Covalent Organic Framework Embedded with Magnetic Nanoparticles for MRI and Chemo-Thermotherapy

Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly­(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 44; pp. 18782 - 18794
Main Authors Benyettou, Farah, Das, Gobinda, Nair, Anjana Ramdas, Prakasam, Thirumurugan, Shinde, Digambar B, Sharma, Sudhir Kumar, Whelan, Jamie, Lalatonne, Yoann, Traboulsi, Hassan, Pasricha, Renu, Abdullah, Osama, Jagannathan, Ramesh, Lai, Zhiping, Motte, Laurence, Gándara, Felipe, Sadler, Kirsten C, Trabolsi, Ali
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly­(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites.
AbstractList Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites.Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites.
Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe₂O₃ NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites.
Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly­(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites.
Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe O NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites.
Author Gándara, Felipe
Trabolsi, Ali
Nair, Anjana Ramdas
Das, Gobinda
Sadler, Kirsten C
Shinde, Digambar B
Jagannathan, Ramesh
Lalatonne, Yoann
Abdullah, Osama
Pasricha, Renu
Lai, Zhiping
Motte, Laurence
Prakasam, Thirumurugan
Sharma, Sudhir Kumar
Traboulsi, Hassan
Whelan, Jamie
Benyettou, Farah
AuthorAffiliation Inserm, U1148, Laboratory for Vascular Translational Science
Services de Biochimie et Médecine Nucléaire
Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148
Hôpital Avicenne Assistance Publique-Hôpitaux de Paris
Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering
Université Sorbonne Paris Nord, Sorbonne Paris Cité
Department of Chemistry, College of Science
Université Sorbonne Paris Nord
AuthorAffiliation_xml – name: Inserm, U1148, Laboratory for Vascular Translational Science
– name: Hôpital Avicenne Assistance Publique-Hôpitaux de Paris
– name: Department of Chemistry, College of Science
– name: Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148
– name: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering
– name: Services de Biochimie et Médecine Nucléaire
– name: Université Sorbonne Paris Nord, Sorbonne Paris Cité
– name: Université Sorbonne Paris Nord
Author_xml – sequence: 1
  givenname: Farah
  surname: Benyettou
  fullname: Benyettou, Farah
– sequence: 2
  givenname: Gobinda
  surname: Das
  fullname: Das, Gobinda
– sequence: 3
  givenname: Anjana Ramdas
  surname: Nair
  fullname: Nair, Anjana Ramdas
– sequence: 4
  givenname: Thirumurugan
  orcidid: 0000-0003-3450-6328
  surname: Prakasam
  fullname: Prakasam, Thirumurugan
– sequence: 5
  givenname: Digambar B
  surname: Shinde
  fullname: Shinde, Digambar B
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering
– sequence: 6
  givenname: Sudhir Kumar
  surname: Sharma
  fullname: Sharma, Sudhir Kumar
– sequence: 7
  givenname: Jamie
  surname: Whelan
  fullname: Whelan, Jamie
– sequence: 8
  givenname: Yoann
  surname: Lalatonne
  fullname: Lalatonne, Yoann
  organization: Hôpital Avicenne Assistance Publique-Hôpitaux de Paris
– sequence: 9
  givenname: Hassan
  surname: Traboulsi
  fullname: Traboulsi, Hassan
  organization: Department of Chemistry, College of Science
– sequence: 10
  givenname: Renu
  surname: Pasricha
  fullname: Pasricha, Renu
– sequence: 11
  givenname: Osama
  surname: Abdullah
  fullname: Abdullah, Osama
– sequence: 12
  givenname: Ramesh
  surname: Jagannathan
  fullname: Jagannathan, Ramesh
– sequence: 13
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
  organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering
– sequence: 14
  givenname: Laurence
  orcidid: 0000-0001-6129-539X
  surname: Motte
  fullname: Motte, Laurence
  organization: Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148
– sequence: 15
  givenname: Felipe
  orcidid: 0000-0002-1671-6260
  surname: Gándara
  fullname: Gándara, Felipe
– sequence: 16
  givenname: Kirsten C
  surname: Sadler
  fullname: Sadler, Kirsten C
– sequence: 17
  givenname: Ali
  orcidid: 0000-0001-7494-7887
  surname: Trabolsi
  fullname: Trabolsi, Ali
  email: ali.trabolsi@nyu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33090806$$D View this record in MEDLINE/PubMed
BookMark eNqFkctPGzEQxq0KVAL01nPlI4cu-LF-5IgiXhIPCcHZmthesumundpOEf89jggXVMRlXvrNaPR9-2gnxOAR-knJMSWMnizB5mNiieCafkMTKhhpBGVyB00IIaxRWvI9tJ_zsrYt0_Q72uOcTIkmcoLMLP6DwYeC79IThN7i8wSjf47pDz4b59457_BzXxb4Bp6CLxW4hRBXkGo5-Iy7mPDN_RWG4PBs4cfYPCx8GmOpEVYvh2i3gyH7H9t8gB7Pzx5ml8313cXV7PS6AS5Uado5d8Bsp7Wk2hJZH1RKqCkTqrNKtVPtWs0JVZqDbHnnpOJTLR1o2nGwmh-go7e7qxT_rn0uZuyz9cMAwcd1Nkywlgkqq0xfoq1oq35E04r-2qLr-eidWaV-hPRi3vWrAHsDbIo5J98Z2xcofQwlQT8YSszGJLMxyWxNqku_Pyy93_0E3_67GS7jOoUq5P_RV506npI
CitedBy_id crossref_primary_10_1021_acs_jmedchem_3c00946
crossref_primary_10_1002_advs_202409778
crossref_primary_10_1016_j_biomaterials_2023_122204
crossref_primary_10_1002_adma_202105647
crossref_primary_10_1016_j_polymer_2024_126998
crossref_primary_10_1007_s12272_025_01536_2
crossref_primary_10_1021_acsnano_4c10382
crossref_primary_10_1016_j_xcrp_2024_102046
crossref_primary_10_1021_acssuschemeng_4c10134
crossref_primary_10_1016_j_addr_2022_114536
crossref_primary_10_1021_acsanm_3c00691
crossref_primary_10_1002_smll_202300733
crossref_primary_10_1016_j_nantod_2023_101799
crossref_primary_10_1039_D1CC02246F
crossref_primary_10_1016_j_medengphy_2024_104160
crossref_primary_10_1016_j_ccr_2021_214219
crossref_primary_10_1016_j_cej_2022_134545
crossref_primary_10_1039_D1CS00559F
crossref_primary_10_1039_D1BM00960E
crossref_primary_10_1021_jacs_4c13848
crossref_primary_10_1039_D1NJ00609F
crossref_primary_10_1016_j_nanoen_2022_107177
crossref_primary_10_1002_adfm_202209142
crossref_primary_10_1002_slct_202301145
crossref_primary_10_1039_D1CC00314C
crossref_primary_10_1002_ange_202314763
crossref_primary_10_1021_acsanm_2c00746
crossref_primary_10_1021_acsami_2c01701
crossref_primary_10_1021_acsaem_1c02874
crossref_primary_10_1002_aoc_7130
crossref_primary_10_1016_j_biomaterials_2023_122109
crossref_primary_10_1016_j_ceramint_2022_02_145
crossref_primary_10_1021_acsami_3c10074
crossref_primary_10_1016_j_smaim_2022_01_006
crossref_primary_10_1016_j_cej_2021_132255
crossref_primary_10_1016_j_jphotochem_2023_114590
crossref_primary_10_1007_s11426_022_1504_6
crossref_primary_10_1002_smll_202306940
crossref_primary_10_1039_D2BM00719C
crossref_primary_10_1016_j_cej_2022_140154
crossref_primary_10_1021_acsabm_2c01030
crossref_primary_10_1002_smtd_202200265
crossref_primary_10_1002_smtd_202401389
crossref_primary_10_1016_j_jddst_2024_106320
crossref_primary_10_1016_j_ijbiomac_2023_126797
crossref_primary_10_1016_j_ccr_2024_216402
crossref_primary_10_1016_j_cej_2024_150448
crossref_primary_10_1039_D4TB01096E
crossref_primary_10_1002_advs_202207759
crossref_primary_10_1186_s12951_024_02828_3
crossref_primary_10_1002_smll_202202369
crossref_primary_10_1016_j_xcrp_2022_100920
crossref_primary_10_1039_D0CS00260G
crossref_primary_10_2174_2211738510666220210105113
crossref_primary_10_1039_D2SC04984H
crossref_primary_10_1016_j_microc_2023_109201
crossref_primary_10_1039_D3CC04368A
crossref_primary_10_1002_anie_202218974
crossref_primary_10_34133_research_0542
crossref_primary_10_1016_j_jece_2025_116160
crossref_primary_10_1016_j_snb_2021_130861
crossref_primary_10_1016_j_seppur_2024_129603
crossref_primary_10_1002_cbic_202400807
crossref_primary_10_1002_EXP_20220002
crossref_primary_10_1039_D1CS00871D
crossref_primary_10_1021_acs_chemmater_3c02095
crossref_primary_10_1016_j_bioactmat_2022_08_016
crossref_primary_10_1007_s12274_021_3546_1
crossref_primary_10_1021_acsami_4c10812
crossref_primary_10_1002_ange_202218974
crossref_primary_10_1021_jacs_3c11092
crossref_primary_10_1002_pol_20230270
crossref_primary_10_1016_j_mtbio_2024_100981
crossref_primary_10_1016_j_mattod_2021_08_007
crossref_primary_10_1016_j_snb_2022_132361
crossref_primary_10_1016_j_commatsci_2024_112882
crossref_primary_10_1016_j_cclet_2021_05_070
crossref_primary_10_1021_acsami_4c14909
crossref_primary_10_1016_j_jphotochem_2023_114907
crossref_primary_10_1021_acsnano_1c01194
crossref_primary_10_1002_anie_202314763
crossref_primary_10_1016_j_actbio_2021_12_029
crossref_primary_10_1021_acsaem_1c03954
crossref_primary_10_1002_smtd_202301554
crossref_primary_10_1039_D0SC05328G
crossref_primary_10_1016_j_inoche_2024_112545
crossref_primary_10_6023_A23040170
crossref_primary_10_1021_acsabm_1c01039
crossref_primary_10_1002_adfm_202404900
crossref_primary_10_1002_smtd_202400125
crossref_primary_10_3390_pharmaceutics13081232
crossref_primary_10_1021_acs_langmuir_4c02154
crossref_primary_10_1039_D3BM00789H
crossref_primary_10_1080_10717544_2021_1898703
crossref_primary_10_1002_anbr_202200053
crossref_primary_10_1002_adom_202202859
crossref_primary_10_2139_ssrn_4123088
crossref_primary_10_1021_acsami_4c10408
crossref_primary_10_3390_magnetochemistry8100131
crossref_primary_10_1038_s41467_021_24838_7
crossref_primary_10_6023_A20120578
crossref_primary_10_1021_jacs_4c07559
crossref_primary_10_1039_D3BM01088K
crossref_primary_10_1111_jace_17861
crossref_primary_10_1021_acsami_2c19246
crossref_primary_10_1039_D1CS00804H
crossref_primary_10_1021_acsami_4c03685
crossref_primary_10_1002_smll_202301044
crossref_primary_10_3390_en16041977
crossref_primary_10_1021_acsami_4c05989
Cites_doi 10.1021/bc700410z
10.1039/C2TA00534D
10.1039/C6CC00853D
10.1016/j.eurpolymj.2010.11.006
10.1063/1.2335783
10.1016/j.chroma.2018.06.066
10.1002/chem.201705232
10.2147/IJN.S76134
10.1039/b807696k
10.1021/jacs.7b00925
10.1039/C7TB01807J
10.1016/j.drup.2015.02.002
10.1002/adma.201603006
10.1002/chem.201806242
10.1039/C5GC02197A
10.1039/C7CE00344G
10.1002/anie.201606155
10.1021/ja8096256
10.1002/marc.200800494
10.1021/acsnano.9b06467
10.1016/j.talanta.2018.01.036
10.1016/j.biomaterials.2008.07.020
10.1080/02656736.2018.1430867
10.1039/C3CS60374A
10.1039/D0TA01037E
10.1002/jgm.237
10.1021/ja206846p
10.1039/C9CC08217D
10.1016/j.jmmm.2013.11.006
10.1021/acsami.9b00361
10.1080/00222348.2019.1638593
10.1080/10611860290007559
10.3109/02656736.2010.483635
10.1039/C7NR02932B
10.1021/bi011441d
10.1021/jacs.9b09643
10.1038/nphys2337
10.1021/nn700344x
10.1039/C7CC00482F
10.1021/acsami.6b00284
10.1039/C9CC04668B
10.1038/ncomms7786
10.1038/s41598-017-13827-w
10.1039/C6CC10188G
10.1021/bm1000907
10.1097/00000421-198806000-00013
10.1021/jacs.9b07695
10.1039/c3tb00429e
10.1021/acsami.9b08394
10.1039/C6TA05784E
10.1021/acsami.6b13643
10.1016/S0927-7757(01)00690-2
10.1016/j.ijpharm.2015.10.058
10.1021/acs.nanolett.7b03817
10.1039/C5RA25953C
10.1021/acsanm.9b01969
10.1088/2043-6254/aaa6f0
10.1002/1521-3773(20020415)41:8<1339::AID-ANIE1339>3.0.CO;2-N
10.1016/j.isci.2019.03.028
10.1016/0039-6028(86)90253-0
10.1021/jacs.7b06913
10.3389/fphar.2018.00879
10.3390/magnetochemistry5040067
10.1039/C9NR02140J
10.1038/s41467-018-04910-5
10.1002/adfm.202002046
10.2165/00003088-200342050-00002
10.1016/j.clon.2007.03.015
10.1016/S0008-6223(03)00091-5
10.1016/0304-3835(91)90174-G
10.1021/la502656u
10.1021/acs.chemmater.6b01370
10.1039/C6RA27126J
10.1021/ja01019a045
10.1002/anie.200603052
10.1038/srep21042
10.1039/C6CP00468G
10.1002/adfm.201902757
10.3390/nano10030426
10.2147/IJN.S30320
10.1039/C8SC02842G
10.1242/dev.123.1.95
10.1021/ja3100319
10.1038/nm1467
10.1021/acs.inorgchem.8b00053
10.1126/science.aat7679
10.1002/marc.201900570
10.1039/D0SC00847H
10.1038/nrm2217
10.1016/j.jmmm.2005.01.064
10.1038/nmat1093
10.1016/j.bpc.2013.02.004
10.3389/fphys.2018.00170
10.1016/j.molcata.2008.01.013
10.1142/S1793984410000067
10.1021/nn204591r
10.1002/ange.201606155
10.1021/nn501162x
10.1148/radiol.2341031236
10.1039/C9SC01218D
10.1039/C8AY01572D
10.3390/min4010089
10.1016/0360-3016(91)90201-E
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.0c05381
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 18794
ExternalDocumentID 33090806
10_1021_jacs_0c05381
c834970563
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7X8
AAYWT
7S9
L.6
ID FETCH-LOGICAL-a357t-4b3da2cf88618c0633077579257fc77498d48301783a643fd673986da81f3ac83
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Mon Jul 21 11:00:45 EDT 2025
Mon Jul 21 10:51:25 EDT 2025
Wed Feb 19 02:27:53 EST 2025
Tue Jul 01 00:44:33 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Fri Nov 06 14:15:01 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-4b3da2cf88618c0633077579257fc77498d48301783a643fd673986da81f3ac83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6129-539X
0000-0001-9555-6009
0000-0003-3450-6328
0000-0001-7494-7887
0000-0002-1671-6260
PMID 33090806
PQID 2454126081
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2524251605
proquest_miscellaneous_2454126081
pubmed_primary_33090806
crossref_citationtrail_10_1021_jacs_0c05381
crossref_primary_10_1021_jacs_0c05381
acs_journals_10_1021_jacs_0c05381
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-04
PublicationDateYYYYMMDD 2020-11-04
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
Herman T. S. (ref100/cit100) 1992; 12
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref13/cit13
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
Hammerschmidt M. (ref105/cit105) 1996; 123
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref64/cit64
  doi: 10.1021/bc700410z
– ident: ref31/cit31
  doi: 10.1039/C2TA00534D
– ident: ref3/cit3
  doi: 10.1039/C6CC00853D
– ident: ref77/cit77
  doi: 10.1016/j.eurpolymj.2010.11.006
– ident: ref96/cit96
  doi: 10.1063/1.2335783
– ident: ref20/cit20
  doi: 10.1016/j.chroma.2018.06.066
– ident: ref52/cit52
  doi: 10.1002/chem.201705232
– ident: ref92/cit92
  doi: 10.2147/IJN.S76134
– ident: ref38/cit38
  doi: 10.1039/b807696k
– ident: ref6/cit6
  doi: 10.1021/jacs.7b00925
– ident: ref21/cit21
  doi: 10.1039/C7TB01807J
– ident: ref85/cit85
  doi: 10.1016/j.drup.2015.02.002
– ident: ref5/cit5
  doi: 10.1002/adma.201603006
– ident: ref4/cit4
  doi: 10.1002/chem.201806242
– ident: ref53/cit53
  doi: 10.1039/C5GC02197A
– ident: ref45/cit45
  doi: 10.1039/C7CE00344G
– ident: ref11/cit11
  doi: 10.1002/anie.201606155
– ident: ref1/cit1
  doi: 10.1021/ja8096256
– ident: ref37/cit37
  doi: 10.1002/marc.200800494
– ident: ref15/cit15
  doi: 10.1021/acsnano.9b06467
– ident: ref25/cit25
  doi: 10.1016/j.talanta.2018.01.036
– ident: ref40/cit40
  doi: 10.1016/j.biomaterials.2008.07.020
– ident: ref88/cit88
  doi: 10.1080/02656736.2018.1430867
– ident: ref59/cit59
  doi: 10.1039/C3CS60374A
– ident: ref44/cit44
  doi: 10.1039/D0TA01037E
– ident: ref62/cit62
  doi: 10.1002/jgm.237
– ident: ref41/cit41
  doi: 10.1021/ja206846p
– ident: ref51/cit51
  doi: 10.1039/C9CC08217D
– ident: ref80/cit80
  doi: 10.1016/j.jmmm.2013.11.006
– ident: ref16/cit16
  doi: 10.1021/acsami.9b00361
– ident: ref82/cit82
  doi: 10.1080/00222348.2019.1638593
– ident: ref93/cit93
  doi: 10.1080/10611860290007559
– ident: ref97/cit97
  doi: 10.3109/02656736.2010.483635
– ident: ref24/cit24
  doi: 10.1039/C7NR02932B
– ident: ref35/cit35
  doi: 10.1021/bi011441d
– ident: ref46/cit46
  doi: 10.1021/jacs.9b09643
– ident: ref66/cit66
  doi: 10.1038/nphys2337
– ident: ref65/cit65
  doi: 10.1021/nn700344x
– ident: ref19/cit19
  doi: 10.1039/C7CC00482F
– ident: ref84/cit84
  doi: 10.1021/acsami.6b00284
– ident: ref13/cit13
  doi: 10.1039/C9CC04668B
– ident: ref49/cit49
  doi: 10.1038/ncomms7786
– ident: ref79/cit79
  doi: 10.1038/s41598-017-13827-w
– ident: ref26/cit26
  doi: 10.1039/C6CC10188G
– ident: ref36/cit36
  doi: 10.1021/bm1000907
– ident: ref98/cit98
  doi: 10.1097/00000421-198806000-00013
– ident: ref9/cit9
  doi: 10.1021/jacs.9b07695
– ident: ref73/cit73
  doi: 10.1039/c3tb00429e
– ident: ref17/cit17
  doi: 10.1021/acsami.9b08394
– ident: ref61/cit61
  doi: 10.1039/C6TA05784E
– ident: ref28/cit28
  doi: 10.1021/acsami.6b13643
– ident: ref57/cit57
  doi: 10.1016/S0927-7757(01)00690-2
– ident: ref69/cit69
  doi: 10.1016/j.ijpharm.2015.10.058
– ident: ref67/cit67
  doi: 10.1021/acs.nanolett.7b03817
– volume: 12
  start-page: 827
  year: 1992
  ident: ref100/cit100
  publication-title: Anticancer Res.
– ident: ref71/cit71
  doi: 10.1039/C5RA25953C
– ident: ref27/cit27
  doi: 10.1021/acsanm.9b01969
– ident: ref30/cit30
  doi: 10.1088/2043-6254/aaa6f0
– ident: ref33/cit33
  doi: 10.1002/1521-3773(20020415)41:8<1339::AID-ANIE1339>3.0.CO;2-N
– ident: ref8/cit8
  doi: 10.1016/j.isci.2019.03.028
– ident: ref55/cit55
  doi: 10.1016/0039-6028(86)90253-0
– ident: ref42/cit42
  doi: 10.1021/jacs.7b06913
– ident: ref87/cit87
  doi: 10.3389/fphar.2018.00879
– ident: ref72/cit72
  doi: 10.3390/magnetochemistry5040067
– ident: ref10/cit10
  doi: 10.1039/C9NR02140J
– ident: ref48/cit48
  doi: 10.1038/s41467-018-04910-5
– ident: ref18/cit18
  doi: 10.1002/adfm.202002046
– ident: ref94/cit94
  doi: 10.2165/00003088-200342050-00002
– ident: ref99/cit99
  doi: 10.1016/j.clon.2007.03.015
– ident: ref78/cit78
  doi: 10.1016/S0008-6223(03)00091-5
– ident: ref101/cit101
  doi: 10.1016/0304-3835(91)90174-G
– ident: ref70/cit70
  doi: 10.1021/la502656u
– ident: ref56/cit56
  doi: 10.1021/acs.chemmater.6b01370
– ident: ref60/cit60
  doi: 10.1039/C6RA27126J
– ident: ref34/cit34
  doi: 10.1021/ja01019a045
– ident: ref74/cit74
  doi: 10.1002/anie.200603052
– ident: ref54/cit54
  doi: 10.1038/srep21042
– ident: ref81/cit81
  doi: 10.1039/C6CP00468G
– ident: ref12/cit12
  doi: 10.1002/adfm.201902757
– ident: ref29/cit29
  doi: 10.3390/nano10030426
– ident: ref91/cit91
  doi: 10.2147/IJN.S30320
– ident: ref47/cit47
  doi: 10.1039/C8SC02842G
– volume: 123
  start-page: 95
  year: 1996
  ident: ref105/cit105
  publication-title: Development
  doi: 10.1242/dev.123.1.95
– ident: ref43/cit43
  doi: 10.1021/ja3100319
– ident: ref76/cit76
  doi: 10.1038/nm1467
– ident: ref104/cit104
  doi: 10.1021/acs.inorgchem.8b00053
– ident: ref2/cit2
  doi: 10.1126/science.aat7679
– ident: ref7/cit7
  doi: 10.1002/marc.201900570
– ident: ref14/cit14
  doi: 10.1039/D0SC00847H
– ident: ref89/cit89
  doi: 10.1038/nrm2217
– ident: ref63/cit63
  doi: 10.1016/j.jmmm.2005.01.064
– ident: ref39/cit39
  doi: 10.1038/nmat1093
– ident: ref83/cit83
  doi: 10.1016/j.bpc.2013.02.004
– ident: ref86/cit86
  doi: 10.3389/fphys.2018.00170
– ident: ref58/cit58
  doi: 10.1016/j.molcata.2008.01.013
– ident: ref95/cit95
  doi: 10.1142/S1793984410000067
– ident: ref75/cit75
  doi: 10.1021/nn204591r
– ident: ref23/cit23
  doi: 10.1002/ange.201606155
– ident: ref68/cit68
  doi: 10.1021/nn501162x
– ident: ref90/cit90
  doi: 10.1148/radiol.2341031236
– ident: ref103/cit103
  doi: 10.1039/C9SC01218D
– ident: ref22/cit22
  doi: 10.1039/C8AY01572D
– ident: ref32/cit32
  doi: 10.3390/min4010089
– ident: ref102/cit102
  doi: 10.1016/0360-3016(91)90201-E
SSID ssj0004281
Score 2.618391
Snippet Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18782
SubjectTerms Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - metabolism
Antineoplastic Agents - pharmacology
aqueous solutions
Cell Line, Tumor
Cell Survival - drug effects
cytotoxicity
Danio rerio
doxorubicin
Doxorubicin - chemistry
Doxorubicin - metabolism
Doxorubicin - pharmacology
Drug Carriers - chemistry
Embryo, Nonmammalian - drug effects
endosomes
Ferric Compounds - chemistry
fever
glioblastoma
heat transfer
HEK293 Cells
Humans
Hydrogen-Ion Concentration
Hyperthermia, Induced
Imines - chemistry
lysine
lysosomes
magnetic fields
Magnetic Resonance Imaging
Magnetite Nanoparticles - chemistry
Nanoparticles - chemistry
Polylysine - chemistry
polymers
Porosity
Temperature
Zebrafish - growth & development
Title Covalent Organic Framework Embedded with Magnetic Nanoparticles for MRI and Chemo-Thermotherapy
URI http://dx.doi.org/10.1021/jacs.0c05381
https://www.ncbi.nlm.nih.gov/pubmed/33090806
https://www.proquest.com/docview/2454126081
https://www.proquest.com/docview/2524251605
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVQOcCFfSmbXAlOKFVjJ45zrKKWRSoHoFJvke04HKAJatMDfD3jxGlFUYFrNNnGY8979iwIXUpJuAS_5Eg_NS3MUuIATk4c3ydayI7UuuyiMHhgt0PvfuSPFgGyyyf4xNQHUtN2R4GxmAzrdcJ4YEhWN3pa5D8S7tYwN-CM2gD35buNA1LT7w5oBaosvUt_G93UOTpVUMlre1bItvr8WbLxjw_fQVsWYOJuZRG7aE1ne2gjqvu67aM4ysG6wNfgKg9T4X4doIV7Y6lhJUqw2Z7FA_GSmRxHDEswcGsbQocB5uLB4x0WWYLNc3MHbG0ytqlcHwdo2O89R7eObbPgCOoHheNJmgiiUs6ZyxVAFmrK4gUhTOZUAToMeeJxWAcCTgXglzRhAQ05SwR3UyoUp4eokeWZPkZYcAYIw_OkwWkiFIKlvgSApDUXgndYE7VAKbGdJtO4PAEnwEDMVauqJrquxydWtk65aZfxtkL6ai79XtXnWCHXqoc6Bn2bUxGR6Xw2jYnney6wul9lfMPMXKB-TXRU2cn8baCuEGA3O_nHv52iTWL4utmW9s5Qo5jM9DmAmkJelBb9BQ357ps
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB1BOcCFfSmrkeCEgho7cZ0DB1SoWqAcWCRuwXYcDkCCmlYI_oVf4dsYp0kRSEVckLhaI8exx35v7FkAdpSiQiEuOcqPbQmzmDrIkyPH96mRqqaMyasodM5569o7ufFvxuCtjIXBQWTYU5Y_4n9mF7BpgrCxplFnhFv4UJ6al2e00LKD9hEu5y6lzeOrRsspigg4kvn1nuMpFkmqYyG4KzQCMrNJ3-oBqmqskfsEIvIEs0XqmUR0jiNeZ4HgkRRuzKQWDPsdhwnkPdTadoeNy8-wSyrckl3XBWeFX_330Vrc09lX3BtBZnNQa87A-3A6cl-W-_1-T-3r12-ZIv_tfM3CdEGnyeFA_-dgzCTzMNkoq9gtQNhIcS8hspJB1KkmzdIdjRw_KoPnbkTsZTTpyLvERnQSBJz0qXQYJEjqSeeiTWQSEdtv6uDO6j4WgWsvi3D9J_-3BJUkTcwKECk48inPU5aVykBKHvsK6aAxQkpR41XYxkUIi0MhC_P3for2lm0tlqYKe6VahLrIym6LgzyMkN4dSj8NspGMkNsuNSzE-bZvQDIxaT8Lqed7LtqwP8r41g510dCtwvJAPYdfw-kK0Mjgq7_4ty2YbF11zsKz9vnpGkxRe1NhL-S9daj0un2zgXSupzbzTUXg9q-18gMSm010
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB4BlYALbaGULW0xUjmhoI2deJ0DB7SwYqGLEC0St9R2HA6FZEV2VdG36avwZMxkna2KtFUvSL0mluOMZzzfeP4APhnDlUG9FJg4pxZmOQ8QJ2dBHHOnTds4V3dRGJzJ48vo5Cq-moNfTS4MLqLCmaraiU9SPcxyX2GASgXhi7ZFvlGhj6M8dfc_0Eqr9vuHuKU7nPeOvnaPA99IINAi7oyCyIhMc5srJUNlUSkLKvzWSZBdc4v4J1FZpAQ1qhcaNXSeyY5IlMy0CnOhrRI47zy8IA8h2XcH3S-_Uy-5ChuE3VFS-Nj6p6sl3WerP3XfDEBbK7beS3iYkqSOZ_m-Nx6ZPfvzSbXI_5pmr2DFw2p2MJGD1zDnilVY6jbd7NYg7ZYoU6hh2ST71LJeE5bGjm6Nw_M3Y3QpzQb6uqDMToaKpxw2gYMMwT0bXPSZLjJG85YBStjdrU9gu38Dl8_yf-uwUJSF2wCmlURcFUWG0KlOtJZ5bBAWOqe0Vm3Zgm3chNQfDlVa-_052l301G9NC3Yb1kitr85OTUJuZozemY4eTqqSzBi33XBZivQmX5AuXDmuUh7FUYi27F_HxGSPhmjwtuDthEWnX0NyJWhsyHf_8G9bsHh-2Es_989ON2GZ04UF3ctH72FhdDd2HxDVjczHWq4YfHtupnwEUktP9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Organic+Framework+Embedded+with+Magnetic+Nanoparticles+for+MRI+and+Chemo-Thermotherapy&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Benyettou%2C+Farah&rft.au=D%C4%81sa%2C+Gobinda&rft.au=Nair%2C+Anjana+Ramdas&rft.au=Prakasam%2C+Thirumurugan&rft.date=2020-11-04&rft.issn=1520-5126&rft.volume=142&rft.issue=44+p.18782-18794&rft.spage=18782&rft.epage=18794&rft_id=info:doi/10.1021%2Fjacs.0c05381&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon