Construction of Covalent Organic Frameworks via Multicomponent Reactions

Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longe...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 145; no. 3; pp. 1475 - 1496
Main Authors Guan, Qun, Zhou, Le-Le, Dong, Yu-Bin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longer confined to organic synthesis and have found applications in materials chemistry. In particular, MCRs can be used to prepare covalent organic frameworks (COFs), which are crystalline porous materials assembled from organic monomers and exhibit a broad range of properties and applications. This synthetic approach retains the advantages of small-molecule MCRs, not only strengthening the skeletal robustness of COFs, but also providing additional driving forces for their crystallization, and has been used to prepare a series of robust COFs with diverse applications. The present perspective article provides the general background for MCRs, discusses the types of MCRs employed for COF synthesis to date, and addresses the related critical challenges and future perspectives to inspire the MCR-based design of new robust COFs and promote further progress in this emerging field.
AbstractList Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longer confined to organic synthesis and have found applications in materials chemistry. In particular, MCRs can be used to prepare covalent organic frameworks (COFs), which are crystalline porous materials assembled from organic monomers and exhibit a broad range of properties and applications. This synthetic approach retains the advantages of small-molecule MCRs, not only strengthening the skeletal robustness of COFs, but also providing additional driving forces for their crystallization, and has been used to prepare a series of robust COFs with diverse applications. The present perspective article provides the general background for MCRs, discusses the types of MCRs employed for COF synthesis to date, and addresses the related critical challenges and future perspectives to inspire the MCR-based design of new robust COFs and promote further progress in this emerging field.Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longer confined to organic synthesis and have found applications in materials chemistry. In particular, MCRs can be used to prepare covalent organic frameworks (COFs), which are crystalline porous materials assembled from organic monomers and exhibit a broad range of properties and applications. This synthetic approach retains the advantages of small-molecule MCRs, not only strengthening the skeletal robustness of COFs, but also providing additional driving forces for their crystallization, and has been used to prepare a series of robust COFs with diverse applications. The present perspective article provides the general background for MCRs, discusses the types of MCRs employed for COF synthesis to date, and addresses the related critical challenges and future perspectives to inspire the MCR-based design of new robust COFs and promote further progress in this emerging field.
Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longer confined to organic synthesis and have found applications in materials chemistry. In particular, MCRs can be used to prepare covalent organic frameworks (COFs), which are crystalline porous materials assembled from organic monomers and exhibit a broad range of properties and applications. This synthetic approach retains the advantages of small-molecule MCRs, not only strengthening the skeletal robustness of COFs, but also providing additional driving forces for their crystallization, and has been used to prepare a series of robust COFs with diverse applications. The present perspective article provides the general background for MCRs, discusses the types of MCRs employed for COF synthesis to date, and addresses the related critical challenges and future perspectives to inspire the MCR-based design of new robust COFs and promote further progress in this emerging field.
Author Zhou, Le-Le
Guan, Qun
Dong, Yu-Bin
AuthorAffiliation College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education
AuthorAffiliation_xml – name: College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education
Author_xml – sequence: 1
  givenname: Qun
  orcidid: 0000-0002-5522-5106
  surname: Guan
  fullname: Guan, Qun
– sequence: 2
  givenname: Le-Le
  surname: Zhou
  fullname: Zhou, Le-Le
– sequence: 3
  givenname: Yu-Bin
  orcidid: 0000-0002-9698-8863
  surname: Dong
  fullname: Dong, Yu-Bin
  email: yubindong@sdnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36646043$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LwzAYxoNM3IfePEuPHqzmq017lOGcMBmInkOappLZJjNpJ_73pq67iOIlIeH3PLzv80zByFijADhH8BpBjG42QvprLBGCDB2BCUowjBOE0xGYQAhxzLKUjMHU-014UpyhEzAmaUpTSMkELOfW-NZ1stXWRLaK5nYnamXaaO1ehdEyWjjRqA_r3ny00yJ67OpWS9tswxSBelLiW-pPwXElaq_OhnsGXhZ3z_NlvFrfP8xvV7EgCWvjRApIqKhQiaFA4cxJpvJCFopIVjKU5RnDQmaMKBUEsghTSljmOWN5SiAkM3C59906-94p3_JGe6nqWhhlO88JpJDSBKf0XxSzEAMOziygFwPaFY0q-dbpRrhPfggqAHgPSGe9d6riUrei37x1QtccQd63wfs2-NBGEF39EB18_8CHefvPje2cCUH-jn4B2muX3g
CitedBy_id crossref_primary_10_1039_D4RA04152F
crossref_primary_10_1016_j_ccr_2024_216359
crossref_primary_10_1002_ange_202423226
crossref_primary_10_1002_anie_202421416
crossref_primary_10_1021_jacs_4c02551
crossref_primary_10_1021_jacs_2c13541
crossref_primary_10_1021_jacs_4c16320
crossref_primary_10_1039_D5RA01048A
crossref_primary_10_1007_s11164_023_05216_y
crossref_primary_10_1016_j_memsci_2024_122885
crossref_primary_10_1002_adfm_202313905
crossref_primary_10_1021_jacs_3c08160
crossref_primary_10_1002_adsc_202300822
crossref_primary_10_1002_cctc_202300244
crossref_primary_10_1002_ange_202302872
crossref_primary_10_1002_ange_202309820
crossref_primary_10_1002_chem_202301310
crossref_primary_10_1002_adma_202405399
crossref_primary_10_1002_cmdc_202400595
crossref_primary_10_1021_acsnano_3c06967
crossref_primary_10_1016_j_cclet_2023_109201
crossref_primary_10_1002_anie_202408277
crossref_primary_10_1002_adsc_202301240
crossref_primary_10_1021_acsmaterialslett_4c01042
crossref_primary_10_1002_anie_202402202
crossref_primary_10_3762_bjoc_20_162
crossref_primary_10_1021_acs_accounts_4c00491
crossref_primary_10_1134_S1070428024050166
crossref_primary_10_1039_D3QI02391E
crossref_primary_10_1002_ange_202418394
crossref_primary_10_1007_s11426_023_1694_2
crossref_primary_10_1002_ange_202410392
crossref_primary_10_1002_anie_202309820
crossref_primary_10_1038_s41598_024_58563_0
crossref_primary_10_1021_acscentsci_4c00660
crossref_primary_10_1016_j_mcat_2023_113601
crossref_primary_10_1039_D3MD00255A
crossref_primary_10_1002_ange_202314763
crossref_primary_10_1039_D5OB00187K
crossref_primary_10_1021_acs_analchem_4c04098
crossref_primary_10_3390_catal14070429
crossref_primary_10_1016_j_jhazmat_2024_133755
crossref_primary_10_1016_j_cej_2024_154885
crossref_primary_10_1021_acsanm_3c02657
crossref_primary_10_1021_jacs_3c14833
crossref_primary_10_1002_adfm_202411237
crossref_primary_10_1021_acsomega_3c04452
crossref_primary_10_1039_D4CY01098A
crossref_primary_10_1002_ange_202421416
crossref_primary_10_1039_D4TB01096E
crossref_primary_10_1002_adfm_202409396
crossref_primary_10_1055_s_0044_1787016
crossref_primary_10_1002_open_202400411
crossref_primary_10_1016_j_bmcl_2025_130096
crossref_primary_10_1002_aic_18488
crossref_primary_10_1055_a_2479_0995
crossref_primary_10_1002_adma_202407761
crossref_primary_10_1002_smll_202406805
crossref_primary_10_1002_aoc_7315
crossref_primary_10_1002_ange_202402202
crossref_primary_10_1016_j_trechm_2025_01_005
crossref_primary_10_1002_ange_202408277
crossref_primary_10_1002_aoc_7793
crossref_primary_10_1002_aenm_202500341
crossref_primary_10_1134_S263482762460035X
crossref_primary_10_1002_chem_202401344
crossref_primary_10_1039_D3SC00251A
crossref_primary_10_1002_ange_202314539
crossref_primary_10_1007_s11426_024_2213_2
crossref_primary_10_1038_s41467_024_50761_8
crossref_primary_10_1002_anie_202314763
crossref_primary_10_1002_slct_202303311
crossref_primary_10_1039_D4CC04150J
crossref_primary_10_1016_j_bioorg_2024_107756
crossref_primary_10_1039_D4TA00087K
crossref_primary_10_6023_cjoc202212026
crossref_primary_10_1002_anie_202302872
crossref_primary_10_1039_D3TA05715A
crossref_primary_10_1021_acs_chemmater_3c01425
crossref_primary_10_1002_anie_202314539
crossref_primary_10_1039_D3CC05982K
crossref_primary_10_1016_j_jece_2024_112279
crossref_primary_10_1016_j_mser_2024_100858
crossref_primary_10_1039_D4NJ03063J
crossref_primary_10_1016_j_chempr_2024_09_006
crossref_primary_10_1021_jacs_3c03938
crossref_primary_10_1002_anie_202408937
crossref_primary_10_1039_D4TC00999A
crossref_primary_10_1016_j_snb_2024_136593
crossref_primary_10_1016_S1872_2067_23_64592_9
crossref_primary_10_1002_anie_202418394
crossref_primary_10_1021_acs_nanolett_5c00607
crossref_primary_10_1016_j_scitotenv_2024_170645
crossref_primary_10_1002_anie_202410392
crossref_primary_10_1016_j_mcat_2024_114127
crossref_primary_10_1038_s41467_024_46872_x
crossref_primary_10_1016_j_mtchem_2024_102155
crossref_primary_10_2174_0113852728304587240319061348
crossref_primary_10_1002_anie_202423226
crossref_primary_10_1021_acsami_4c11616
crossref_primary_10_1039_D4RA05381H
crossref_primary_10_1039_D4TA07171A
crossref_primary_10_1039_D3QM00188A
crossref_primary_10_1016_j_microc_2024_111986
crossref_primary_10_1039_D4SC04358H
crossref_primary_10_1002_ange_202408937
crossref_primary_10_1016_j_cej_2024_148562
crossref_primary_10_1016_j_hazadv_2024_100422
Cites_doi 10.1002/anie.202104870
10.1126/science.aan0202
10.1021/acs.chemmater.1c00737
10.1016/j.cej.2022.139082
10.1002/jlac.18500750103
10.1002/9781118863992.ch12
10.1039/C6CC00947F
10.1039/D0CS00620C
10.1002/anie.202216310
10.1021/jacs.9b03243
10.1021/jacs.8b01774
10.1021/jacs.0c09684
10.1002/cjoc.202100680
10.1039/C6CC09906H
10.1002/anie.202008055
10.1021/cr100233r
10.1002/adma.202202751
10.1039/C9CC01548E
10.1021/jacs.7b01240
10.1021/jacs.0c04722
10.1002/anie.202002724
10.1039/c3cs35505e
10.1002/chem.201905150
10.1002/slct.202202538
10.1039/D2SC02365B
10.1021/jacs.8b08949
10.1126/science.aat7679
10.1002/anie.202114244
10.1021/jacs.7b02648
10.1016/j.chempr.2022.08.001
10.1021/jacs.2c07733
10.1002/adma.201905776
10.1021/jacs.0c10919
10.1039/D1TA04621G
10.1002/anie.202210447
10.1002/jlac.18872420302
10.1021/acs.accounts.8b00105
10.1002/chem.201501692
10.1021/jacs.2c02346
10.1002/anie.202213247
10.1021/acsnano.9b06467
10.1126/science.aar7883
10.1002/anie.201006515
10.1002/anie.202209762
10.1002/adfm.202003863
10.1002/9783527821099
10.1021/jacs.9b05626
10.1055/s-1995-4066
10.1039/C9CS00253G
10.1039/D1TA08743F
10.1021/jacs.0c07732
10.1016/j.cej.2022.137802
10.1073/pnas.0307150101
10.1002/anie.201909554
10.1039/D2SC02297D
10.1021/jacs.2c01037
10.1016/j.trechm.2019.03.001
10.1055/s-1998-1721
10.1002/anie.202102665
10.1021/ja01126a054
10.1038/s41467-020-15281-1
10.1021/jacs.2c01058
10.1002/cber.188201502245
10.1021/ja401106x
10.1021/jacs.9b13971
10.1002/anie.202113141
10.1038/s41570-022-00437-y
10.1002/anie.202117668
10.1039/C5SC02913A
10.1007/BF00844233
10.1002/jlac.18581070209
10.1021/jacs.8b13691
10.1016/j.jhazmat.2022.128831
10.1021/jacs.1c13005
10.1016/j.jcis.2022.06.162
10.1021/jacs.0c11064
10.1021/jacs.7b05182
10.1021/jacs.8b05830
10.1021/jacs.7b06913
10.1002/anie.202113979
10.1007/BF00846001
10.1016/j.apcatb.2021.120817
10.1007/BF01134751
10.1002/aenm.202003735
10.1039/C7CC05779B
10.1002/anie.202114759
10.1126/science.1120411
10.1002/anie.202204899
10.1039/C1SC00260K
10.1021/jacs.0c12505
10.1021/jacs.2c00285
10.1039/D1CC06184D
10.1002/adma.202110496
10.1039/D0NA00537A
10.1021/acsanm.1c02329
10.1016/j.tet.2014.10.032
10.1002/anie.201903534
10.1002/(SICI)1521-3773(19980904)37:16<2234::AID-ANIE2234>3.0.CO;2-R
10.1021/jacs.0c01990
10.1002/ejoc.201901124
10.1021/jacs.2c01082
10.1021/jacs.8b08374
10.1016/j.cclet.2020.11.063
10.1007/s11426-019-9696-3
10.1039/D1TA06732J
10.1002/ejoc.201801511
10.1002/anie.202100434
10.1016/j.chempr.2020.08.024
10.1021/jacs.2c02173
10.1080/05704928.2020.1831523
10.1021/jacs.0c00969
10.1021/jacs.9b13824
10.1016/j.chempr.2022.07.016
10.1021/jacs.6b00652
10.1016/j.tetlet.2015.12.047
10.1038/ncomms12104
10.1039/D1SC03963F
10.1002/anie.202015130
10.1002/cber.19350681012
10.1002/adma.202004831
10.1021/acsami.2c17109
10.1021/jacs.0c06485
10.1021/jacs.5b10708
10.1002/chem.202001006
10.1002/chem.202202787
10.1039/C9SC03725J
10.1021/acsami.0c16116
10.1016/S0040-4039(98)00653-4
10.1039/D2QI01337A
10.1038/s41467-022-33868-8
10.1016/j.ccr.2022.214774
10.1055/s-2007-991073
10.1021/jacs.6b07516
10.1038/s41467-022-30663-3
10.1126/science.aal1585
10.1002/anie.202016667
10.1039/C3CC48813F
10.1038/s41467-022-30319-2
10.1016/j.trechm.2022.01.002
10.1038/s44160-021-00001-4
10.31635/ccschem.021.202101453
10.1021/acs.chemrev.9b00550
10.1021/ja5092936
10.1016/j.tetlet.2016.09.047
10.1021/jacs.2c06446
10.1016/j.tet.2008.12.059
10.1021/jacs.1c08351
10.1038/ncomms8786
10.1002/anie.202014408
10.1016/j.bioorg.2019.103039
10.1021/jacs.1c02932
10.1021/jacs.0c12499
10.1016/j.matt.2020.04.021
10.1039/D0CC02033H
10.1021/jacs.0c00553
10.1039/D1CS00983D
10.1126/science.1139915
10.1002/chem.202200961
10.1021/jacs.8b12177
10.1039/C8CS00978C
10.1021/jacs.2c07893
10.1007/BF00843814
10.1021/ja026007t
10.1021/jacs.9b08017
10.1021/cr068388p
10.1039/C8PY00173A
10.1039/D0CS00049C
10.1002/anie.201005919
10.1021/jacs.2c01186
10.1002/9783527832002.ch7
10.1002/ejoc.202101171
10.1021/acs.joc.0c02423
10.1126/science.aad4011
10.1021/jacs.2c01199
10.1039/C4GC00013G
10.1021/acscatal.7b03759
10.1021/acs.chemmater.6b01954
10.1039/D1CC06461D
10.1021/jacs.0c07461
10.1002/anie.201710633
10.1002/chem.201806242
10.1002/smll.202101368
10.1021/cr200057t
10.1038/s41467-018-07720-x
10.1016/S1872-2067(20)63572-0
10.1039/D0CC00758G
10.1021/ol060793f
10.1021/jacs.0c05970
10.1039/b108851n
10.1021/jacs.9b09502
10.1039/c2cs15361k
10.1021/ja8096256
10.1038/s41467-019-10574-6
10.1038/s41467-018-04979-y
10.1038/nchem.2352
10.1039/c2cs15356d
10.1021/acs.chemmater.1c03156
10.1021/jacs.0c11313
10.1021/jacs.2c05701
10.1016/j.tet.2011.07.020
10.1021/acs.inorgchem.1c03268
10.1021/acsami.1c08854
10.1021/jacs.2c10548
10.1021/ar800033j
10.1039/D1SC00738F
10.1021/jacs.1c07148
10.1002/anie.202213268
10.1039/C5CC03413B
10.1021/acs.orglett.1c00175
10.1016/j.cjche.2021.03.002
10.1039/C9CC06780A
10.1070/RC1967v036n09ABEH001680
10.1039/D0TA04574H
10.1021/jacs.1c03739
10.1021/acs.chemmater.2c00738
10.1016/j.tetlet.2003.10.188
10.1021/acs.macromol.8b01814
10.1021/acs.chemrev.8b00744
10.1039/D0CS00199F
10.1021/jacs.2c07596
10.1021/acs.inorgchem.1c01975
10.1016/j.checat.2022.10.014
10.1021/acs.orglett.7b02168
10.1021/jacs.2c06042
10.1002/anie.202115020
10.1002/smll.202001883
10.1021/jacs.9b10625
10.1021/jacs.0c03418
10.1016/j.chempr.2020.08.008
10.1002/anie.202114573
10.1038/s41467-018-03689-9
10.1021/jacs.2c02301
10.1021/jacs.0c07015
10.1002/anie.202115044
10.1002/adtp.202100177
10.1021/jacs.1c03042
10.1002/anie.202007230
10.1002/adma.202102290
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.2c11071
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 1496
ExternalDocumentID 36646043
10_1021_jacs_2c11071
b824757536
Genre Journal Article
Review
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
55A
5GY
5RE
5VS
7~N
85S
8W4
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
AHGAQ
CITATION
CUPRZ
NPM
YIN
7X8
7S9
AAYWT
L.6
ID FETCH-LOGICAL-a357t-5ca034af1d20a11d2938e9bcbe3c7d7189872ac873ee357cb043c0d9977963003
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Mon Jul 21 11:31:22 EDT 2025
Fri Jul 11 02:03:18 EDT 2025
Wed Feb 19 02:26:06 EST 2025
Tue Jul 01 03:54:25 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
Fri Jan 27 03:10:53 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-5ca034af1d20a11d2938e9bcbe3c7d7189872ac873ee357cb043c0d9977963003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5522-5106
0000-0002-9698-8863
PMID 36646043
PQID 2766429777
PQPubID 23479
PageCount 22
ParticipantIDs proquest_miscellaneous_3040445264
proquest_miscellaneous_2766429777
pubmed_primary_36646043
crossref_citationtrail_10_1021_jacs_2c11071
crossref_primary_10_1021_jacs_2c11071
acs_journals_10_1021_jacs_2c11071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-25
PublicationDateYYYYMMDD 2023-01-25
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref63/cit63b
ref63/cit63c
ref3/cit3
ref63/cit63a
ref81/cit81
ref23/cit23a
ref23/cit23b
ref16/cit16
ref23/cit23c
ref78/cit78a
ref63/cit63d
ref78/cit78b
ref78/cit78c
ref23/cit23d
ref82/cit82p
ref23/cit23e
ref82/cit82q
ref82/cit82n
ref82/cit82o
ref84/cit84a
ref82/cit82l
ref84/cit84b
ref82/cit82m
ref84/cit84c
ref82/cit82j
ref84/cit84d
ref82/cit82k
ref84/cit84e
ref82/cit82h
ref84/cit84f
ref82/cit82i
ref74/cit74
ref82/cit82f
ref82/cit82g
ref82/cit82d
ref82/cit82e
ref90/cit90a
ref82/cit82b
ref90/cit90b
ref82/cit82c
ref90/cit90c
ref90/cit90d
ref82/cit82a
ref7/cit7f
ref7/cit7e
ref7/cit7d
ref42/cit42
ref7/cit7c
ref7/cit7b
ref7/cit7a
ref67/cit67
ref19/cit19a
ref54/cit54
ref19/cit19c
ref19/cit19b
ref10/cit10d
ref61/cit61d
ref29/cit29
ref8/cit8a
ref10/cit10a
ref61/cit61a
ref8/cit8c
ref10/cit10b
ref61/cit61b
ref8/cit8b
ref10/cit10c
ref61/cit61c
ref8/cit8e
ref8/cit8d
ref8/cit8g
ref8/cit8f
ref8/cit8i
ref5/cit5
ref8/cit8h
ref8/cit8k
ref8/cit8j
ref8/cit8m
ref43/cit43
ref80/cit80
ref8/cit8l
ref8/cit8o
ref8/cit8n
ref28/cit28
ref92/cit92b
ref92/cit92c
ref92/cit92a
ref92/cit92d
ref55/cit55
ref89/cit89b
ref89/cit89c
ref89/cit89a
ref66/cit66
ref22/cit22
ref40/cit40b
ref89/cit89d
ref40/cit40a
ref56/cit56
ref88/cit88a
ref13/cit13a
ref13/cit13b
ref13/cit13c
ref13/cit13d
ref13/cit13e
ref13/cit13f
ref13/cit13g
ref13/cit13h
ref13/cit13i
ref88/cit88c
ref59/cit59
ref85/cit85
ref88/cit88b
ref88/cit88d
ref37/cit37
ref60/cit60
ref17/cit17
ref21/cit21
ref11/cit11c
ref11/cit11b
ref11/cit11a
ref93/cit93a
ref46/cit46a
ref46/cit46b
ref93/cit93b
ref35/cit35a
ref36/cit36
ref35/cit35b
ref79/cit79
Marques C. S. (ref73/cit73) 2022
ref86/cit86a
ref9/cit9ae
ref9/cit9af
ref57/cit57
ref86/cit86b
Marqués-López E. (ref20/cit20) 2015
ref9/cit9ac
ref9/cit9ad
ref9/cit9aa
ref9/cit9ab
ref6/cit6h
ref6/cit6i
ref44/cit44a
ref6/cit6d
ref6/cit6e
ref6/cit6f
ref6/cit6g
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref6/cit6a
ref6/cit6b
ref6/cit6c
ref44/cit44d
ref44/cit44b
ref44/cit44c
ref83/cit83e
ref83/cit83d
ref83/cit83c
ref83/cit83b
ref83/cit83a
ref52/cit52
ref2/cit2
ref77/cit77
ref1/cit1a
ref71/cit71
ref1/cit1c
ref1/cit1b
ref38/cit38
ref64/cit64
ref18/cit18
ref65/cit65
ref76/cit76
ref32/cit32
ref39/cit39
ref91/cit91
ref12/cit12
ref30/cit30a
ref30/cit30b
ref48/cit48a
ref33/cit33
ref48/cit48c
ref48/cit48b
ref70/cit70
ref27/cit27
Li J. J. (ref53/cit53) 2014
ref31/cit31
ref87/cit87d
ref87/cit87e
ref49/cit49
ref87/cit87a
ref75/cit75
ref87/cit87b
ref87/cit87c
ref24/cit24
ref50/cit50
ref45/cit45b
ref45/cit45a
ref9/cit9c
ref9/cit9b
ref9/cit9a
ref25/cit25b
ref72/cit72
ref25/cit25a
ref9/cit9k
ref9/cit9j
ref9/cit9i
ref9/cit9h
ref9/cit9g
ref9/cit9f
ref9/cit9e
ref9/cit9d
ref51/cit51
ref9/cit9s
ref9/cit9r
ref9/cit9q
ref9/cit9p
ref9/cit9o
ref68/cit68
ref9/cit9n
ref9/cit9m
ref9/cit9l
ref9/cit9z
ref9/cit9y
ref9/cit9x
ref26/cit26
ref9/cit9w
ref34/cit34b
ref9/cit9v
ref34/cit34c
ref9/cit9u
ref9/cit9t
ref34/cit34a
ref14/cit14a
ref69/cit69
ref14/cit14c
ref14/cit14b
ref4/cit4
ref47/cit47
ref34/cit34d
References_xml – ident: ref62/cit62
  doi: 10.1002/anie.202104870
– ident: ref13/cit13a
  doi: 10.1126/science.aan0202
– ident: ref82/cit82p
  doi: 10.1021/acs.chemmater.1c00737
– ident: ref7/cit7f
  doi: 10.1016/j.cej.2022.139082
– ident: ref2/cit2
  doi: 10.1002/jlac.18500750103
– start-page: 382
  volume-title: Multicomponent Reactions: Concepts and Applications for Design and Synthesis
  year: 2015
  ident: ref20/cit20
  doi: 10.1002/9781118863992.ch12
– ident: ref83/cit83b
  doi: 10.1039/C6CC00947F
– ident: ref6/cit6e
  doi: 10.1039/D0CS00620C
– ident: ref44/cit44d
  doi: 10.1002/anie.202216310
– ident: ref34/cit34a
  doi: 10.1021/jacs.9b03243
– ident: ref9/cit9f
  doi: 10.1021/jacs.8b01774
– ident: ref8/cit8i
  doi: 10.1021/jacs.0c09684
– ident: ref28/cit28
  doi: 10.1002/cjoc.202100680
– ident: ref8/cit8d
  doi: 10.1039/C6CC09906H
– ident: ref82/cit82k
  doi: 10.1002/anie.202008055
– ident: ref1/cit1b
  doi: 10.1021/cr100233r
– ident: ref91/cit91
  doi: 10.1002/adma.202202751
– ident: ref61/cit61a
  doi: 10.1039/C9CC01548E
– ident: ref82/cit82e
  doi: 10.1021/jacs.7b01240
– ident: ref87/cit87a
  doi: 10.1021/jacs.0c04722
– ident: ref10/cit10d
  doi: 10.1002/anie.202002724
– ident: ref1/cit1c
  doi: 10.1039/c3cs35505e
– ident: ref6/cit6b
  doi: 10.1002/chem.201905150
– ident: ref93/cit93b
  doi: 10.1002/slct.202202538
– ident: ref9/cit9z
  doi: 10.1039/D2SC02365B
– ident: ref10/cit10b
  doi: 10.1021/jacs.8b08949
– ident: ref84/cit84b
  doi: 10.1126/science.aat7679
– ident: ref9/cit9v
  doi: 10.1002/anie.202114244
– ident: ref92/cit92a
  doi: 10.1021/jacs.7b02648
– ident: ref8/cit8h
  doi: 10.1016/j.chempr.2022.08.001
– ident: ref9/cit9ad
  doi: 10.1021/jacs.2c07733
– ident: ref82/cit82j
  doi: 10.1002/adma.201905776
– ident: ref51/cit51
  doi: 10.1021/jacs.0c10919
– ident: ref87/cit87c
  doi: 10.1039/D1TA04621G
– ident: ref13/cit13h
  doi: 10.1002/anie.202210447
– ident: ref52/cit52
  doi: 10.1002/jlac.18872420302
– ident: ref79/cit79
  doi: 10.1021/acs.accounts.8b00105
– ident: ref82/cit82a
  doi: 10.1002/chem.201501692
– ident: ref13/cit13e
  doi: 10.1021/jacs.2c02346
– ident: ref74/cit74
  doi: 10.1002/anie.202213247
– ident: ref82/cit82h
  doi: 10.1021/acsnano.9b06467
– ident: ref84/cit84a
  doi: 10.1126/science.aar7883
– ident: ref1/cit1a
  doi: 10.1002/anie.201006515
– ident: ref13/cit13g
  doi: 10.1002/anie.202209762
– ident: ref34/cit34b
  doi: 10.1002/adfm.202003863
– ident: ref69/cit69
  doi: 10.1002/9783527821099
– ident: ref75/cit75
  doi: 10.1021/jacs.9b05626
– ident: ref24/cit24
  doi: 10.1055/s-1995-4066
– ident: ref39/cit39
  doi: 10.1039/C9CS00253G
– ident: ref54/cit54
  doi: 10.1039/D1TA08743F
– ident: ref9/cit9k
  doi: 10.1021/jacs.0c07732
– ident: ref9/cit9w
  doi: 10.1016/j.cej.2022.137802
– ident: ref40/cit40b
  doi: 10.1073/pnas.0307150101
– ident: ref83/cit83e
  doi: 10.1002/anie.201909554
– ident: ref64/cit64
  doi: 10.1039/D2SC02297D
– ident: ref9/cit9ab
  doi: 10.1021/jacs.2c01037
– ident: ref12/cit12
  doi: 10.1016/j.trechm.2019.03.001
– ident: ref48/cit48a
  doi: 10.1055/s-1998-1721
– ident: ref9/cit9q
  doi: 10.1002/anie.202102665
– ident: ref57/cit57
  doi: 10.1021/ja01126a054
– ident: ref7/cit7b
  doi: 10.1038/s41467-020-15281-1
– ident: ref9/cit9y
  doi: 10.1021/jacs.2c01058
– ident: ref19/cit19b
  doi: 10.1002/cber.188201502245
– ident: ref63/cit63c
  doi: 10.1021/ja401106x
– ident: ref7/cit7a
  doi: 10.1021/jacs.9b13971
– ident: ref61/cit61d
  doi: 10.1002/anie.202113141
– ident: ref6/cit6i
  doi: 10.1038/s41570-022-00437-y
– ident: ref9/cit9ac
  doi: 10.1002/anie.202117668
– ident: ref66/cit66
  doi: 10.1039/C5SC02913A
– ident: ref23/cit23c
  doi: 10.1007/BF00844233
– ident: ref19/cit19a
  doi: 10.1002/jlac.18581070209
– ident: ref82/cit82g
  doi: 10.1021/jacs.8b13691
– ident: ref59/cit59
  doi: 10.1016/j.jhazmat.2022.128831
– ident: ref30/cit30b
  doi: 10.1021/jacs.1c13005
– ident: ref84/cit84e
  doi: 10.1016/j.jcis.2022.06.162
– ident: ref9/cit9j
  doi: 10.1021/jacs.0c11064
– ident: ref82/cit82f
  doi: 10.1021/jacs.7b05182
– ident: ref36/cit36
  doi: 10.1021/jacs.8b05830
– ident: ref83/cit83d
  doi: 10.1021/jacs.7b06913
– ident: ref88/cit88a
  doi: 10.1002/anie.202113979
– ident: ref23/cit23d
  doi: 10.1007/BF00846001
– ident: ref92/cit92b
  doi: 10.1016/j.apcatb.2021.120817
– ident: ref23/cit23a
  doi: 10.1007/BF01134751
– ident: ref35/cit35b
  doi: 10.1002/aenm.202003735
– ident: ref82/cit82d
  doi: 10.1039/C7CC05779B
– ident: ref88/cit88c
  doi: 10.1002/anie.202114759
– ident: ref5/cit5
  doi: 10.1126/science.1120411
– ident: ref9/cit9u
  doi: 10.1002/anie.202204899
– ident: ref83/cit83a
  doi: 10.1039/C1SC00260K
– ident: ref9/cit9p
  doi: 10.1021/jacs.0c12505
– ident: ref88/cit88b
  doi: 10.1021/jacs.2c00285
– ident: ref34/cit34d
  doi: 10.1039/D1CC06184D
– ident: ref92/cit92c
  doi: 10.1002/adma.202110496
– ident: ref14/cit14b
  doi: 10.1039/D0NA00537A
– ident: ref33/cit33
  doi: 10.1021/acsanm.1c02329
– ident: ref50/cit50
  doi: 10.1016/j.tet.2014.10.032
– ident: ref44/cit44c
  doi: 10.1002/anie.201903534
– ident: ref48/cit48c
  doi: 10.1002/(SICI)1521-3773(19980904)37:16<2234::AID-ANIE2234>3.0.CO;2-R
– ident: ref78/cit78a
  doi: 10.1021/jacs.0c01990
– ident: ref49/cit49
  doi: 10.1002/ejoc.201901124
– ident: ref8/cit8n
  doi: 10.1021/jacs.2c01082
– ident: ref13/cit13b
  doi: 10.1021/jacs.8b08374
– ident: ref86/cit86a
  doi: 10.1016/j.cclet.2020.11.063
– ident: ref8/cit8j
  doi: 10.1007/s11426-019-9696-3
– ident: ref32/cit32
  doi: 10.1039/D1TA06732J
– ident: ref63/cit63d
  doi: 10.1002/ejoc.201801511
– ident: ref9/cit9r
  doi: 10.1002/anie.202100434
– ident: ref6/cit6d
  doi: 10.1016/j.chempr.2020.08.024
– ident: ref30/cit30a
  doi: 10.1021/jacs.2c02173
– ident: ref88/cit88d
  doi: 10.1080/05704928.2020.1831523
– ident: ref16/cit16
  doi: 10.1021/jacs.0c00969
– ident: ref9/cit9h
  doi: 10.1021/jacs.9b13824
– ident: ref9/cit9ae
  doi: 10.1016/j.chempr.2022.07.016
– ident: ref9/cit9c
  doi: 10.1021/jacs.6b00652
– ident: ref63/cit63b
  doi: 10.1016/j.tetlet.2015.12.047
– ident: ref44/cit44b
  doi: 10.1038/ncomms12104
– ident: ref82/cit82n
  doi: 10.1039/D1SC03963F
– ident: ref8/cit8l
  doi: 10.1002/anie.202015130
– ident: ref19/cit19c
  doi: 10.1002/cber.19350681012
– ident: ref89/cit89c
  doi: 10.1002/adma.202004831
– ident: ref90/cit90d
  doi: 10.1021/acsami.2c17109
– ident: ref9/cit9i
  doi: 10.1021/jacs.0c06485
– ident: ref83/cit83c
  doi: 10.1021/jacs.5b10708
– ident: ref80/cit80
  doi: 10.1002/chem.202001006
– ident: ref68/cit68
  doi: 10.1002/chem.202202787
– ident: ref82/cit82i
  doi: 10.1039/C9SC03725J
– ident: ref7/cit7c
  doi: 10.1021/acsami.0c16116
– ident: ref48/cit48b
  doi: 10.1016/S0040-4039(98)00653-4
– ident: ref87/cit87d
  doi: 10.1039/D2QI01337A
– ident: ref92/cit92d
  doi: 10.1038/s41467-022-33868-8
– ident: ref6/cit6g
  doi: 10.1016/j.ccr.2022.214774
– ident: ref72/cit72
  doi: 10.1055/s-2007-991073
– ident: ref44/cit44a
  doi: 10.1021/jacs.6b07516
– ident: ref65/cit65
  doi: 10.1038/s41467-022-30663-3
– ident: ref6/cit6a
  doi: 10.1126/science.aal1585
– ident: ref14/cit14c
  doi: 10.1002/anie.202016667
– ident: ref45/cit45a
  doi: 10.1039/C3CC48813F
– ident: ref56/cit56
  doi: 10.1038/s41467-022-30319-2
– ident: ref77/cit77
  doi: 10.1016/j.trechm.2022.01.002
– ident: ref13/cit13d
  doi: 10.1038/s44160-021-00001-4
– ident: ref9/cit9x
  doi: 10.31635/ccschem.021.202101453
– ident: ref6/cit6c
  doi: 10.1021/acs.chemrev.9b00550
– ident: ref8/cit8b
  doi: 10.1021/ja5092936
– ident: ref70/cit70
  doi: 10.1016/j.tetlet.2016.09.047
– ident: ref7/cit7e
  doi: 10.1021/jacs.2c06446
– ident: ref25/cit25a
  doi: 10.1016/j.tet.2008.12.059
– ident: ref9/cit9s
  doi: 10.1021/jacs.1c08351
– ident: ref8/cit8c
  doi: 10.1038/ncomms8786
– ident: ref34/cit34c
  doi: 10.1002/anie.202014408
– ident: ref58/cit58
  doi: 10.1016/j.bioorg.2019.103039
– ident: ref78/cit78b
  doi: 10.1021/jacs.1c02932
– ident: ref9/cit9m
  doi: 10.1021/jacs.0c12499
– ident: ref89/cit89b
  doi: 10.1016/j.matt.2020.04.021
– ident: ref82/cit82m
  doi: 10.1039/D0CC02033H
– ident: ref82/cit82l
  doi: 10.1021/jacs.0c00553
– ident: ref11/cit11c
  doi: 10.1039/D1CS00983D
– ident: ref9/cit9a
  doi: 10.1126/science.1139915
– ident: ref84/cit84f
  doi: 10.1002/chem.202200961
– ident: ref10/cit10c
  doi: 10.1021/jacs.8b12177
– ident: ref14/cit14a
  doi: 10.1039/C8CS00978C
– ident: ref82/cit82q
  doi: 10.1021/jacs.2c07893
– ident: ref23/cit23b
  doi: 10.1007/BF00843814
– ident: ref40/cit40a
  doi: 10.1021/ja026007t
– ident: ref8/cit8g
  doi: 10.1021/jacs.9b08017
– ident: ref60/cit60
  doi: 10.1021/cr068388p
– ident: ref21/cit21
  doi: 10.1039/C8PY00173A
– ident: ref76/cit76
  doi: 10.1039/D0CS00049C
– ident: ref8/cit8a
  doi: 10.1002/anie.201005919
– ident: ref47/cit47
  doi: 10.1021/jacs.2c01186
– start-page: 215
  volume-title: Heterocycles: Synthesis, Catalysis, Sustainability, and Characterization
  year: 2022
  ident: ref73/cit73
  doi: 10.1002/9783527832002.ch7
– ident: ref25/cit25b
  doi: 10.1002/ejoc.202101171
– ident: ref26/cit26
  doi: 10.1021/acs.joc.0c02423
– ident: ref10/cit10a
  doi: 10.1126/science.aad4011
– ident: ref8/cit8m
  doi: 10.1021/jacs.2c01199
– ident: ref3/cit3
  doi: 10.1039/C4GC00013G
– ident: ref42/cit42
  doi: 10.1021/acscatal.7b03759
– ident: ref82/cit82c
  doi: 10.1021/acs.chemmater.6b01954
– ident: ref55/cit55
  doi: 10.1039/D1CC06461D
– ident: ref43/cit43
  doi: 10.1021/jacs.0c07461
– ident: ref9/cit9d
  doi: 10.1002/anie.201710633
– ident: ref93/cit93a
  doi: 10.1002/chem.201806242
– ident: ref82/cit82o
  doi: 10.1002/smll.202101368
– ident: ref22/cit22
  doi: 10.1021/cr200057t
– ident: ref9/cit9e
  doi: 10.1038/s41467-018-07720-x
– ident: ref29/cit29
  doi: 10.1016/S1872-2067(20)63572-0
– ident: ref61/cit61b
  doi: 10.1039/D0CC00758G
– ident: ref41/cit41
  doi: 10.1021/ol060793f
– ident: ref13/cit13c
  doi: 10.1021/jacs.0c05970
– ident: ref37/cit37
  doi: 10.1039/b108851n
– ident: ref84/cit84c
  doi: 10.1021/jacs.9b09502
– ident: ref81/cit81
  doi: 10.1039/c2cs15361k
– ident: ref9/cit9b
  doi: 10.1021/ja8096256
– ident: ref8/cit8e
  doi: 10.1038/s41467-019-10574-6
– ident: ref35/cit35a
  doi: 10.1038/s41467-018-04979-y
– ident: ref45/cit45b
  doi: 10.1038/nchem.2352
– ident: ref38/cit38
  doi: 10.1039/c2cs15356d
– ident: ref9/cit9n
  doi: 10.1021/acs.chemmater.1c03156
– ident: ref9/cit9o
  doi: 10.1021/jacs.0c11313
– start-page: 219
  volume-title: Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications
  year: 2014
  ident: ref53/cit53
– ident: ref67/cit67
  doi: 10.1021/jacs.2c05701
– ident: ref18/cit18
  doi: 10.1016/j.tet.2011.07.020
– ident: ref87/cit87e
  doi: 10.1021/acs.inorgchem.1c03268
– ident: ref78/cit78c
  doi: 10.1021/acsami.1c08854
– ident: ref9/cit9af
  doi: 10.1021/jacs.2c10548
– ident: ref71/cit71
  doi: 10.1021/ar800033j
– ident: ref11/cit11b
  doi: 10.1039/D1SC00738F
– ident: ref61/cit61c
  doi: 10.1021/jacs.1c07148
– ident: ref7/cit7d
  doi: 10.1002/anie.202213268
– ident: ref82/cit82b
  doi: 10.1039/C5CC03413B
– ident: ref87/cit87b
  doi: 10.1021/acs.orglett.1c00175
– ident: ref90/cit90c
  doi: 10.1016/j.cjche.2021.03.002
– ident: ref8/cit8f
  doi: 10.1039/C9CC06780A
– ident: ref23/cit23e
  doi: 10.1070/RC1967v036n09ABEH001680
– ident: ref90/cit90b
  doi: 10.1039/D0TA04574H
– ident: ref9/cit9l
  doi: 10.1021/jacs.1c03739
– ident: ref8/cit8o
  doi: 10.1021/acs.chemmater.2c00738
– ident: ref63/cit63a
  doi: 10.1016/j.tetlet.2003.10.188
– ident: ref9/cit9g
  doi: 10.1021/acs.macromol.8b01814
– ident: ref4/cit4
  doi: 10.1021/acs.chemrev.8b00744
– ident: ref11/cit11a
  doi: 10.1039/D0CS00199F
– ident: ref9/cit9aa
  doi: 10.1021/jacs.2c07596
– ident: ref27/cit27
  doi: 10.1021/acs.inorgchem.1c01975
– ident: ref86/cit86b
  doi: 10.1016/j.checat.2022.10.014
– ident: ref31/cit31
  doi: 10.1021/acs.orglett.7b02168
– ident: ref13/cit13f
  doi: 10.1021/jacs.2c06042
– ident: ref13/cit13i
  doi: 10.1002/anie.202115020
– ident: ref89/cit89a
  doi: 10.1002/smll.202001883
– ident: ref15/cit15
  doi: 10.1021/jacs.9b10625
– ident: ref17/cit17
  doi: 10.1021/jacs.0c03418
– ident: ref90/cit90a
  doi: 10.1016/j.chempr.2020.08.008
– ident: ref89/cit89d
  doi: 10.1002/anie.202114573
– ident: ref46/cit46a
  doi: 10.1038/s41467-018-03689-9
– ident: ref6/cit6h
  doi: 10.1021/jacs.2c02301
– ident: ref8/cit8k
  doi: 10.1021/jacs.0c07015
– ident: ref46/cit46b
  doi: 10.1002/anie.202115044
– ident: ref85/cit85
  doi: 10.1002/adtp.202100177
– ident: ref9/cit9t
  doi: 10.1021/jacs.1c03042
– ident: ref84/cit84d
  doi: 10.1002/anie.202007230
– ident: ref6/cit6f
  doi: 10.1002/adma.202102290
SSID ssj0004281
Score 2.6628077
SecondaryResourceType review_article
Snippet Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1475
SubjectTerms Americans
crystallization
exhibitions
fields
porous media
synthesis
Title Construction of Covalent Organic Frameworks via Multicomponent Reactions
URI http://dx.doi.org/10.1021/jacs.2c11071
https://www.ncbi.nlm.nih.gov/pubmed/36646043
https://www.proquest.com/docview/2766429777
https://www.proquest.com/docview/3040445264
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6yHvTi-7G-yIKepEubtEl7lOK6CHpQF_ZWkjQFUVqhux789c70sYsrRS85lBnSZCbJN8k8CLmEtaw92PMc65kMDBTPOjpUApo04wCZtanuIR8exXji30-D6dJBdvUFn2F-IFMOmUE7BaycdSZg_SIEip-X8Y8s9FqYK0PBGwf3VW48gEz58wDqQJXV6TLaJndtjE7tVPI2nM_00Hz9Ttn4x4_vkK0GYNKbWiN2yZrN98hG3NZ12ydjrNHZZo2lRUbjArQNzh5ax2UaOmodtkr6-apoFaOLrudFjlRPto6FKA_IZHT7Eo-dpp6Co3ggZ05glMt9lXkpc5UHbcRDG2mjLTcyBYFFoWTKhJJbCwxGuz43bhoBRIwwMxc_JL0cujomFLiyIHRtJjE7TioVwhyhrRKKZTIK-mQAo0-a9VAm1VM3A1MDvzZz0ifXrSAS0yQkx7oY7x3UVwvqjzoRRwfdoJVpAhOLzx8qt8UcCKQAYwsGI7tpOOxpPlZd9_vkqFaIRW8c2AVMyck_xnZKNrEuPd7VsOCM9ECq9hzQy0xfVKr7DTDF6Hw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LasMwzIzu0F32fnTPFLbTSEnsJE6OJaxkW9vD1kJvwXYcGBvJIO0O-_pJebSsUOjFByMltiVbkq0HIfewl6UNZ56pbZWCgWJrU_rCgyZJGajMUpX3kKOxF02dl5k7q4PVMRYGBlHAl4ryEX-VXQDTBEEnVWiugLGzC3oIRYbuh--rMEjq2422y32P1X7u69goh1TxXw5tUC5LITM4IOPl8Erfks_eYi576nctc-PW4z8k-7W6afQr_jgiOzo7Ju2wqfJ2QiKs2NnkkDXy1Ahz4D2QREYVpamMQeO-VRg_H8IoI3bRET3PEOpNV5ERxSmZDp4mYWTW1RVMwVw-N10lLOaI1E6oJWxoA-brQCqpmeIJkC_wORXK50xrQFDScpiykgAUxgDzdLEz0srgVxfEAKzU9S2dcsyVk3CBSo8ntfAETXngdkgXZh_Xu6OIy4dvCoYH9tZr0iGPDT1iVacnxyoZXxugH5bQ31Vajg1w3Ya0MSwsPoaITOcLAOAemF4wGb4ZhsEJ52ANdqdDziu-WP6NAboHS3K5xdzuSDuajIbx8Hn8ekX2sGI93uJQ95q0gML6BvSaubwtufkPsXnw3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsNAcCgV1IvvR32moCdJSbJJNjmWaKmvItVCb2F3swFR2kJaD369M3lUFAJ62UMyk-zuzO7O7LwALnAtSxv3PFPbKkUFxdamDISPTZIyFJmlyu8hHwd-f-Tejb1xA-wqFgY7keGXstyIT6t6lqRlhgFKFYQvHEUqCyo8K2SxI6buRs_foZBOYFcSLw98Vvq6_8ams0hlP8-iGgEzP2h6mzBcdjH3L3nrLOayoz5_ZW_81xi2YKMUO41uwSfb0NCTHViLqmpvu9Cnyp1VLlljmhrRFHkQTySjiNZURq9y48qMj1dh5JG75JA-nRDUUBcREtkejHo3L1HfLKssmIJ5fG56SljMFamdOJawsQ1ZoEOppGaKJ0jGMOCOUAFnWiOCkpbLlJWEKDiGlK-L7UNzgr86BAOxUi-wdMopZ07CBQk_vtTCF07KQ68FbRx9XK6SLM4N4A4qIPS0nJMWXFU0iVWZppyqZbzXQF8uoWdFeo4auHZF3hgnlowiYqKnCwTgPqpgOBheD8Nwp3OpFrvbgoOCN5Z_Y4ju45Qc_WFs57D6dN2LH24H98ewToXr6TLH8U6giQTWpyjezOVZztBfnFjzYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Covalent+Organic+Frameworks+via+Multicomponent+Reactions&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Guan%2C+Qun&rft.au=Zhou%2C+Le-Le&rft.au=Dong%2C+Yu-Bin&rft.date=2023-01-25&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=145&rft.issue=3&rft.spage=1475&rft_id=info:doi/10.1021%2Fjacs.2c11071&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon