Flexible Polypropylene-Supported ZIF‑8 Membranes for Highly Efficient Propene/Propane Separation
Metal–organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membr...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 50; pp. 20915 - 20919 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal–organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membranes have been successfully synthesized via fast current-driven synthesis (FCDS) within 1 h. The PP-supported ZIF-8 membranes exhibit a promising separation factor of 122 ± 13 for binary C3H6–C3H8 mixtures combined with excellent flexibility behavior. The C3H6/C3H8 separation performance of the PP-supported ZIF-8 membrane was found to be constant after bending the supported ZIF-8 film with a curvature of 92 m–1. This outstanding mechanical property is crucial for practical applications. Moreover, we further synthesized ZIF-8 membranes on various polymer substrates and even polymer hollow fibers to demonstrate the production scalability. |
---|---|
AbstractList | Metal–organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membranes have been successfully synthesized via fast current-driven synthesis (FCDS) within 1 h. The PP-supported ZIF-8 membranes exhibit a promising separation factor of 122 ± 13 for binary C3H6–C3H8 mixtures combined with excellent flexibility behavior. The C3H6/C3H8 separation performance of the PP-supported ZIF-8 membrane was found to be constant after bending the supported ZIF-8 film with a curvature of 92 m–1. This outstanding mechanical property is crucial for practical applications. Moreover, we further synthesized ZIF-8 membranes on various polymer substrates and even polymer hollow fibers to demonstrate the production scalability. Metal-organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membranes have been successfully synthesized via fast current-driven synthesis (FCDS) within 1 h. The PP-supported ZIF-8 membranes exhibit a promising separation factor of 122 ± 13 for binary C3H6-C3H8 mixtures combined with excellent flexibility behavior. The C3H6/C3H8 separation performance of the PP-supported ZIF-8 membrane was found to be constant after bending the supported ZIF-8 film with a curvature of 92 m-1. This outstanding mechanical property is crucial for practical applications. Moreover, we further synthesized ZIF-8 membranes on various polymer substrates and even polymer hollow fibers to demonstrate the production scalability.Metal-organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membranes have been successfully synthesized via fast current-driven synthesis (FCDS) within 1 h. The PP-supported ZIF-8 membranes exhibit a promising separation factor of 122 ± 13 for binary C3H6-C3H8 mixtures combined with excellent flexibility behavior. The C3H6/C3H8 separation performance of the PP-supported ZIF-8 membrane was found to be constant after bending the supported ZIF-8 film with a curvature of 92 m-1. This outstanding mechanical property is crucial for practical applications. Moreover, we further synthesized ZIF-8 membranes on various polymer substrates and even polymer hollow fibers to demonstrate the production scalability. Metal–organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membranes have been successfully synthesized via fast current-driven synthesis (FCDS) within 1 h. The PP-supported ZIF-8 membranes exhibit a promising separation factor of 122 ± 13 for binary C₃H₆–C₃H₈ mixtures combined with excellent flexibility behavior. The C₃H₆/C₃H₈ separation performance of the PP-supported ZIF-8 membrane was found to be constant after bending the supported ZIF-8 film with a curvature of 92 m–¹. This outstanding mechanical property is crucial for practical applications. Moreover, we further synthesized ZIF-8 membranes on various polymer substrates and even polymer hollow fibers to demonstrate the production scalability. Metal-organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membranes have been successfully synthesized via fast current-driven synthesis (FCDS) within 1 h. The PP-supported ZIF-8 membranes exhibit a promising separation factor of 122 ± 13 for binary C H -C H mixtures combined with excellent flexibility behavior. The C H /C H separation performance of the PP-supported ZIF-8 membrane was found to be constant after bending the supported ZIF-8 film with a curvature of 92 m . This outstanding mechanical property is crucial for practical applications. Moreover, we further synthesized ZIF-8 membranes on various polymer substrates and even polymer hollow fibers to demonstrate the production scalability. |
Author | Wei, Yanying Lyu, Luxi Zhao, Yali Wang, Haihui Hou, Qianqian Caro, Jürgen |
AuthorAffiliation | Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering School of Chemistry & Chemical Engineering Tsinghua University Institute of Physical Chemistry and Electrochemistry |
AuthorAffiliation_xml | – name: Institute of Physical Chemistry and Electrochemistry – name: Tsinghua University – name: School of Chemistry & Chemical Engineering – name: Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Yali surname: Zhao fullname: Zhao, Yali organization: School of Chemistry & Chemical Engineering – sequence: 2 givenname: Yanying surname: Wei fullname: Wei, Yanying email: ceyywei@scut.edu.cn organization: School of Chemistry & Chemical Engineering – sequence: 3 givenname: Luxi surname: Lyu fullname: Lyu, Luxi organization: School of Chemistry & Chemical Engineering – sequence: 4 givenname: Qianqian surname: Hou fullname: Hou, Qianqian organization: School of Chemistry & Chemical Engineering – sequence: 5 givenname: Jürgen orcidid: 0000-0003-0931-085X surname: Caro fullname: Caro, Jürgen email: juergen.caro@pci.uni-hannover.de organization: Institute of Physical Chemistry and Electrochemistry – sequence: 6 givenname: Haihui orcidid: 0000-0002-2917-4739 surname: Wang fullname: Wang, Haihui email: cehhwang@tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33270450$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9O3DAQxi0EgoVy67nKsYcGxn9iZ48V2i1IW4G07aWXyHEmxStvnNqJxN76Cn1FngRvWTggEKfRjH7faOb7jsl-5zsk5COFMwqMnq-0iWdgQImS7pEJLRjkBWVyn0wAgOWqlPyIHMe4Sq1gJT0kR5wzBaKACannDu9s7TC78W7TB99vHHaYL8e-92HAJvt1Nb__-6_MvuO6DrrDmLU-ZJf2963bZLO2tcZiN2Q3SZqE59uaqGyJvQ56sL77QA5a7SKe7uoJ-Tmf_bi4zBfX364uvi5yzQs15IWRAhvJpGatlDWtcdoAMlNqyYCDRmG0FrxWIFsAXjeiVCVVvGl00bAC-An5_Lg3ffFnxDhUaxsNOpfO8WOsWMEEm4Ji4n1USCXT7nKa0E87dKzX2FR9sGsdNtWThQn48giY4GMM2D4jFKptQtU2oWqXUMLZC9zY4b9PQ9DWvSXa3bsdrvwYumTk6-gDYeaiTw |
CitedBy_id | crossref_primary_10_1021_acs_iecr_4c00646 crossref_primary_10_1021_acs_nanolett_1c02919 crossref_primary_10_1016_j_cej_2023_146911 crossref_primary_10_1103_PhysRevApplied_17_064004 crossref_primary_10_1016_j_jece_2022_108908 crossref_primary_10_1016_j_xcrp_2024_102035 crossref_primary_10_1016_j_ces_2024_119781 crossref_primary_10_1016_j_memsci_2022_120585 crossref_primary_10_1016_j_cej_2024_151146 crossref_primary_10_1016_j_memsci_2024_122889 crossref_primary_10_1021_acs_nanolett_4c05985 crossref_primary_10_1016_j_ensm_2023_102914 crossref_primary_10_1016_j_memsci_2025_123733 crossref_primary_10_1002_anie_202213333 crossref_primary_10_1002_cite_202000259 crossref_primary_10_1016_j_rineng_2022_100609 crossref_primary_10_1021_acsami_4c08304 crossref_primary_10_3390_chemosensors11110557 crossref_primary_10_1039_D2CE01073A crossref_primary_10_1016_j_cej_2024_153737 crossref_primary_10_1002_anie_202214269 crossref_primary_10_1002_ange_202302355 crossref_primary_10_1016_j_memsci_2021_119802 crossref_primary_10_1002_ange_202117577 crossref_primary_10_1002_anie_202417209 crossref_primary_10_1016_j_ijhydene_2023_02_074 crossref_primary_10_1002_adma_202201339 crossref_primary_10_1002_smll_202408460 crossref_primary_10_1021_acs_inorgchem_2c02636 crossref_primary_10_1016_j_cej_2023_141976 crossref_primary_10_1016_j_seppur_2024_129351 crossref_primary_10_1016_j_cjche_2022_08_008 crossref_primary_10_1021_acs_chemmater_2c02239 crossref_primary_10_1038_s41467_022_35603_9 crossref_primary_10_1002_cite_202100131 crossref_primary_10_1016_j_desal_2022_115637 crossref_primary_10_1016_j_cej_2024_158973 crossref_primary_10_1016_j_jpcs_2021_110485 crossref_primary_10_1039_D4TC01399A crossref_primary_10_1016_j_pmatsci_2025_101432 crossref_primary_10_1016_j_memsci_2021_119771 crossref_primary_10_1016_j_memsci_2024_123170 crossref_primary_10_1016_j_apsusc_2023_156833 crossref_primary_10_1021_acsmaterialslett_2c00294 crossref_primary_10_1021_acsami_1c21077 crossref_primary_10_1016_j_jtice_2024_105799 crossref_primary_10_1016_j_cej_2024_157192 crossref_primary_10_1016_j_talanta_2024_125632 crossref_primary_10_1016_j_cej_2022_138596 crossref_primary_10_1002_smll_202406500 crossref_primary_10_1016_j_memsci_2023_121654 crossref_primary_10_1016_j_advmem_2021_100011 crossref_primary_10_1016_j_memsci_2022_120291 crossref_primary_10_1016_j_memsci_2024_123000 crossref_primary_10_1021_acsmaterialslett_1c00815 crossref_primary_10_1126_science_adn8168 crossref_primary_10_1016_j_seppur_2022_121811 crossref_primary_10_1016_j_gee_2021_09_003 crossref_primary_10_1002_advs_202303773 crossref_primary_10_1016_j_seppur_2024_127318 crossref_primary_10_1007_s12274_023_5967_5 crossref_primary_10_3390_compounds4010007 crossref_primary_10_1002_anie_202411440 crossref_primary_10_1016_j_seppur_2022_121365 crossref_primary_10_2139_ssrn_4046612 crossref_primary_10_1021_acs_inorgchem_4c01740 crossref_primary_10_1016_j_apmt_2022_101462 crossref_primary_10_1016_j_ccr_2023_215492 crossref_primary_10_1126_science_abo5680 crossref_primary_10_1016_j_apsusc_2023_159253 crossref_primary_10_1016_j_cej_2022_138400 crossref_primary_10_1002_sstr_202400295 crossref_primary_10_1016_j_memsci_2024_123503 crossref_primary_10_1038_s41467_024_54894_8 crossref_primary_10_1002_ange_202213333 crossref_primary_10_1016_j_micromeso_2022_111713 crossref_primary_10_1002_ange_202214269 crossref_primary_10_1002_advs_202412600 crossref_primary_10_3390_membranes13050480 crossref_primary_10_1021_acsnano_3c00694 crossref_primary_10_1039_D3CS00370A crossref_primary_10_1021_acsami_4c02396 crossref_primary_10_1002_ange_202417209 crossref_primary_10_1016_j_aca_2024_343606 crossref_primary_10_1002_anie_202410043 crossref_primary_10_1038_s41467_022_34584_z crossref_primary_10_1039_D4TA08001G crossref_primary_10_1016_j_seppur_2024_130828 crossref_primary_10_1002_anie_202117577 crossref_primary_10_1002_smll_202205542 crossref_primary_10_1021_acs_iecr_4c04488 crossref_primary_10_1016_j_advmem_2022_100035 crossref_primary_10_1016_j_memsci_2023_122201 crossref_primary_10_1039_D3TA03231K crossref_primary_10_3389_fbioe_2022_901507 crossref_primary_10_1016_j_ccr_2023_215464 crossref_primary_10_1002_anie_202205481 crossref_primary_10_1016_j_memsci_2024_123025 crossref_primary_10_1016_j_advmem_2022_100027 crossref_primary_10_1002_chem_202401868 crossref_primary_10_1021_acs_energyfuels_2c01427 crossref_primary_10_1039_D1TA04049A crossref_primary_10_1039_D1RA04801E crossref_primary_10_1021_acsami_1c21284 crossref_primary_10_3390_membranes12101015 crossref_primary_10_1002_anie_202422709 crossref_primary_10_1016_j_micromeso_2021_111564 crossref_primary_10_1002_jssc_202300915 crossref_primary_10_1016_j_memsci_2022_120813 crossref_primary_10_3934_matersci_2022012 crossref_primary_10_1002_adhm_202101515 crossref_primary_10_1039_D2CC03889G crossref_primary_10_1016_j_memsci_2022_120419 crossref_primary_10_4019_bjscc_83_28 crossref_primary_10_1016_j_cjche_2022_06_021 crossref_primary_10_1039_D2TA02560D crossref_primary_10_1016_j_cej_2023_143838 crossref_primary_10_1016_j_seppur_2025_131631 crossref_primary_10_1016_j_seppur_2025_132203 crossref_primary_10_1016_j_colsurfa_2023_132073 crossref_primary_10_1016_j_memsci_2023_121763 crossref_primary_10_1002_aic_17934 crossref_primary_10_1002_app_53738 crossref_primary_10_1016_j_memsci_2023_121771 crossref_primary_10_1016_j_memsci_2024_123254 crossref_primary_10_1007_s11705_024_2504_3 crossref_primary_10_1016_j_matlet_2023_133842 crossref_primary_10_1016_j_memsci_2022_121072 crossref_primary_10_1002_adfm_202314469 crossref_primary_10_1002_adfm_202312203 crossref_primary_10_1039_D1DT00498K crossref_primary_10_1016_j_memsci_2021_119851 crossref_primary_10_1002_anie_202302355 crossref_primary_10_1016_j_fpc_2024_03_001 crossref_primary_10_3390_membranes13050500 crossref_primary_10_1002_aic_17657 crossref_primary_10_1002_ange_202411440 crossref_primary_10_1002_smll_202410342 crossref_primary_10_1016_j_seppur_2023_123987 crossref_primary_10_1016_j_seppur_2021_120045 crossref_primary_10_2139_ssrn_4124065 crossref_primary_10_6023_A21030099 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122058 crossref_primary_10_3390_membranes13090782 crossref_primary_10_1021_acs_cgd_3c00329 crossref_primary_10_1016_j_memsci_2022_120366 crossref_primary_10_1039_D2CS00689H crossref_primary_10_1016_j_micromeso_2023_112917 crossref_primary_10_3390_polym16172545 crossref_primary_10_1039_D2ME00091A crossref_primary_10_1016_j_cej_2025_160447 crossref_primary_10_1002_smll_202107108 crossref_primary_10_1016_j_cej_2022_136139 crossref_primary_10_1016_j_memsci_2021_119982 crossref_primary_10_1039_D3CS00131H crossref_primary_10_1016_j_mtchem_2022_100867 crossref_primary_10_1002_adma_202307013 crossref_primary_10_1002_ange_202410043 crossref_primary_10_1002_chem_202301132 crossref_primary_10_2139_ssrn_4124178 crossref_primary_10_1002_chem_202302460 crossref_primary_10_1039_D2EE02449G crossref_primary_10_3390_membranes13040414 crossref_primary_10_1016_j_gee_2022_12_010 crossref_primary_10_1021_acsami_1c15108 crossref_primary_10_1016_j_jiec_2025_02_005 crossref_primary_10_1016_j_memsci_2021_120055 crossref_primary_10_1021_acs_analchem_2c05668 crossref_primary_10_1016_j_ccr_2025_216580 crossref_primary_10_1021_acsami_4c10099 crossref_primary_10_1021_acsomega_1c05126 crossref_primary_10_1021_acsomega_2c00737 crossref_primary_10_1016_j_cej_2025_161702 crossref_primary_10_1016_j_memsci_2025_123968 crossref_primary_10_1016_j_seppur_2024_130353 crossref_primary_10_1002_ange_202422709 crossref_primary_10_1002_ange_202205481 crossref_primary_10_1016_j_micromeso_2025_113513 crossref_primary_10_1016_j_jcis_2024_03_181 crossref_primary_10_1016_j_jiec_2021_03_047 |
Cites_doi | 10.1021/acs.iecr.9b02969 10.1039/C3TA13781C 10.1002/adfm.201907089 10.1021/jacs.5b00803 10.1021/acsami.6b04701 10.1021/ja403849c 10.1021/acsami.6b08801 10.1021/ja511495j 10.1002/cssc.201500977 10.1038/s41467-017-00544-1 10.1038/s41467-017-02529-6 10.1002/anie.201505508 10.1016/j.jtice.2019.08.012 10.1021/ja901440g 10.1021/jacs.6b02553 10.1039/C8TA06083E 10.1021/acsami.8b20422 10.1021/ja907359t 10.1002/anie.201909490 10.1021/jacs.5b06730 10.1021/jz300855a 10.1002/anie.201511340 10.1016/j.matt.2019.06.022 10.1016/j.apsusc.2019.144757 10.1016/j.jiec.2018.12.022 10.1021/ar900116g 10.1002/adma.201505437 10.1016/j.memsci.2018.04.041 10.1002/advs.201800982 10.1021/jacs.7b10107 10.1039/C5CS00292C 10.1002/adma.201902009 10.1021/jacs.5b08212 10.1073/pnas.0602439103 10.1021/acsami.5b12684 10.1039/C9TA00837C 10.1103/PhysRevLett.108.095502 10.1002/adfm.201601550 10.1002/adma.201606999 10.1126/science.aat4123 10.1126/science.aal2456 10.1126/science.1251181 10.1126/sciadv.aau1393 10.1021/ie1014958 10.1002/anie.201611927 10.1021/ja4080562 10.1039/c0cs00163e 10.1126/science.1230444 |
ContentType | Journal Article |
Copyright | 2020 American Chemical
Society |
Copyright_xml | – notice: 2020 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.0c07481 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 20919 |
ExternalDocumentID | 33270450 10_1021_jacs_0c07481 a145525617 |
Genre | Journal Article |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH2 IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK XSW YQT ZCA ~02 NPM YIN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a357t-5c64ed626a2f66b1be9d0e2c8a62030ae4caa43b706f003bd4878173dda5d2503 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Jul 10 18:12:47 EDT 2025 Fri Jul 11 16:12:38 EDT 2025 Wed Feb 19 02:30:18 EST 2025 Tue Jul 01 00:44:34 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 Fri Dec 18 04:13:33 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-5c64ed626a2f66b1be9d0e2c8a62030ae4caa43b706f003bd4878173dda5d2503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2917-4739 0000-0003-0931-085X |
PMID | 33270450 |
PQID | 2467617389 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2524290724 proquest_miscellaneous_2467617389 pubmed_primary_33270450 crossref_primary_10_1021_jacs_0c07481 crossref_citationtrail_10_1021_jacs_0c07481 acs_journals_10_1021_jacs_0c07481 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-16 |
PublicationDateYYYYMMDD | 2020-12-16 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref32/cit32 doi: 10.1021/acs.iecr.9b02969 – ident: ref37/cit37 doi: 10.1039/C3TA13781C – ident: ref14/cit14 doi: 10.1002/adfm.201907089 – ident: ref11/cit11 doi: 10.1021/jacs.5b00803 – ident: ref10/cit10 doi: 10.1021/acsami.6b04701 – ident: ref45/cit45 doi: 10.1021/ja403849c – ident: ref30/cit30 doi: 10.1021/acsami.6b08801 – ident: ref16/cit16 doi: 10.1021/ja511495j – ident: ref19/cit19 doi: 10.1002/cssc.201500977 – ident: ref28/cit28 doi: 10.1038/s41467-017-00544-1 – ident: ref41/cit41 doi: 10.1038/s41467-017-02529-6 – ident: ref9/cit9 doi: 10.1002/anie.201505508 – ident: ref40/cit40 doi: 10.1016/j.jtice.2019.08.012 – ident: ref1/cit1 doi: 10.1021/ja901440g – ident: ref7/cit7 doi: 10.1021/jacs.6b02553 – ident: ref36/cit36 doi: 10.1039/C8TA06083E – ident: ref33/cit33 doi: 10.1021/acsami.8b20422 – ident: ref25/cit25 doi: 10.1021/ja907359t – ident: ref18/cit18 doi: 10.1002/anie.201909490 – ident: ref22/cit22 doi: 10.1021/jacs.5b06730 – ident: ref42/cit42 doi: 10.1021/jz300855a – ident: ref38/cit38 doi: 10.1002/anie.201511340 – ident: ref44/cit44 doi: 10.1016/j.matt.2019.06.022 – ident: ref48/cit48 doi: 10.1016/j.apsusc.2019.144757 – ident: ref39/cit39 doi: 10.1016/j.jiec.2018.12.022 – ident: ref8/cit8 doi: 10.1021/ar900116g – ident: ref15/cit15 doi: 10.1002/adma.201505437 – ident: ref34/cit34 doi: 10.1016/j.memsci.2018.04.041 – ident: ref20/cit20 doi: 10.1002/advs.201800982 – ident: ref3/cit3 doi: 10.1021/jacs.7b10107 – ident: ref13/cit13 doi: 10.1039/C5CS00292C – ident: ref4/cit4 doi: 10.1002/adma.201902009 – ident: ref2/cit2 doi: 10.1021/jacs.5b08212 – ident: ref12/cit12 doi: 10.1073/pnas.0602439103 – ident: ref26/cit26 doi: 10.1021/acsami.5b12684 – ident: ref35/cit35 doi: 10.1039/C9TA00837C – ident: ref47/cit47 doi: 10.1103/PhysRevLett.108.095502 – ident: ref31/cit31 doi: 10.1002/adfm.201601550 – ident: ref5/cit5 doi: 10.1002/adma.201606999 – ident: ref24/cit24 doi: 10.1126/science.aat4123 – ident: ref43/cit43 doi: 10.1126/science.aal2456 – ident: ref29/cit29 doi: 10.1126/science.1251181 – ident: ref17/cit17 doi: 10.1126/sciadv.aau1393 – ident: ref21/cit21 doi: 10.1021/ie1014958 – ident: ref27/cit27 doi: 10.1002/anie.201611927 – ident: ref23/cit23 doi: 10.1021/ja4080562 – ident: ref46/cit46 doi: 10.1039/c0cs00163e – ident: ref6/cit6 doi: 10.1126/science.1230444 |
SSID | ssj0004281 |
Score | 2.6572897 |
Snippet | Metal–organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed... Metal-organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20915 |
SubjectTerms | brittleness coordination polymers industrial applications polypropylenes propane propylene |
Title | Flexible Polypropylene-Supported ZIF‑8 Membranes for Highly Efficient Propene/Propane Separation |
URI | http://dx.doi.org/10.1021/jacs.0c07481 https://www.ncbi.nlm.nih.gov/pubmed/33270450 https://www.proquest.com/docview/2467617389 https://www.proquest.com/docview/2524290724 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kHvTi-1FfbEFPkprsJrvJUUprFSqFWihewu5mczGmxbaHevIv-Bf9Jc7mUbFSFUICYUKSmd2Zb3bngdA5d4jwiVQWwGNquZzHlqBw8ikLss4OVJn1js49a_fdu4E3-AqQXdzBJ6Y-kBrXbQWmzmRYrxIG89dAoEbvK_-R-E4Jc7nPaBHgvvi0MUBq_N0ALUGVmXVpbaKbMkcnDyp5qk8nsq5ef5Zs_OPDt9BGATDxdT4ittGKTnfQWqPs67aLZMvUwJSJxt1hYhKeRjOwPNoy_T1N5G2EH29bH2_vPu7oZ_ClQRdiQLbYRIQkM9zMak6AqcJds46f6itzBSrc03kd8WG6h_qt5kOjbRWdFkAwHp9YnmKujsC3ESRmTDpSB5GtifIFI6AFhHaVEC6V3GYxqAEZgZvjO5xGkfAiAFF0H1XSYaoPEQbh0jiWSkoauIEDel1yTYUHRywU41VUA76ExUwZh9kmOAEnxNwtuFVFl6WIQlWUKjcdM5Il1Bdz6lFeomMJXa2UdggsNxsjwJzhdBwSsBaA5AC7_ULjAZgJbE7cKjrIh8r8bZQSDtDYPvrHvx2jdWJcdodYDjtBlcnLVJ8CrpnIs2xQfwKgCPJz |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5ED_Xi-1GfW9CTRJPdZDc5ltLSalsEFcRL2N1sLtZUTHvQk3_Bv-gvcSZNKwoVISSwTJLNzGbnm915EHIiPaZCpo0D8Jg7vpSpozicQi6iorIDN7je0euL9p1_eR_cl8HqGAsDncjhSXmxif-dXQDTBEGja0DjYaD1EuAQhgO63rj5DoNkoTdFuzIUvPRz_3036iGT_9RDc8BloWRaq6Q_617hW_J4Ph7pc_P2K3Pjv_u_RlZKuEnrk_GxThZstkEqjWmVt02iW5gRUw8svR4OMPzp-RX0kHWw2if64Sb0odP6fP8Iac8-gWUNMyMFnEvRP2TwSptFBgpQXPQaV_Uze4FXoKI3dpJVfJhtkbtW87bRdsq6CyCmQI6cwAjfJmDpKJYKoT1to8S1zIRKMJgTlPWNUj7X0hUpTAo6AaMn9CRPEhUkAKn4NlnMhpndJRREzdNUG6155EcezPJaWq4COFJlhKySGvAlLv-bPC62xBmYJNhacqtKzqaSik2ZuBzrZwzmUJ_OqJ8nCTvm0NWmQo-B5bhNAswZjvOYge4AXAdI7g-aAKBN5ErmV8nOZMTM3sY5kwCU3b1_fNsxqbRve9242-lf7ZNlhsa8xxxPHJDF0cvYHgLiGemjYpx_AROy-tQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hKgEXWiiP7QOMVE4okNiJnRzRlghaQCseEuIS2Y5z6Ta7anYP21P_An-RX9KZbLJVkRaBFCVSMknssT3zje2ZAfiiAq5jbqyH8Fh4oVKFpwWeYiGTOrODsDTfcXEpT2_Db3fR3QIErS8MFqLCL1X1Ij6N6mFeNBEGKFQQPvAtaj1ytn5DK3bUqY-71_9cIXkctIhXxVI0e92fvk26yFb_66I5ALNWNOlbuJoVsd5f8uNwPDKH9veT6I2vqsM7WG1gJzue9pM1WHDlOix322xv78GkFBnT9B3rDfrkBjWcoD5yHmX9pP24Obs_Sx__PMTswv1ECxslJEO8y2ifSH_CTupIFKjAWI9m90t3RFekYtduGl18UG7AbXpy0z31mvwL2FyRGnmRlaHL0eLRvJDSBMYlue-4jbXkKBu0C63WoTDKlwUKB5Oj8RMHSuS5jnKEVmITFstB6baBYZOLojDWGJGESYDS3igndIRHoa1UHdhDvmTN-Kmyemmco2lCdxtudeCgba3MNgHMKY9Gfw71_ox6OA3cMYdur234DFlOyyXInMG4yjjqEMR3iOieoYkQ4iS-4mEHtqa9ZvY3IbhCwOx_eEHddmGp9zXNzs8uv3-EFU42fcC9QH6CxdGvsfuMwGdkduqu_hc0d_1X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Polypropylene-Supported+ZIF-8+Membranes+for+Highly+Efficient+Propene%2FPropane+Separation&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhao%2C+Yali&rft.au=Wei%2C+Yanying&rft.au=Lyu%2C+Luxi&rft.au=Hou%2C+Qianqian&rft.date=2020-12-16&rft.eissn=1520-5126&rft.volume=142&rft.issue=50&rft.spage=20915&rft_id=info:doi/10.1021%2Fjacs.0c07481&rft_id=info%3Apmid%2F33270450&rft.externalDocID=33270450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |