Flexible Polypropylene-Supported ZIF‑8 Membranes for Highly Efficient Propene/Propane Separation

Metal–organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membr...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 50; pp. 20915 - 20919
Main Authors Zhao, Yali, Wei, Yanying, Lyu, Luxi, Hou, Qianqian, Caro, Jürgen, Wang, Haihui
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal–organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membranes have been successfully synthesized via fast current-driven synthesis (FCDS) within 1 h. The PP-supported ZIF-8 membranes exhibit a promising separation factor of 122 ± 13 for binary C3H6–C3H8 mixtures combined with excellent flexibility behavior. The C3H6/C3H8 separation performance of the PP-supported ZIF-8 membrane was found to be constant after bending the supported ZIF-8 film with a curvature of 92 m–1. This outstanding mechanical property is crucial for practical applications. Moreover, we further synthesized ZIF-8 membranes on various polymer substrates and even polymer hollow fibers to demonstrate the production scalability.
AbstractList Metal–organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membranes have been successfully synthesized via fast current-driven synthesis (FCDS) within 1 h. The PP-supported ZIF-8 membranes exhibit a promising separation factor of 122 ± 13 for binary C3H6–C3H8 mixtures combined with excellent flexibility behavior. The C3H6/C3H8 separation performance of the PP-supported ZIF-8 membrane was found to be constant after bending the supported ZIF-8 film with a curvature of 92 m–1. This outstanding mechanical property is crucial for practical applications. Moreover, we further synthesized ZIF-8 membranes on various polymer substrates and even polymer hollow fibers to demonstrate the production scalability.
Metal-organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membranes have been successfully synthesized via fast current-driven synthesis (FCDS) within 1 h. The PP-supported ZIF-8 membranes exhibit a promising separation factor of 122 ± 13 for binary C3H6-C3H8 mixtures combined with excellent flexibility behavior. The C3H6/C3H8 separation performance of the PP-supported ZIF-8 membrane was found to be constant after bending the supported ZIF-8 film with a curvature of 92 m-1. This outstanding mechanical property is crucial for practical applications. Moreover, we further synthesized ZIF-8 membranes on various polymer substrates and even polymer hollow fibers to demonstrate the production scalability.Metal-organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membranes have been successfully synthesized via fast current-driven synthesis (FCDS) within 1 h. The PP-supported ZIF-8 membranes exhibit a promising separation factor of 122 ± 13 for binary C3H6-C3H8 mixtures combined with excellent flexibility behavior. The C3H6/C3H8 separation performance of the PP-supported ZIF-8 membrane was found to be constant after bending the supported ZIF-8 film with a curvature of 92 m-1. This outstanding mechanical property is crucial for practical applications. Moreover, we further synthesized ZIF-8 membranes on various polymer substrates and even polymer hollow fibers to demonstrate the production scalability.
Metal–organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membranes have been successfully synthesized via fast current-driven synthesis (FCDS) within 1 h. The PP-supported ZIF-8 membranes exhibit a promising separation factor of 122 ± 13 for binary C₃H₆–C₃H₈ mixtures combined with excellent flexibility behavior. The C₃H₆/C₃H₈ separation performance of the PP-supported ZIF-8 membrane was found to be constant after bending the supported ZIF-8 film with a curvature of 92 m–¹. This outstanding mechanical property is crucial for practical applications. Moreover, we further synthesized ZIF-8 membranes on various polymer substrates and even polymer hollow fibers to demonstrate the production scalability.
Metal-organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membranes have been successfully synthesized via fast current-driven synthesis (FCDS) within 1 h. The PP-supported ZIF-8 membranes exhibit a promising separation factor of 122 ± 13 for binary C H -C H mixtures combined with excellent flexibility behavior. The C H /C H separation performance of the PP-supported ZIF-8 membrane was found to be constant after bending the supported ZIF-8 film with a curvature of 92 m . This outstanding mechanical property is crucial for practical applications. Moreover, we further synthesized ZIF-8 membranes on various polymer substrates and even polymer hollow fibers to demonstrate the production scalability.
Author Wei, Yanying
Lyu, Luxi
Zhao, Yali
Wang, Haihui
Hou, Qianqian
Caro, Jürgen
AuthorAffiliation Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering
School of Chemistry & Chemical Engineering
Tsinghua University
Institute of Physical Chemistry and Electrochemistry
AuthorAffiliation_xml – name: Institute of Physical Chemistry and Electrochemistry
– name: Tsinghua University
– name: School of Chemistry & Chemical Engineering
– name: Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Yali
  surname: Zhao
  fullname: Zhao, Yali
  organization: School of Chemistry & Chemical Engineering
– sequence: 2
  givenname: Yanying
  surname: Wei
  fullname: Wei, Yanying
  email: ceyywei@scut.edu.cn
  organization: School of Chemistry & Chemical Engineering
– sequence: 3
  givenname: Luxi
  surname: Lyu
  fullname: Lyu, Luxi
  organization: School of Chemistry & Chemical Engineering
– sequence: 4
  givenname: Qianqian
  surname: Hou
  fullname: Hou, Qianqian
  organization: School of Chemistry & Chemical Engineering
– sequence: 5
  givenname: Jürgen
  orcidid: 0000-0003-0931-085X
  surname: Caro
  fullname: Caro, Jürgen
  email: juergen.caro@pci.uni-hannover.de
  organization: Institute of Physical Chemistry and Electrochemistry
– sequence: 6
  givenname: Haihui
  orcidid: 0000-0002-2917-4739
  surname: Wang
  fullname: Wang, Haihui
  email: cehhwang@tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33270450$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9O3DAQxi0EgoVy67nKsYcGxn9iZ48V2i1IW4G07aWXyHEmxStvnNqJxN76Cn1FngRvWTggEKfRjH7faOb7jsl-5zsk5COFMwqMnq-0iWdgQImS7pEJLRjkBWVyn0wAgOWqlPyIHMe4Sq1gJT0kR5wzBaKACannDu9s7TC78W7TB99vHHaYL8e-92HAJvt1Nb__-6_MvuO6DrrDmLU-ZJf2963bZLO2tcZiN2Q3SZqE59uaqGyJvQ56sL77QA5a7SKe7uoJ-Tmf_bi4zBfX364uvi5yzQs15IWRAhvJpGatlDWtcdoAMlNqyYCDRmG0FrxWIFsAXjeiVCVVvGl00bAC-An5_Lg3ffFnxDhUaxsNOpfO8WOsWMEEm4Ji4n1USCXT7nKa0E87dKzX2FR9sGsdNtWThQn48giY4GMM2D4jFKptQtU2oWqXUMLZC9zY4b9PQ9DWvSXa3bsdrvwYumTk6-gDYeaiTw
CitedBy_id crossref_primary_10_1021_acs_iecr_4c00646
crossref_primary_10_1021_acs_nanolett_1c02919
crossref_primary_10_1016_j_cej_2023_146911
crossref_primary_10_1103_PhysRevApplied_17_064004
crossref_primary_10_1016_j_jece_2022_108908
crossref_primary_10_1016_j_xcrp_2024_102035
crossref_primary_10_1016_j_ces_2024_119781
crossref_primary_10_1016_j_memsci_2022_120585
crossref_primary_10_1016_j_cej_2024_151146
crossref_primary_10_1016_j_memsci_2024_122889
crossref_primary_10_1021_acs_nanolett_4c05985
crossref_primary_10_1016_j_ensm_2023_102914
crossref_primary_10_1016_j_memsci_2025_123733
crossref_primary_10_1002_anie_202213333
crossref_primary_10_1002_cite_202000259
crossref_primary_10_1016_j_rineng_2022_100609
crossref_primary_10_1021_acsami_4c08304
crossref_primary_10_3390_chemosensors11110557
crossref_primary_10_1039_D2CE01073A
crossref_primary_10_1016_j_cej_2024_153737
crossref_primary_10_1002_anie_202214269
crossref_primary_10_1002_ange_202302355
crossref_primary_10_1016_j_memsci_2021_119802
crossref_primary_10_1002_ange_202117577
crossref_primary_10_1002_anie_202417209
crossref_primary_10_1016_j_ijhydene_2023_02_074
crossref_primary_10_1002_adma_202201339
crossref_primary_10_1002_smll_202408460
crossref_primary_10_1021_acs_inorgchem_2c02636
crossref_primary_10_1016_j_cej_2023_141976
crossref_primary_10_1016_j_seppur_2024_129351
crossref_primary_10_1016_j_cjche_2022_08_008
crossref_primary_10_1021_acs_chemmater_2c02239
crossref_primary_10_1038_s41467_022_35603_9
crossref_primary_10_1002_cite_202100131
crossref_primary_10_1016_j_desal_2022_115637
crossref_primary_10_1016_j_cej_2024_158973
crossref_primary_10_1016_j_jpcs_2021_110485
crossref_primary_10_1039_D4TC01399A
crossref_primary_10_1016_j_pmatsci_2025_101432
crossref_primary_10_1016_j_memsci_2021_119771
crossref_primary_10_1016_j_memsci_2024_123170
crossref_primary_10_1016_j_apsusc_2023_156833
crossref_primary_10_1021_acsmaterialslett_2c00294
crossref_primary_10_1021_acsami_1c21077
crossref_primary_10_1016_j_jtice_2024_105799
crossref_primary_10_1016_j_cej_2024_157192
crossref_primary_10_1016_j_talanta_2024_125632
crossref_primary_10_1016_j_cej_2022_138596
crossref_primary_10_1002_smll_202406500
crossref_primary_10_1016_j_memsci_2023_121654
crossref_primary_10_1016_j_advmem_2021_100011
crossref_primary_10_1016_j_memsci_2022_120291
crossref_primary_10_1016_j_memsci_2024_123000
crossref_primary_10_1021_acsmaterialslett_1c00815
crossref_primary_10_1126_science_adn8168
crossref_primary_10_1016_j_seppur_2022_121811
crossref_primary_10_1016_j_gee_2021_09_003
crossref_primary_10_1002_advs_202303773
crossref_primary_10_1016_j_seppur_2024_127318
crossref_primary_10_1007_s12274_023_5967_5
crossref_primary_10_3390_compounds4010007
crossref_primary_10_1002_anie_202411440
crossref_primary_10_1016_j_seppur_2022_121365
crossref_primary_10_2139_ssrn_4046612
crossref_primary_10_1021_acs_inorgchem_4c01740
crossref_primary_10_1016_j_apmt_2022_101462
crossref_primary_10_1016_j_ccr_2023_215492
crossref_primary_10_1126_science_abo5680
crossref_primary_10_1016_j_apsusc_2023_159253
crossref_primary_10_1016_j_cej_2022_138400
crossref_primary_10_1002_sstr_202400295
crossref_primary_10_1016_j_memsci_2024_123503
crossref_primary_10_1038_s41467_024_54894_8
crossref_primary_10_1002_ange_202213333
crossref_primary_10_1016_j_micromeso_2022_111713
crossref_primary_10_1002_ange_202214269
crossref_primary_10_1002_advs_202412600
crossref_primary_10_3390_membranes13050480
crossref_primary_10_1021_acsnano_3c00694
crossref_primary_10_1039_D3CS00370A
crossref_primary_10_1021_acsami_4c02396
crossref_primary_10_1002_ange_202417209
crossref_primary_10_1016_j_aca_2024_343606
crossref_primary_10_1002_anie_202410043
crossref_primary_10_1038_s41467_022_34584_z
crossref_primary_10_1039_D4TA08001G
crossref_primary_10_1016_j_seppur_2024_130828
crossref_primary_10_1002_anie_202117577
crossref_primary_10_1002_smll_202205542
crossref_primary_10_1021_acs_iecr_4c04488
crossref_primary_10_1016_j_advmem_2022_100035
crossref_primary_10_1016_j_memsci_2023_122201
crossref_primary_10_1039_D3TA03231K
crossref_primary_10_3389_fbioe_2022_901507
crossref_primary_10_1016_j_ccr_2023_215464
crossref_primary_10_1002_anie_202205481
crossref_primary_10_1016_j_memsci_2024_123025
crossref_primary_10_1016_j_advmem_2022_100027
crossref_primary_10_1002_chem_202401868
crossref_primary_10_1021_acs_energyfuels_2c01427
crossref_primary_10_1039_D1TA04049A
crossref_primary_10_1039_D1RA04801E
crossref_primary_10_1021_acsami_1c21284
crossref_primary_10_3390_membranes12101015
crossref_primary_10_1002_anie_202422709
crossref_primary_10_1016_j_micromeso_2021_111564
crossref_primary_10_1002_jssc_202300915
crossref_primary_10_1016_j_memsci_2022_120813
crossref_primary_10_3934_matersci_2022012
crossref_primary_10_1002_adhm_202101515
crossref_primary_10_1039_D2CC03889G
crossref_primary_10_1016_j_memsci_2022_120419
crossref_primary_10_4019_bjscc_83_28
crossref_primary_10_1016_j_cjche_2022_06_021
crossref_primary_10_1039_D2TA02560D
crossref_primary_10_1016_j_cej_2023_143838
crossref_primary_10_1016_j_seppur_2025_131631
crossref_primary_10_1016_j_seppur_2025_132203
crossref_primary_10_1016_j_colsurfa_2023_132073
crossref_primary_10_1016_j_memsci_2023_121763
crossref_primary_10_1002_aic_17934
crossref_primary_10_1002_app_53738
crossref_primary_10_1016_j_memsci_2023_121771
crossref_primary_10_1016_j_memsci_2024_123254
crossref_primary_10_1007_s11705_024_2504_3
crossref_primary_10_1016_j_matlet_2023_133842
crossref_primary_10_1016_j_memsci_2022_121072
crossref_primary_10_1002_adfm_202314469
crossref_primary_10_1002_adfm_202312203
crossref_primary_10_1039_D1DT00498K
crossref_primary_10_1016_j_memsci_2021_119851
crossref_primary_10_1002_anie_202302355
crossref_primary_10_1016_j_fpc_2024_03_001
crossref_primary_10_3390_membranes13050500
crossref_primary_10_1002_aic_17657
crossref_primary_10_1002_ange_202411440
crossref_primary_10_1002_smll_202410342
crossref_primary_10_1016_j_seppur_2023_123987
crossref_primary_10_1016_j_seppur_2021_120045
crossref_primary_10_2139_ssrn_4124065
crossref_primary_10_6023_A21030099
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122058
crossref_primary_10_3390_membranes13090782
crossref_primary_10_1021_acs_cgd_3c00329
crossref_primary_10_1016_j_memsci_2022_120366
crossref_primary_10_1039_D2CS00689H
crossref_primary_10_1016_j_micromeso_2023_112917
crossref_primary_10_3390_polym16172545
crossref_primary_10_1039_D2ME00091A
crossref_primary_10_1016_j_cej_2025_160447
crossref_primary_10_1002_smll_202107108
crossref_primary_10_1016_j_cej_2022_136139
crossref_primary_10_1016_j_memsci_2021_119982
crossref_primary_10_1039_D3CS00131H
crossref_primary_10_1016_j_mtchem_2022_100867
crossref_primary_10_1002_adma_202307013
crossref_primary_10_1002_ange_202410043
crossref_primary_10_1002_chem_202301132
crossref_primary_10_2139_ssrn_4124178
crossref_primary_10_1002_chem_202302460
crossref_primary_10_1039_D2EE02449G
crossref_primary_10_3390_membranes13040414
crossref_primary_10_1016_j_gee_2022_12_010
crossref_primary_10_1021_acsami_1c15108
crossref_primary_10_1016_j_jiec_2025_02_005
crossref_primary_10_1016_j_memsci_2021_120055
crossref_primary_10_1021_acs_analchem_2c05668
crossref_primary_10_1016_j_ccr_2025_216580
crossref_primary_10_1021_acsami_4c10099
crossref_primary_10_1021_acsomega_1c05126
crossref_primary_10_1021_acsomega_2c00737
crossref_primary_10_1016_j_cej_2025_161702
crossref_primary_10_1016_j_memsci_2025_123968
crossref_primary_10_1016_j_seppur_2024_130353
crossref_primary_10_1002_ange_202422709
crossref_primary_10_1002_ange_202205481
crossref_primary_10_1016_j_micromeso_2025_113513
crossref_primary_10_1016_j_jcis_2024_03_181
crossref_primary_10_1016_j_jiec_2021_03_047
Cites_doi 10.1021/acs.iecr.9b02969
10.1039/C3TA13781C
10.1002/adfm.201907089
10.1021/jacs.5b00803
10.1021/acsami.6b04701
10.1021/ja403849c
10.1021/acsami.6b08801
10.1021/ja511495j
10.1002/cssc.201500977
10.1038/s41467-017-00544-1
10.1038/s41467-017-02529-6
10.1002/anie.201505508
10.1016/j.jtice.2019.08.012
10.1021/ja901440g
10.1021/jacs.6b02553
10.1039/C8TA06083E
10.1021/acsami.8b20422
10.1021/ja907359t
10.1002/anie.201909490
10.1021/jacs.5b06730
10.1021/jz300855a
10.1002/anie.201511340
10.1016/j.matt.2019.06.022
10.1016/j.apsusc.2019.144757
10.1016/j.jiec.2018.12.022
10.1021/ar900116g
10.1002/adma.201505437
10.1016/j.memsci.2018.04.041
10.1002/advs.201800982
10.1021/jacs.7b10107
10.1039/C5CS00292C
10.1002/adma.201902009
10.1021/jacs.5b08212
10.1073/pnas.0602439103
10.1021/acsami.5b12684
10.1039/C9TA00837C
10.1103/PhysRevLett.108.095502
10.1002/adfm.201601550
10.1002/adma.201606999
10.1126/science.aat4123
10.1126/science.aal2456
10.1126/science.1251181
10.1126/sciadv.aau1393
10.1021/ie1014958
10.1002/anie.201611927
10.1021/ja4080562
10.1039/c0cs00163e
10.1126/science.1230444
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.0c07481
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 20919
ExternalDocumentID 33270450
10_1021_jacs_0c07481
a145525617
Genre Journal Article
GroupedDBID -
.K2
02
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
ZCA
~02
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-a357t-5c64ed626a2f66b1be9d0e2c8a62030ae4caa43b706f003bd4878173dda5d2503
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Jul 10 18:12:47 EDT 2025
Fri Jul 11 16:12:38 EDT 2025
Wed Feb 19 02:30:18 EST 2025
Tue Jul 01 00:44:34 EDT 2025
Thu Apr 24 22:51:23 EDT 2025
Fri Dec 18 04:13:33 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-5c64ed626a2f66b1be9d0e2c8a62030ae4caa43b706f003bd4878173dda5d2503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2917-4739
0000-0003-0931-085X
PMID 33270450
PQID 2467617389
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_2524290724
proquest_miscellaneous_2467617389
pubmed_primary_33270450
crossref_primary_10_1021_jacs_0c07481
crossref_citationtrail_10_1021_jacs_0c07481
acs_journals_10_1021_jacs_0c07481
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-16
PublicationDateYYYYMMDD 2020-12-16
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1021/acs.iecr.9b02969
– ident: ref37/cit37
  doi: 10.1039/C3TA13781C
– ident: ref14/cit14
  doi: 10.1002/adfm.201907089
– ident: ref11/cit11
  doi: 10.1021/jacs.5b00803
– ident: ref10/cit10
  doi: 10.1021/acsami.6b04701
– ident: ref45/cit45
  doi: 10.1021/ja403849c
– ident: ref30/cit30
  doi: 10.1021/acsami.6b08801
– ident: ref16/cit16
  doi: 10.1021/ja511495j
– ident: ref19/cit19
  doi: 10.1002/cssc.201500977
– ident: ref28/cit28
  doi: 10.1038/s41467-017-00544-1
– ident: ref41/cit41
  doi: 10.1038/s41467-017-02529-6
– ident: ref9/cit9
  doi: 10.1002/anie.201505508
– ident: ref40/cit40
  doi: 10.1016/j.jtice.2019.08.012
– ident: ref1/cit1
  doi: 10.1021/ja901440g
– ident: ref7/cit7
  doi: 10.1021/jacs.6b02553
– ident: ref36/cit36
  doi: 10.1039/C8TA06083E
– ident: ref33/cit33
  doi: 10.1021/acsami.8b20422
– ident: ref25/cit25
  doi: 10.1021/ja907359t
– ident: ref18/cit18
  doi: 10.1002/anie.201909490
– ident: ref22/cit22
  doi: 10.1021/jacs.5b06730
– ident: ref42/cit42
  doi: 10.1021/jz300855a
– ident: ref38/cit38
  doi: 10.1002/anie.201511340
– ident: ref44/cit44
  doi: 10.1016/j.matt.2019.06.022
– ident: ref48/cit48
  doi: 10.1016/j.apsusc.2019.144757
– ident: ref39/cit39
  doi: 10.1016/j.jiec.2018.12.022
– ident: ref8/cit8
  doi: 10.1021/ar900116g
– ident: ref15/cit15
  doi: 10.1002/adma.201505437
– ident: ref34/cit34
  doi: 10.1016/j.memsci.2018.04.041
– ident: ref20/cit20
  doi: 10.1002/advs.201800982
– ident: ref3/cit3
  doi: 10.1021/jacs.7b10107
– ident: ref13/cit13
  doi: 10.1039/C5CS00292C
– ident: ref4/cit4
  doi: 10.1002/adma.201902009
– ident: ref2/cit2
  doi: 10.1021/jacs.5b08212
– ident: ref12/cit12
  doi: 10.1073/pnas.0602439103
– ident: ref26/cit26
  doi: 10.1021/acsami.5b12684
– ident: ref35/cit35
  doi: 10.1039/C9TA00837C
– ident: ref47/cit47
  doi: 10.1103/PhysRevLett.108.095502
– ident: ref31/cit31
  doi: 10.1002/adfm.201601550
– ident: ref5/cit5
  doi: 10.1002/adma.201606999
– ident: ref24/cit24
  doi: 10.1126/science.aat4123
– ident: ref43/cit43
  doi: 10.1126/science.aal2456
– ident: ref29/cit29
  doi: 10.1126/science.1251181
– ident: ref17/cit17
  doi: 10.1126/sciadv.aau1393
– ident: ref21/cit21
  doi: 10.1021/ie1014958
– ident: ref27/cit27
  doi: 10.1002/anie.201611927
– ident: ref23/cit23
  doi: 10.1021/ja4080562
– ident: ref46/cit46
  doi: 10.1039/c0cs00163e
– ident: ref6/cit6
  doi: 10.1126/science.1230444
SSID ssj0004281
Score 2.6572897
Snippet Metal–organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed...
Metal-organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20915
SubjectTerms brittleness
coordination polymers
industrial applications
polypropylenes
propane
propylene
Title Flexible Polypropylene-Supported ZIF‑8 Membranes for Highly Efficient Propene/Propane Separation
URI http://dx.doi.org/10.1021/jacs.0c07481
https://www.ncbi.nlm.nih.gov/pubmed/33270450
https://www.proquest.com/docview/2467617389
https://www.proquest.com/docview/2524290724
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kHvTi-1FfbEFPkprsJrvJUUprFSqFWihewu5mczGmxbaHevIv-Bf9Jc7mUbFSFUICYUKSmd2Zb3bngdA5d4jwiVQWwGNquZzHlqBw8ikLss4OVJn1js49a_fdu4E3-AqQXdzBJ6Y-kBrXbQWmzmRYrxIG89dAoEbvK_-R-E4Jc7nPaBHgvvi0MUBq_N0ALUGVmXVpbaKbMkcnDyp5qk8nsq5ef5Zs_OPDt9BGATDxdT4ittGKTnfQWqPs67aLZMvUwJSJxt1hYhKeRjOwPNoy_T1N5G2EH29bH2_vPu7oZ_ClQRdiQLbYRIQkM9zMak6AqcJds46f6itzBSrc03kd8WG6h_qt5kOjbRWdFkAwHp9YnmKujsC3ESRmTDpSB5GtifIFI6AFhHaVEC6V3GYxqAEZgZvjO5xGkfAiAFF0H1XSYaoPEQbh0jiWSkoauIEDel1yTYUHRywU41VUA76ExUwZh9kmOAEnxNwtuFVFl6WIQlWUKjcdM5Il1Bdz6lFeomMJXa2UdggsNxsjwJzhdBwSsBaA5AC7_ULjAZgJbE7cKjrIh8r8bZQSDtDYPvrHvx2jdWJcdodYDjtBlcnLVJ8CrpnIs2xQfwKgCPJz
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5ED_Xi-1GfW9CTRJPdZDc5ltLSalsEFcRL2N1sLtZUTHvQk3_Bv-gvcSZNKwoVISSwTJLNzGbnm915EHIiPaZCpo0D8Jg7vpSpozicQi6iorIDN7je0euL9p1_eR_cl8HqGAsDncjhSXmxif-dXQDTBEGja0DjYaD1EuAQhgO63rj5DoNkoTdFuzIUvPRz_3036iGT_9RDc8BloWRaq6Q_617hW_J4Ph7pc_P2K3Pjv_u_RlZKuEnrk_GxThZstkEqjWmVt02iW5gRUw8svR4OMPzp-RX0kHWw2if64Sb0odP6fP8Iac8-gWUNMyMFnEvRP2TwSptFBgpQXPQaV_Uze4FXoKI3dpJVfJhtkbtW87bRdsq6CyCmQI6cwAjfJmDpKJYKoT1to8S1zIRKMJgTlPWNUj7X0hUpTAo6AaMn9CRPEhUkAKn4NlnMhpndJRREzdNUG6155EcezPJaWq4COFJlhKySGvAlLv-bPC62xBmYJNhacqtKzqaSik2ZuBzrZwzmUJ_OqJ8nCTvm0NWmQo-B5bhNAswZjvOYge4AXAdI7g-aAKBN5ErmV8nOZMTM3sY5kwCU3b1_fNsxqbRve9242-lf7ZNlhsa8xxxPHJDF0cvYHgLiGemjYpx_AROy-tQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hKgEXWiiP7QOMVE4okNiJnRzRlghaQCseEuIS2Y5z6Ta7anYP21P_An-RX9KZbLJVkRaBFCVSMknssT3zje2ZAfiiAq5jbqyH8Fh4oVKFpwWeYiGTOrODsDTfcXEpT2_Db3fR3QIErS8MFqLCL1X1Ij6N6mFeNBEGKFQQPvAtaj1ytn5DK3bUqY-71_9cIXkctIhXxVI0e92fvk26yFb_66I5ALNWNOlbuJoVsd5f8uNwPDKH9veT6I2vqsM7WG1gJzue9pM1WHDlOix322xv78GkFBnT9B3rDfrkBjWcoD5yHmX9pP24Obs_Sx__PMTswv1ECxslJEO8y2ifSH_CTupIFKjAWI9m90t3RFekYtduGl18UG7AbXpy0z31mvwL2FyRGnmRlaHL0eLRvJDSBMYlue-4jbXkKBu0C63WoTDKlwUKB5Oj8RMHSuS5jnKEVmITFstB6baBYZOLojDWGJGESYDS3igndIRHoa1UHdhDvmTN-Kmyemmco2lCdxtudeCgba3MNgHMKY9Gfw71_ox6OA3cMYdur234DFlOyyXInMG4yjjqEMR3iOieoYkQ4iS-4mEHtqa9ZvY3IbhCwOx_eEHddmGp9zXNzs8uv3-EFU42fcC9QH6CxdGvsfuMwGdkduqu_hc0d_1X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Polypropylene-Supported+ZIF-8+Membranes+for+Highly+Efficient+Propene%2FPropane+Separation&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhao%2C+Yali&rft.au=Wei%2C+Yanying&rft.au=Lyu%2C+Luxi&rft.au=Hou%2C+Qianqian&rft.date=2020-12-16&rft.eissn=1520-5126&rft.volume=142&rft.issue=50&rft.spage=20915&rft_id=info:doi/10.1021%2Fjacs.0c07481&rft_id=info%3Apmid%2F33270450&rft.externalDocID=33270450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon