Enzymeless DNA Base Identification by Chemical Stepping in a Nanopore

The stepwise movement of a single biopolymer strand through a nanoscopic detector for the sequential identification of its building blocks offers a universal means for single-molecule sequencing. This principle has been implemented in portable sequencers that use enzymes to move DNA or RNA through h...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 143; no. 43; pp. 18181 - 18187
Main Authors Qing, Yujia, Bayley, Hagan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The stepwise movement of a single biopolymer strand through a nanoscopic detector for the sequential identification of its building blocks offers a universal means for single-molecule sequencing. This principle has been implemented in portable sequencers that use enzymes to move DNA or RNA through hundreds of individual nanopore detectors positioned in an array. Nevertheless, its application to the sequencing of other biopolymers, including polypeptides and polysaccharides, has not progressed because suitable enzymes are lacking. Recently, we devised a purely chemical means to move molecules processively in steps comparable to the repeat distances in biopolymers. Here, with this chemical approach, we demonstrate sequential nucleobase identification during DNA translocation through a nanopore. Further, the relative location of a guanine modification with a chemotherapeutic platinum derivative is pinpointed with single-base resolution. After further development, chemical translocation might replace stepping by enzymes for highly parallel single-molecule biopolymer sequencing.
AbstractList The stepwise movement of a single biopolymer strand through a nanoscopic detector for the sequential identification of its building blocks offers a universal means for single-molecule sequencing. This principle has been implemented in portable sequencers that use enzymes to move DNA or RNA through hundreds of individual nanopore detectors positioned in an array. Nevertheless, its application to the sequencing of other biopolymers, including polypeptides and polysaccharides, has not progressed because suitable enzymes are lacking. Recently, we devised a purely chemical means to move molecules processively in steps comparable to the repeat distances in biopolymers. Here, with this chemical approach, we demonstrate sequential nucleobase identification during DNA translocation through a nanopore. Further, the relative location of a guanine modification with a chemotherapeutic platinum derivative is pinpointed with single-base resolution. After further development, chemical translocation might replace stepping by enzymes for highly parallel single-molecule biopolymer sequencing.
The stepwise movement of a single biopolymer strand through a nanoscopic detector for the sequential identification of its building blocks offers a universal means for single-molecule sequencing. This principle has been implemented in portable sequencers that use enzymes to move DNA or RNA through hundreds of individual nanopore detectors positioned in an array. Nevertheless, its application to the sequencing of other biopolymers, including polypeptides and polysaccharides, has not progressed because suitable enzymes are lacking. Recently, we devised a purely chemical means to move molecules processively in steps comparable to the repeat distances in biopolymers. Here, with this chemical approach, we demonstrate sequential nucleobase identification during DNA translocation through a nanopore. Further, the relative location of a guanine modification with a chemotherapeutic platinum derivative is pinpointed with single-base resolution. After further development, chemical translocation might replace stepping by enzymes for highly parallel single-molecule biopolymer sequencing.The stepwise movement of a single biopolymer strand through a nanoscopic detector for the sequential identification of its building blocks offers a universal means for single-molecule sequencing. This principle has been implemented in portable sequencers that use enzymes to move DNA or RNA through hundreds of individual nanopore detectors positioned in an array. Nevertheless, its application to the sequencing of other biopolymers, including polypeptides and polysaccharides, has not progressed because suitable enzymes are lacking. Recently, we devised a purely chemical means to move molecules processively in steps comparable to the repeat distances in biopolymers. Here, with this chemical approach, we demonstrate sequential nucleobase identification during DNA translocation through a nanopore. Further, the relative location of a guanine modification with a chemotherapeutic platinum derivative is pinpointed with single-base resolution. After further development, chemical translocation might replace stepping by enzymes for highly parallel single-molecule biopolymer sequencing.
Author Bayley, Hagan
Qing, Yujia
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Yujia
  orcidid: 0000-0002-2110-4269
  surname: Qing
  fullname: Qing, Yujia
  email: yujia.qing@chem.ox.ac.uk
– sequence: 2
  givenname: Hagan
  orcidid: 0000-0003-2499-6116
  surname: Bayley
  fullname: Bayley, Hagan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34669377$$D View this record in MEDLINE/PubMed
BookMark eNqF0TtPwzAUBWALFdEHbMzIIwMpfsR2MpZSoBIqAzBHjnsDrhInxMlQfj0pDQwIxGRd67uWdc4YDVzpAKFTSqaUMHq50cZPqSEqjNUBGlHBSCAokwM0IoSwQEWSD9HY-003hiyiR2jIQyljrtQILRbufVtADt7j69UMX2kPeLkG19jMGt3Y0uF0i-evUHRjjh8bqCrrXrB1WOOVdmVV1nCMDjOdezjpzwl6vlk8ze-C-4fb5Xx2H2guVBMIA5wzlkVRuA7XUhPDIy241rGimhpmWJRKAykHI0RMZMp4msrYSKCRzBTjE3S-f7eqy7cWfJMU1hvIc-2gbH3CJJdS0ZCr_6mIRNjFxOKOnvW0TQtYJ1VtC11vk6-UOnCxB6Yuva8h-yaUJLsSkl0JSV9Cx9kPbmzzGWVTa5v_tdT_d3e5KdvadUH-Tj8ADyeWFQ
CitedBy_id crossref_primary_10_1002_anie_202304023
crossref_primary_10_1016_j_cej_2023_145311
crossref_primary_10_1039_D4FD00146J
crossref_primary_10_1016_j_trac_2023_117060
crossref_primary_10_1038_s41565_022_01193_2
crossref_primary_10_1109_LCOMM_2023_3309312
crossref_primary_10_1109_JIOT_2024_3482722
crossref_primary_10_1021_jacs_2c13465
crossref_primary_10_1002_adma_202207434
crossref_primary_10_1021_acsnano_4c01466
crossref_primary_10_1002_anie_202209970
crossref_primary_10_1016_j_coelec_2022_101000
crossref_primary_10_1021_acs_analchem_4c00475
crossref_primary_10_1021_acsanm_1c04417
crossref_primary_10_1002_ange_202209970
crossref_primary_10_1021_acs_jpcb_4c02021
crossref_primary_10_1002_ange_202300890
crossref_primary_10_1002_ange_202304023
crossref_primary_10_1002_anie_202300890
crossref_primary_10_1016_j_snb_2024_135634
crossref_primary_10_1039_D1SC05766A
Cites_doi 10.1038/s41565-018-0236-6
10.1126/sciadv.aar3309
10.1016/j.cell.2011.03.036
10.1038/nnano.2015.189
10.1073/pnas.0803441105
10.1021/acs.chemrev.5b00597
10.1016/j.cell.2013.09.022
10.1073/pnas.1614430113
10.1021/bi00324a025
10.1158/0008-5472.CAN-11-3151
10.1016/j.cell.2011.04.010
10.1021/ja4125115
10.1373/clinchem.2014.223016
10.1038/s41565-019-0579-7
10.1073/pnas.0901054106
10.1002/ange.201607380
10.1002/anie.200905483
10.1126/science.aar6404
10.1126/science.aat3872
10.1038/s41592-021-01143-1
10.1021/cr980421n
10.1016/S0006-3495(99)77153-5
10.1038/s41586-019-1923-7
10.1038/s41587-020-0570-8
10.1073/pnas.93.24.13770
10.1007/978-3-319-56387-9_3
10.1038/nbt.2503
10.1073/pnas.0808296105
10.1021/acssensors.1c01212
10.1038/nnano.2010.213
10.1002/anie.202005729
10.1038/nnano.2009.155
10.1038/nnano.2010.177
10.1038/nbt.2147
10.1158/1535-7163.MCT-11-0250
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.1c07497
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 18187
ExternalDocumentID 34669377
10_1021_jacs_1c07497
a169163434
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02
4.4
53G
55A
5GY
5RE
5VS
60S
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ET
F5P
GGK
GNL
IH2
IH9
JG
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
.K2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
CITATION
CUPRZ
ED~
JG~
XSW
YQT
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-a357t-5ce3322f884d4d6a0c38a53aa971a1c2c28b6ceb3ec55906b23bb69c6e186f723
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Jul 10 23:42:47 EDT 2025
Fri Jul 11 10:35:05 EDT 2025
Wed Feb 19 02:27:13 EST 2025
Thu Apr 24 22:57:16 EDT 2025
Tue Jul 01 00:44:49 EDT 2025
Fri Nov 05 03:19:20 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-5ce3322f884d4d6a0c38a53aa971a1c2c28b6ceb3ec55906b23bb69c6e186f723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2499-6116
0000-0002-2110-4269
PMID 34669377
PQID 2585412629
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2636671437
proquest_miscellaneous_2585412629
pubmed_primary_34669377
crossref_primary_10_1021_jacs_1c07497
crossref_citationtrail_10_1021_jacs_1c07497
acs_journals_10_1021_jacs_1c07497
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-03
PublicationDateYYYYMMDD 2021-11-03
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
Sadovnikov S. I. (ref32/cit32) 2018
ref3/cit3
ref27/cit27
ref18/cit18
ref100/cit100
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref4/cit4
  doi: 10.1038/s41565-018-0236-6
– ident: ref11/cit11
  doi: 10.1126/sciadv.aar3309
– ident: ref8/cit8
  doi: 10.1016/j.cell.2011.03.036
– ident: ref10/cit10
  doi: 10.1038/nnano.2015.189
– ident: ref25/cit25
  doi: 10.1073/pnas.0803441105
– ident: ref22/cit22
  doi: 10.1021/acs.chemrev.5b00597
– ident: ref9/cit9
  doi: 10.1016/j.cell.2013.09.022
– ident: ref29/cit29
  doi: 10.1073/pnas.1614430113
– ident: ref24/cit24
  doi: 10.1021/bi00324a025
– ident: ref26/cit26
  doi: 10.1158/0008-5472.CAN-11-3151
– ident: ref7/cit7
  doi: 10.1016/j.cell.2011.04.010
– ident: ref31/cit31
  doi: 10.1021/ja4125115
– ident: ref1/cit1
  doi: 10.1373/clinchem.2014.223016
– ident: ref13/cit13
  doi: 10.1038/s41565-019-0579-7
– ident: ref19/cit19
  doi: 10.1073/pnas.0901054106
– ident: ref28/cit28
  doi: 10.1002/ange.201607380
– ident: ref3/cit3
  doi: 10.1002/anie.200905483
– ident: ref20/cit20
  doi: 10.1126/science.aar6404
– ident: ref12/cit12
  doi: 10.1126/science.aat3872
– ident: ref5/cit5
  doi: 10.1038/s41592-021-01143-1
– ident: ref23/cit23
  doi: 10.1021/cr980421n
– ident: ref18/cit18
  doi: 10.1016/S0006-3495(99)77153-5
– ident: ref21/cit21
  doi: 10.1038/s41586-019-1923-7
– ident: ref2/cit2
  doi: 10.1038/s41587-020-0570-8
– ident: ref14/cit14
  doi: 10.1073/pnas.93.24.13770
– start-page: 127
  volume-title: Nanostructured Lead, Cadmium, and Silver Sulfides: Structure, Nonstoichiometry and Properties
  year: 2018
  ident: ref32/cit32
  doi: 10.1007/978-3-319-56387-9_3
– ident: ref6/cit6
  doi: 10.1038/nbt.2503
– ident: ref15/cit15
  doi: 10.1073/pnas.0808296105
– ident: ref100/cit100
  doi: 10.1021/acssensors.1c01212
– ident: ref33/cit33
  doi: 10.1038/nnano.2010.213
– ident: ref30/cit30
  doi: 10.1002/anie.202005729
– ident: ref34/cit34
  doi: 10.1038/nnano.2009.155
– ident: ref17/cit17
  doi: 10.1038/nnano.2010.177
– ident: ref16/cit16
  doi: 10.1038/nbt.2147
– ident: ref27/cit27
  doi: 10.1158/1535-7163.MCT-11-0250
SSID ssj0004281
Score 2.4697363
Snippet The stepwise movement of a single biopolymer strand through a nanoscopic detector for the sequential identification of its building blocks offers a universal...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18181
SubjectTerms Base Sequence
biopolymers
DNA
DNA - analysis
DNA - chemistry
drug therapy
Electrochemical Techniques - methods
guanine
Hemolysin Proteins - chemistry
Nanopores
platinum
polypeptides
polysaccharides
RNA
Sequence Analysis, DNA - methods
Title Enzymeless DNA Base Identification by Chemical Stepping in a Nanopore
URI http://dx.doi.org/10.1021/jacs.1c07497
https://www.ncbi.nlm.nih.gov/pubmed/34669377
https://www.proquest.com/docview/2585412629
https://www.proquest.com/docview/2636671437
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODC-_1QJsEJdVqT1E2PYwwQErsAErcqSVMJAR2i3WH8epw-hgANuFbuI7Fdf45fhByLlJkoCAA5kFhPGBV4KkXHVctEWIQQVvqudvhmCFf34vohePhMkP0ewWeuP5Bx6UFo6qJwniwwQP11EKh_-1n_yKTfwNxQAq8T3L_f7QyQyb8aoBmosrQuFyvksqnRqZJKnjrjQnfM-8-WjX98-CpZrgEm7VUSsUbmbLZOFvvNXLcNMhhk75MXtDZ5Ts-HPXqGdoxW9bppfYBH9YQ2nQSoywNzRVX0MaOK4t94hJDdbpL7i8Fd_8qrhyl4igdh4QXGclTeVEqRiARU13CpAq5UFPrKN8wwqcGga20NOhld0IxrDZEB60tIQ8a3SCsbZXaH0C5PEGQmrleWFgq0DsI08ssALEM8oXZJG5ce18qQx2Wcm6Gf4a7WG7JLThsuxKbuRu6GYjzPoD6ZUr9WXThm0LUbhsa4qy72oTI7GucxQ7dI-AxY9AsNcAA3Dx6fs11Jw_RtXAAgkgv3_rG2fbLEXOaLO3zmB6RVvI3tIUKXQh-VcvsBajHlfg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8UD3rx-wM_S6InM8ParuuOiBBU4CIk3pa26xKjDuPGAf56X8cG0QTDdXnr2r7Xvd_r-0LomsVEB57HgQORcZiWniNjMFyViJgBCGGEa3OHe33eGbKnV--1SFa3uTAwiRRGSnMn_qK6gC0TpG2UEGi8wF9HG4BDiBXoRvNlkQZJhFuiXV9wWsS5_33b6iGd_tZDS8BlrmTaO6g_n14eW_J-N87UnZ7-qdy48vx30XYBN3FjJh97aM0k-2izWXZ5O0CtVjKdfILuSVP80G_ge9BqeJa9GxfXeVhNcFlXANuoMJtihd8SLDH8m0cA4M0hGrZbg2bHKVorOJJ6fuZ42lA4yrEQLGIRl3VNhfSolIHvSlcTTYTiGgxto8HkqHNFqFI80Ny4gsc-oUeokowSc4JwnUYAOSNbOUsxyZXy_Dhwc3csAXQhq6gGSw-Lo5GGudebgNVhnxYbUkW3JTNCXdQmty0yPpZQ38ypv2Y1OZbQ1Uq-hrCr1hMiEzMapyEBI4m5hJPgHxpOObfd4WGc45lQzL9GGeeA6_zTFdZ2hTY7g1437D72n8_QFrExMfZamp6jSvY9NhcAajJ1mYvyD7LW7d8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0VkIAL-765EpxQUGM7jnMspRVrhVgkbpHtOBICUkTaA3w94zQpAqkIrtHEsT3jzBvPBrDPU2qiIBDIgcR63KjAUykarlom3CKEsNJ3ucNXXXF6z88fgoca-FUuDE4ix5HywonvTvVrkpYVBlypIOMihVDrReEETDmPnRPqZuv2KxWSSr9CvKEUrIx1__m200Um_66LxgDMQtF05uFmNMUivuTpaNDXR-bjR_XGf61hAeZK2EmaQzlZhJrNlmCmVXV7W4Z2O_t4f0EdlOfkpNskx6jdyDCLNy2v9Yh-J1V9AeKiw1yqFXnMiCL4j-4hkLcrcN9p37VOvbLFgqdYEPa9wFiGRzqVkic8EaphmFQBUyoKfeUbaqjUwqDBbQ2aHg2hKdNaREZYX4o0pGwVJrNeZteBNFiC0DNxFbQ0V0LrIEwjv3DLUkQZagPquPS4PCJ5XHi_KVof7mm5IRtwWDEkNmWNctcq43kM9cGI-nVYm2MMXb3ibYy76jwiKrO9QR5TNJa4TwWNfqERTAjXJR7HWRsKxuhrjAuB-C7c_MPa9mD6-qQTX551L7ZglrrQGHc7zbZhsv82sDuIbfp6t5DmT5XJ8GI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymeless+DNA+Base+Identification+by+Chemical+Stepping+in+a+Nanopore&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Qing%2C+Yujia&rft.au=Bayley%2C+Hagan&rft.date=2021-11-03&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=143&rft.issue=43&rft.spage=18181&rft.epage=18187&rft_id=info:doi/10.1021%2Fjacs.1c07497&rft.externalDocID=a169163434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon