 10.1021/acs.langmuir.7b01118 – ident: ref4/cit4 doi: 10.1038/nphoton.2012.33 – ident: ref49/cit49 doi: 10.1016/j.snb.2004.12.075 – ident: ref50/cit50 doi: 10.1021/cm9901966 – ident: ref47/cit47 doi: 10.1021/nl034010k – ident: ref30/cit30 doi: 10.1021/la971110v – ident: ref10/cit10 doi: 10.1021/ja058269b – ident: ref43/cit43 doi: 10.1021/nn5015215 – ident: ref26/cit26 doi: 10.1021/ja900042y – ident: ref16/cit16 doi: 10.1021/cm402675k – ident: ref32/cit32 doi: 10.1016/0039-6028(80)90666-4 – ident: ref13/cit13 doi: 10.1021/acs.chemrev.8b00158 – ident: ref52/cit52 doi: 10.1021/cm00017a031 – ident: ref35/cit35 doi: 10.1021/nn304563j – ident: ref45/cit45 doi: 10.1016/j.jcis.2017.05.053 – ident: ref20/cit20 doi: 10.1021/ja801212e – ident: ref34/cit34 doi: 10.1039/c2cc34188c – ident: ref51/cit51 doi: 10.1016/0925-4005(91)80207-Z – ident: ref14/cit14 doi: 10.1126/science.1170524 – ident: ref6/cit6 doi: 10.1021/acs.chemrev.6b00169 – ident: ref42/cit42 doi: 10.1038/nmat1891 – ident: ref7/cit7 doi: 10.1126/science.aac5523 – ident: ref11/cit11 doi: 10.1021/ja200422s – ident: ref8/cit8 doi: 10.1039/C7CC03862C – ident: ref28/cit28 doi: 10.1021/jp305378u – ident: ref41/cit41 doi: 10.1039/c2ce06405g – ident: ref37/cit37 doi: 10.5194/amt-9-5281-2016 – ident: ref33/cit33 doi: 10.1021/ja061561e – volume-title: Electrochemical methods: fundamentals and applications year: 1980 ident: ref27/cit27 – ident: ref12/cit12 doi: 10.1126/science.1072086 – ident: ref15/cit15 doi: 10.1039/C4RA02684E – ident: ref44/cit44 doi: 10.1021/acsnano.8b08778 |
SSID | ssj0004281 |
Score | 2.5171492 |
Snippet | The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12207 |
SubjectTerms | air quality ambient temperature Cadmium Compounds - chemical synthesis Cadmium Compounds - chemistry cadmium sulfide Electrochemical Techniques electrochemistry electronic equipment gelation gels Gels - chemical synthesis Gels - chemistry monitoring nitrogen dioxide Particle Size quantum dots Quantum Dots - chemistry Selenium Compounds - chemical synthesis Selenium Compounds - chemistry Sulfides - chemical synthesis Sulfides - chemistry Surface Properties Zinc Compounds - chemical synthesis Zinc Compounds - chemistry zinc sulfide |
Title | Reversible Electrochemical Gelation of Metal Chalcogenide Quantum Dots |
URI | http://dx.doi.org/10.1021/jacs.0c03156 https://www.ncbi.nlm.nih.gov/pubmed/32492331 https://www.proquest.com/docview/2409644793 https://www.proquest.com/docview/2986851568 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEA4eD_rifawXEfRJuri5mj7K6iqCghf4VtJkiuK6Fdu--Oud9FBUVn0t0yP5Js03zOQbQvYOAVm85TIw1kgMUBIRRCBE4BKrHLfWppXs4sWlOrsT5_fy_rNA9nsGn3l9IJt3D63vRqAmyTRT6GGeAvVvPs8_Mt1raW6oFW8K3L_f7Tcgm3_dgMawymp3GcyT0_aMTl1U8tQti6Rr335KNv7x4QtkriGY9Kj2iEUyAaMlMtNv-7otk8E1VKUYyRDoSd0ExzaqAfS0KY2jWUovAHk57T-Yoc3Qyx4d0KsScSif6XFW5CvkbnBy2z8Lmm4KgeEyLIKQW82VCbXUPQPMgUA0nI1S4UKJaKXaYHQiImNSI41gCa7slBkpQXHDQfJVMjXKRrBOKHNKGO1E5IVIBYcojBQAPsqAdgh6h-zi2ONmNeRxlehmGGj4q82MdMhBC0NsGzly3xVjOMZ6_8P6pZbhGGO32yIa47T65IcZQVbmMTKXCLkf_o5-sYm0QgYqle6QtdodPt7GvbQi572Nf4xtk8wyH5Z7_U25RaaK1xK2kbsUyU7luO9opuhO |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCa27tBdunebPVVgPRUuEuth-VhkybKtCbCtBXIzZInGhqZ2UduX_fpRjpJgBTLkKtB6kbI-gtRHgI99JBRvuYyMNZIclFxEKQoRudwqx621RUe7OJ2pyZX4Opfz8Fjdv4WhSdTUU90F8TfsAp4miBr71hclUA_hEeGQ2FdqOB_-3DyDjPVghXYTrXjIc7__tb-HbP3vPbQFXHaXzPgJzNbT63JLrs_aJj-zf-4xN-48_6dwEOAmO1_axzN4gOVz2B-uqry9gPEP7BIz8gWy0bIkjg0cAuxzSJRjVcGmSCidDX-Zha3I5n47ZN9b0kp7wz5VTf0Srsajy-EkCrUVIsNl0kQJt5ork2ipBwZjh4J042xaCJdI0l2hDfkqIjWmMNKIOKdzXsRGSlTccJT8FeyVVYlHwGKnhNFOpJ6WVHBMk1QhUlcGtSMT6MExrT0LZ6POurB3TG6Hbw070oPTlTYyG8jJfY2MxRbpk7X07ZKUY4vc8UqxGW2rD4WYEqu2zgjHpIQE6ef0H5lUK8KjUukeHC6tYj0a90SLnA9e77C2D7A_uZxeZBdfZt_ewOPYO-yemVO-hb3mrsV3hGqa_H1ny38B3I7wrw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BlQqXPijQbSk1EpxQVmz8iHNEC1toARUoErfIsSdq1e0GNcmlv77jrLMIpEVwTcaO7RnH32jG3wDs7COheMtlZKyR5KDkIkpRiMjlVjlurS1a2sWzc3V8Lb7eyJsFGHR3YWgQFfVUtUF8v6tvXREYBjxVEL3Yt74wgVqEFz5i56s1HAyv7q5CxnrQId5EKx5y3R-29meRre6fRXMAZnvQjF7D5WyIbX7J735T53377wF747Pm8AZeBdjJDqZ28hYWcLIKy8Ou2ts7GF1im6CRj5EdTUvj2MAlwL6EhDlWFuwMCa2z4U8ztiXZ3i-H7KIh7TR_2GFZV2twPTr6MTyOQo2FyHCZ1FHCrebKJFrqgcHYoSAdOZsWwiWSdFhoQz6LSI0pjDQizmm_F7GREhU3HCVfh6VJOcH3wGKnhNFOpJ6eVHBMk1QhUlcGtSNT6ME2zT0Le6TK2vB3TO6HfxpWpAd7nUYyG0jKfa2M8Rzp3Zn07ZScY47cdqfcjJbVh0TMBMumygjPpIQI6Sf1iEyqFeFSqXQPNqaWMfsa94SLnA8-PGFun-Hl98NRdnpy_u0jrMTeb_cEnXITluq_DX4icFPnW605_wfCF_My |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversible+Electrochemical+Gelation+of+Metal+Chalcogenide+Quantum+Dots&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Hewa-Rahinduwage%2C+Chathuranga+C&rft.au=Geng%2C+Xin&rft.au=Silva%2C+Karunamuni+L&rft.au=Niu%2C+Xiangfu&rft.date=2020-07-15&rft.eissn=1520-5126&rft.volume=142&rft.issue=28&rft.spage=12207&rft_id=info:doi/10.1021%2Fjacs.0c03156&rft_id=info%3Apmid%2F32492331&rft.externalDocID=32492331 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |