Enzymeless DNA Base Identification by Chemical Stepping in a Nanopore
The stepwise movement of a single biopolymer strand through a nanoscopic detector for the sequential identification of its building blocks offers a universal means for single-molecule sequencing. This principle has been implemented in portable sequencers that use enzymes to move DNA or RNA through h...
Saved in:
Published in | Journal of the American Chemical Society Vol. 143; no. 43; pp. 18181 - 18187 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
03.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The stepwise movement of a single biopolymer strand through a nanoscopic detector for the sequential identification of its building blocks offers a universal means for single-molecule sequencing. This principle has been implemented in portable sequencers that use enzymes to move DNA or RNA through hundreds of individual nanopore detectors positioned in an array. Nevertheless, its application to the sequencing of other biopolymers, including polypeptides and polysaccharides, has not progressed because suitable enzymes are lacking. Recently, we devised a purely chemical means to move molecules processively in steps comparable to the repeat distances in biopolymers. Here, with this chemical approach, we demonstrate sequential nucleobase identification during DNA translocation through a nanopore. Further, the relative location of a guanine modification with a chemotherapeutic platinum derivative is pinpointed with single-base resolution. After further development, chemical translocation might replace stepping by enzymes for highly parallel single-molecule biopolymer sequencing. |
---|---|
AbstractList | The stepwise movement of a single biopolymer strand through a nanoscopic detector for the sequential identification of its building blocks offers a universal means for single-molecule sequencing. This principle has been implemented in portable sequencers that use enzymes to move DNA or RNA through hundreds of individual nanopore detectors positioned in an array. Nevertheless, its application to the sequencing of other biopolymers, including polypeptides and polysaccharides, has not progressed because suitable enzymes are lacking. Recently, we devised a purely chemical means to move molecules processively in steps comparable to the repeat distances in biopolymers. Here, with this chemical approach, we demonstrate sequential nucleobase identification during DNA translocation through a nanopore. Further, the relative location of a guanine modification with a chemotherapeutic platinum derivative is pinpointed with single-base resolution. After further development, chemical translocation might replace stepping by enzymes for highly parallel single-molecule biopolymer sequencing. The stepwise movement of a single biopolymer strand through a nanoscopic detector for the sequential identification of its building blocks offers a universal means for single-molecule sequencing. This principle has been implemented in portable sequencers that use enzymes to move DNA or RNA through hundreds of individual nanopore detectors positioned in an array. Nevertheless, its application to the sequencing of other biopolymers, including polypeptides and polysaccharides, has not progressed because suitable enzymes are lacking. Recently, we devised a purely chemical means to move molecules processively in steps comparable to the repeat distances in biopolymers. Here, with this chemical approach, we demonstrate sequential nucleobase identification during DNA translocation through a nanopore. Further, the relative location of a guanine modification with a chemotherapeutic platinum derivative is pinpointed with single-base resolution. After further development, chemical translocation might replace stepping by enzymes for highly parallel single-molecule biopolymer sequencing.The stepwise movement of a single biopolymer strand through a nanoscopic detector for the sequential identification of its building blocks offers a universal means for single-molecule sequencing. This principle has been implemented in portable sequencers that use enzymes to move DNA or RNA through hundreds of individual nanopore detectors positioned in an array. Nevertheless, its application to the sequencing of other biopolymers, including polypeptides and polysaccharides, has not progressed because suitable enzymes are lacking. Recently, we devised a purely chemical means to move molecules processively in steps comparable to the repeat distances in biopolymers. Here, with this chemical approach, we demonstrate sequential nucleobase identification during DNA translocation through a nanopore. Further, the relative location of a guanine modification with a chemotherapeutic platinum derivative is pinpointed with single-base resolution. After further development, chemical translocation might replace stepping by enzymes for highly parallel single-molecule biopolymer sequencing. |
Author | Bayley, Hagan Qing, Yujia |
AuthorAffiliation | Department of Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Yujia orcidid: 0000-0002-2110-4269 surname: Qing fullname: Qing, Yujia email: yujia.qing@chem.ox.ac.uk – sequence: 2 givenname: Hagan orcidid: 0000-0003-2499-6116 surname: Bayley fullname: Bayley, Hagan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34669377$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0TtPwzAUBWALFdEHbMzIIwMpfsR2MpZSoBIqAzBHjnsDrhInxMlQfj0pDQwIxGRd67uWdc4YDVzpAKFTSqaUMHq50cZPqSEqjNUBGlHBSCAokwM0IoSwQEWSD9HY-003hiyiR2jIQyljrtQILRbufVtADt7j69UMX2kPeLkG19jMGt3Y0uF0i-evUHRjjh8bqCrrXrB1WOOVdmVV1nCMDjOdezjpzwl6vlk8ze-C-4fb5Xx2H2guVBMIA5wzlkVRuA7XUhPDIy241rGimhpmWJRKAykHI0RMZMp4msrYSKCRzBTjE3S-f7eqy7cWfJMU1hvIc-2gbH3CJJdS0ZCr_6mIRNjFxOKOnvW0TQtYJ1VtC11vk6-UOnCxB6Yuva8h-yaUJLsSkl0JSV9Cx9kPbmzzGWVTa5v_tdT_d3e5KdvadUH-Tj8ADyeWFQ |
CitedBy_id | crossref_primary_10_1002_anie_202304023 crossref_primary_10_1016_j_cej_2023_145311 crossref_primary_10_1039_D4FD00146J crossref_primary_10_1016_j_trac_2023_117060 crossref_primary_10_1038_s41565_022_01193_2 crossref_primary_10_1109_LCOMM_2023_3309312 crossref_primary_10_1109_JIOT_2024_3482722 crossref_primary_10_1021_jacs_2c13465 crossref_primary_10_1002_adma_202207434 crossref_primary_10_1021_acsnano_4c01466 crossref_primary_10_1002_anie_202209970 crossref_primary_10_1016_j_coelec_2022_101000 crossref_primary_10_1021_acs_analchem_4c00475 crossref_primary_10_1021_acsanm_1c04417 crossref_primary_10_1002_ange_202209970 crossref_primary_10_1021_acs_jpcb_4c02021 crossref_primary_10_1002_ange_202300890 crossref_primary_10_1002_ange_202304023 crossref_primary_10_1002_anie_202300890 crossref_primary_10_1016_j_snb_2024_135634 crossref_primary_10_1039_D1SC05766A |
Cites_doi | 10.1038/s41565-018-0236-6 10.1126/sciadv.aar3309 10.1016/j.cell.2011.03.036 10.1038/nnano.2015.189 10.1073/pnas.0803441105 10.1021/acs.chemrev.5b00597 10.1016/j.cell.2013.09.022 10.1073/pnas.1614430113 10.1021/bi00324a025 10.1158/0008-5472.CAN-11-3151 10.1016/j.cell.2011.04.010 10.1021/ja4125115 10.1373/clinchem.2014.223016 10.1038/s41565-019-0579-7 10.1073/pnas.0901054106 10.1002/ange.201607380 10.1002/anie.200905483 10.1126/science.aar6404 10.1126/science.aat3872 10.1038/s41592-021-01143-1 10.1021/cr980421n 10.1016/S0006-3495(99)77153-5 10.1038/s41586-019-1923-7 10.1038/s41587-020-0570-8 10.1073/pnas.93.24.13770 10.1007/978-3-319-56387-9_3 10.1038/nbt.2503 10.1073/pnas.0808296105 10.1021/acssensors.1c01212 10.1038/nnano.2010.213 10.1002/anie.202005729 10.1038/nnano.2009.155 10.1038/nnano.2010.177 10.1038/nbt.2147 10.1158/1535-7163.MCT-11-0250 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.1c07497 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 18187 |
ExternalDocumentID | 34669377 10_1021_jacs_1c07497 a169163434 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02 4.4 53G 55A 5GY 5RE 5VS 60S 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ET F5P GGK GNL IH2 IH9 JG K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC .K2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV CITATION CUPRZ ED~ JG~ XSW YQT ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a357t-5ce3322f884d4d6a0c38a53aa971a1c2c28b6ceb3ec55906b23bb69c6e186f723 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Jul 10 23:42:47 EDT 2025 Fri Jul 11 10:35:05 EDT 2025 Wed Feb 19 02:27:13 EST 2025 Thu Apr 24 22:57:16 EDT 2025 Tue Jul 01 00:44:49 EDT 2025 Fri Nov 05 03:19:20 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-5ce3322f884d4d6a0c38a53aa971a1c2c28b6ceb3ec55906b23bb69c6e186f723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2499-6116 0000-0002-2110-4269 |
PMID | 34669377 |
PQID | 2585412629 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2636671437 proquest_miscellaneous_2585412629 pubmed_primary_34669377 crossref_primary_10_1021_jacs_1c07497 crossref_citationtrail_10_1021_jacs_1c07497 acs_journals_10_1021_jacs_1c07497 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-03 |
PublicationDateYYYYMMDD | 2021-11-03 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 Sadovnikov S. I. (ref32/cit32) 2018 ref3/cit3 ref27/cit27 ref18/cit18 ref100/cit100 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref4/cit4 doi: 10.1038/s41565-018-0236-6 – ident: ref11/cit11 doi: 10.1126/sciadv.aar3309 – ident: ref8/cit8 doi: 10.1016/j.cell.2011.03.036 – ident: ref10/cit10 doi: 10.1038/nnano.2015.189 – ident: ref25/cit25 doi: 10.1073/pnas.0803441105 – ident: ref22/cit22 doi: 10.1021/acs.chemrev.5b00597 – ident: ref9/cit9 doi: 10.1016/j.cell.2013.09.022 – ident: ref29/cit29 doi: 10.1073/pnas.1614430113 – ident: ref24/cit24 doi: 10.1021/bi00324a025 – ident: ref26/cit26 doi: 10.1158/0008-5472.CAN-11-3151 – ident: ref7/cit7 doi: 10.1016/j.cell.2011.04.010 – ident: ref31/cit31 doi: 10.1021/ja4125115 – ident: ref1/cit1 doi: 10.1373/clinchem.2014.223016 – ident: ref13/cit13 doi: 10.1038/s41565-019-0579-7 – ident: ref19/cit19 doi: 10.1073/pnas.0901054106 – ident: ref28/cit28 doi: 10.1002/ange.201607380 – ident: ref3/cit3 doi: 10.1002/anie.200905483 – ident: ref20/cit20 doi: 10.1126/science.aar6404 – ident: ref12/cit12 doi: 10.1126/science.aat3872 – ident: ref5/cit5 doi: 10.1038/s41592-021-01143-1 – ident: ref23/cit23 doi: 10.1021/cr980421n – ident: ref18/cit18 doi: 10.1016/S0006-3495(99)77153-5 – ident: ref21/cit21 doi: 10.1038/s41586-019-1923-7 – ident: ref2/cit2 doi: 10.1038/s41587-020-0570-8 – ident: ref14/cit14 doi: 10.1073/pnas.93.24.13770 – start-page: 127 volume-title: Nanostructured Lead, Cadmium, and Silver Sulfides: Structure, Nonstoichiometry and Properties year: 2018 ident: ref32/cit32 doi: 10.1007/978-3-319-56387-9_3 – ident: ref6/cit6 doi: 10.1038/nbt.2503 – ident: ref15/cit15 doi: 10.1073/pnas.0808296105 – ident: ref100/cit100 doi: 10.1021/acssensors.1c01212 – ident: ref33/cit33 doi: 10.1038/nnano.2010.213 – ident: ref30/cit30 doi: 10.1002/anie.202005729 – ident: ref34/cit34 doi: 10.1038/nnano.2009.155 – ident: ref17/cit17 doi: 10.1038/nnano.2010.177 – ident: ref16/cit16 doi: 10.1038/nbt.2147 – ident: ref27/cit27 doi: 10.1158/1535-7163.MCT-11-0250 |
SSID | ssj0004281 |
Score | 2.4697363 |
Snippet | The stepwise movement of a single biopolymer strand through a nanoscopic detector for the sequential identification of its building blocks offers a universal... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18181 |
SubjectTerms | Base Sequence biopolymers DNA DNA - analysis DNA - chemistry drug therapy Electrochemical Techniques - methods guanine Hemolysin Proteins - chemistry Nanopores platinum polypeptides polysaccharides RNA Sequence Analysis, DNA - methods |
Title | Enzymeless DNA Base Identification by Chemical Stepping in a Nanopore |
URI | http://dx.doi.org/10.1021/jacs.1c07497 https://www.ncbi.nlm.nih.gov/pubmed/34669377 https://www.proquest.com/docview/2585412629 https://www.proquest.com/docview/2636671437 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODC-_1QJsEJdVqT1E2PYwwQErsAErcqSVMJAR2i3WH8epw-hgANuFbuI7Fdf45fhByLlJkoCAA5kFhPGBV4KkXHVctEWIQQVvqudvhmCFf34vohePhMkP0ewWeuP5Bx6UFo6qJwniwwQP11EKh_-1n_yKTfwNxQAq8T3L_f7QyQyb8aoBmosrQuFyvksqnRqZJKnjrjQnfM-8-WjX98-CpZrgEm7VUSsUbmbLZOFvvNXLcNMhhk75MXtDZ5Ts-HPXqGdoxW9bppfYBH9YQ2nQSoywNzRVX0MaOK4t94hJDdbpL7i8Fd_8qrhyl4igdh4QXGclTeVEqRiARU13CpAq5UFPrKN8wwqcGga20NOhld0IxrDZEB60tIQ8a3SCsbZXaH0C5PEGQmrleWFgq0DsI08ssALEM8oXZJG5ce18qQx2Wcm6Gf4a7WG7JLThsuxKbuRu6GYjzPoD6ZUr9WXThm0LUbhsa4qy72oTI7GucxQ7dI-AxY9AsNcAA3Dx6fs11Jw_RtXAAgkgv3_rG2fbLEXOaLO3zmB6RVvI3tIUKXQh-VcvsBajHlfg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8UD3rx-wM_S6InM8ParuuOiBBU4CIk3pa26xKjDuPGAf56X8cG0QTDdXnr2r7Xvd_r-0LomsVEB57HgQORcZiWniNjMFyViJgBCGGEa3OHe33eGbKnV--1SFa3uTAwiRRGSnMn_qK6gC0TpG2UEGi8wF9HG4BDiBXoRvNlkQZJhFuiXV9wWsS5_33b6iGd_tZDS8BlrmTaO6g_n14eW_J-N87UnZ7-qdy48vx30XYBN3FjJh97aM0k-2izWXZ5O0CtVjKdfILuSVP80G_ge9BqeJa9GxfXeVhNcFlXANuoMJtihd8SLDH8m0cA4M0hGrZbg2bHKVorOJJ6fuZ42lA4yrEQLGIRl3VNhfSolIHvSlcTTYTiGgxto8HkqHNFqFI80Ny4gsc-oUeokowSc4JwnUYAOSNbOUsxyZXy_Dhwc3csAXQhq6gGSw-Lo5GGudebgNVhnxYbUkW3JTNCXdQmty0yPpZQ38ypv2Y1OZbQ1Uq-hrCr1hMiEzMapyEBI4m5hJPgHxpOObfd4WGc45lQzL9GGeeA6_zTFdZ2hTY7g1437D72n8_QFrExMfZamp6jSvY9NhcAajJ1mYvyD7LW7d8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0VkIAL-765EpxQUGM7jnMspRVrhVgkbpHtOBICUkTaA3w94zQpAqkIrtHEsT3jzBvPBrDPU2qiIBDIgcR63KjAUykarlom3CKEsNJ3ucNXXXF6z88fgoca-FUuDE4ix5HywonvTvVrkpYVBlypIOMihVDrReEETDmPnRPqZuv2KxWSSr9CvKEUrIx1__m200Um_66LxgDMQtF05uFmNMUivuTpaNDXR-bjR_XGf61hAeZK2EmaQzlZhJrNlmCmVXV7W4Z2O_t4f0EdlOfkpNskx6jdyDCLNy2v9Yh-J1V9AeKiw1yqFXnMiCL4j-4hkLcrcN9p37VOvbLFgqdYEPa9wFiGRzqVkic8EaphmFQBUyoKfeUbaqjUwqDBbQ2aHg2hKdNaREZYX4o0pGwVJrNeZteBNFiC0DNxFbQ0V0LrIEwjv3DLUkQZagPquPS4PCJ5XHi_KVof7mm5IRtwWDEkNmWNctcq43kM9cGI-nVYm2MMXb3ibYy76jwiKrO9QR5TNJa4TwWNfqERTAjXJR7HWRsKxuhrjAuB-C7c_MPa9mD6-qQTX551L7ZglrrQGHc7zbZhsv82sDuIbfp6t5DmT5XJ8GI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymeless+DNA+Base+Identification+by+Chemical+Stepping+in+a+Nanopore&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Qing%2C+Yujia&rft.au=Bayley%2C+Hagan&rft.date=2021-11-03&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=143&rft.issue=43&rft.spage=18181&rft.epage=18187&rft_id=info:doi/10.1021%2Fjacs.1c07497&rft.externalDocID=a169163434 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |