Covalent Organic Framework Embedded with Magnetic Nanoparticles for MRI and Chemo-Thermotherapy
Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 44; pp. 18782 - 18794 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites. |
---|---|
AbstractList | Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites.Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites. Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe₂O₃ NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites. Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites. Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe O NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites. |
Author | Gándara, Felipe Trabolsi, Ali Nair, Anjana Ramdas Das, Gobinda Sadler, Kirsten C Shinde, Digambar B Jagannathan, Ramesh Lalatonne, Yoann Abdullah, Osama Pasricha, Renu Lai, Zhiping Motte, Laurence Prakasam, Thirumurugan Sharma, Sudhir Kumar Traboulsi, Hassan Whelan, Jamie Benyettou, Farah |
AuthorAffiliation | Inserm, U1148, Laboratory for Vascular Translational Science Services de Biochimie et Médecine Nucléaire Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148 Hôpital Avicenne Assistance Publique-Hôpitaux de Paris Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering Université Sorbonne Paris Nord, Sorbonne Paris Cité Department of Chemistry, College of Science Université Sorbonne Paris Nord |
AuthorAffiliation_xml | – name: Inserm, U1148, Laboratory for Vascular Translational Science – name: Hôpital Avicenne Assistance Publique-Hôpitaux de Paris – name: Department of Chemistry, College of Science – name: Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148 – name: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering – name: Services de Biochimie et Médecine Nucléaire – name: Université Sorbonne Paris Nord, Sorbonne Paris Cité – name: Université Sorbonne Paris Nord |
Author_xml | – sequence: 1 givenname: Farah surname: Benyettou fullname: Benyettou, Farah – sequence: 2 givenname: Gobinda surname: Das fullname: Das, Gobinda – sequence: 3 givenname: Anjana Ramdas surname: Nair fullname: Nair, Anjana Ramdas – sequence: 4 givenname: Thirumurugan orcidid: 0000-0003-3450-6328 surname: Prakasam fullname: Prakasam, Thirumurugan – sequence: 5 givenname: Digambar B surname: Shinde fullname: Shinde, Digambar B organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering – sequence: 6 givenname: Sudhir Kumar surname: Sharma fullname: Sharma, Sudhir Kumar – sequence: 7 givenname: Jamie surname: Whelan fullname: Whelan, Jamie – sequence: 8 givenname: Yoann surname: Lalatonne fullname: Lalatonne, Yoann organization: Hôpital Avicenne Assistance Publique-Hôpitaux de Paris – sequence: 9 givenname: Hassan surname: Traboulsi fullname: Traboulsi, Hassan organization: Department of Chemistry, College of Science – sequence: 10 givenname: Renu surname: Pasricha fullname: Pasricha, Renu – sequence: 11 givenname: Osama surname: Abdullah fullname: Abdullah, Osama – sequence: 12 givenname: Ramesh surname: Jagannathan fullname: Jagannathan, Ramesh – sequence: 13 givenname: Zhiping orcidid: 0000-0001-9555-6009 surname: Lai fullname: Lai, Zhiping organization: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering – sequence: 14 givenname: Laurence orcidid: 0000-0001-6129-539X surname: Motte fullname: Motte, Laurence organization: Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148 – sequence: 15 givenname: Felipe orcidid: 0000-0002-1671-6260 surname: Gándara fullname: Gándara, Felipe – sequence: 16 givenname: Kirsten C surname: Sadler fullname: Sadler, Kirsten C – sequence: 17 givenname: Ali orcidid: 0000-0001-7494-7887 surname: Trabolsi fullname: Trabolsi, Ali email: ali.trabolsi@nyu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33090806$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctPGzEQxq0KVAL01nPlI4cu-LF-5IgiXhIPCcHZmthesumundpOEf89jggXVMRlXvrNaPR9-2gnxOAR-knJMSWMnizB5mNiieCafkMTKhhpBGVyB00IIaxRWvI9tJ_zsrYt0_Q72uOcTIkmcoLMLP6DwYeC79IThN7i8wSjf47pDz4b59457_BzXxb4Bp6CLxW4hRBXkGo5-Iy7mPDN_RWG4PBs4cfYPCx8GmOpEVYvh2i3gyH7H9t8gB7Pzx5ml8313cXV7PS6AS5Uado5d8Bsp7Wk2hJZH1RKqCkTqrNKtVPtWs0JVZqDbHnnpOJTLR1o2nGwmh-go7e7qxT_rn0uZuyz9cMAwcd1Nkywlgkqq0xfoq1oq35E04r-2qLr-eidWaV-hPRi3vWrAHsDbIo5J98Z2xcofQwlQT8YSszGJLMxyWxNqku_Pyy93_0E3_67GS7jOoUq5P_RV506npI |
CitedBy_id | crossref_primary_10_1021_acs_jmedchem_3c00946 crossref_primary_10_1002_advs_202409778 crossref_primary_10_1016_j_biomaterials_2023_122204 crossref_primary_10_1002_adma_202105647 crossref_primary_10_1016_j_polymer_2024_126998 crossref_primary_10_1007_s12272_025_01536_2 crossref_primary_10_1021_acsnano_4c10382 crossref_primary_10_1016_j_xcrp_2024_102046 crossref_primary_10_1021_acssuschemeng_4c10134 crossref_primary_10_1016_j_addr_2022_114536 crossref_primary_10_1021_acsanm_3c00691 crossref_primary_10_1002_smll_202300733 crossref_primary_10_1016_j_nantod_2023_101799 crossref_primary_10_1039_D1CC02246F crossref_primary_10_1016_j_medengphy_2024_104160 crossref_primary_10_1016_j_ccr_2021_214219 crossref_primary_10_1016_j_cej_2022_134545 crossref_primary_10_1039_D1CS00559F crossref_primary_10_1039_D1BM00960E crossref_primary_10_1021_jacs_4c13848 crossref_primary_10_1039_D1NJ00609F crossref_primary_10_1016_j_nanoen_2022_107177 crossref_primary_10_1002_adfm_202209142 crossref_primary_10_1002_slct_202301145 crossref_primary_10_1039_D1CC00314C crossref_primary_10_1002_ange_202314763 crossref_primary_10_1021_acsanm_2c00746 crossref_primary_10_1021_acsami_2c01701 crossref_primary_10_1021_acsaem_1c02874 crossref_primary_10_1002_aoc_7130 crossref_primary_10_1016_j_biomaterials_2023_122109 crossref_primary_10_1016_j_ceramint_2022_02_145 crossref_primary_10_1021_acsami_3c10074 crossref_primary_10_1016_j_smaim_2022_01_006 crossref_primary_10_1016_j_cej_2021_132255 crossref_primary_10_1016_j_jphotochem_2023_114590 crossref_primary_10_1007_s11426_022_1504_6 crossref_primary_10_1002_smll_202306940 crossref_primary_10_1039_D2BM00719C crossref_primary_10_1016_j_cej_2022_140154 crossref_primary_10_1021_acsabm_2c01030 crossref_primary_10_1002_smtd_202200265 crossref_primary_10_1002_smtd_202401389 crossref_primary_10_1016_j_jddst_2024_106320 crossref_primary_10_1016_j_ijbiomac_2023_126797 crossref_primary_10_1016_j_ccr_2024_216402 crossref_primary_10_1016_j_cej_2024_150448 crossref_primary_10_1039_D4TB01096E crossref_primary_10_1002_advs_202207759 crossref_primary_10_1186_s12951_024_02828_3 crossref_primary_10_1002_smll_202202369 crossref_primary_10_1016_j_xcrp_2022_100920 crossref_primary_10_1039_D0CS00260G crossref_primary_10_2174_2211738510666220210105113 crossref_primary_10_1039_D2SC04984H crossref_primary_10_1016_j_microc_2023_109201 crossref_primary_10_1039_D3CC04368A crossref_primary_10_1002_anie_202218974 crossref_primary_10_34133_research_0542 crossref_primary_10_1016_j_jece_2025_116160 crossref_primary_10_1016_j_snb_2021_130861 crossref_primary_10_1016_j_seppur_2024_129603 crossref_primary_10_1002_cbic_202400807 crossref_primary_10_1002_EXP_20220002 crossref_primary_10_1039_D1CS00871D crossref_primary_10_1021_acs_chemmater_3c02095 crossref_primary_10_1016_j_bioactmat_2022_08_016 crossref_primary_10_1007_s12274_021_3546_1 crossref_primary_10_1021_acsami_4c10812 crossref_primary_10_1002_ange_202218974 crossref_primary_10_1021_jacs_3c11092 crossref_primary_10_1002_pol_20230270 crossref_primary_10_1016_j_mtbio_2024_100981 crossref_primary_10_1016_j_mattod_2021_08_007 crossref_primary_10_1016_j_snb_2022_132361 crossref_primary_10_1016_j_commatsci_2024_112882 crossref_primary_10_1016_j_cclet_2021_05_070 crossref_primary_10_1021_acsami_4c14909 crossref_primary_10_1016_j_jphotochem_2023_114907 crossref_primary_10_1021_acsnano_1c01194 crossref_primary_10_1002_anie_202314763 crossref_primary_10_1016_j_actbio_2021_12_029 crossref_primary_10_1021_acsaem_1c03954 crossref_primary_10_1002_smtd_202301554 crossref_primary_10_1039_D0SC05328G crossref_primary_10_1016_j_inoche_2024_112545 crossref_primary_10_6023_A23040170 crossref_primary_10_1021_acsabm_1c01039 crossref_primary_10_1002_adfm_202404900 crossref_primary_10_1002_smtd_202400125 crossref_primary_10_3390_pharmaceutics13081232 crossref_primary_10_1021_acs_langmuir_4c02154 crossref_primary_10_1039_D3BM00789H crossref_primary_10_1080_10717544_2021_1898703 crossref_primary_10_1002_anbr_202200053 crossref_primary_10_1002_adom_202202859 crossref_primary_10_2139_ssrn_4123088 crossref_primary_10_1021_acsami_4c10408 crossref_primary_10_3390_magnetochemistry8100131 crossref_primary_10_1038_s41467_021_24838_7 crossref_primary_10_6023_A20120578 crossref_primary_10_1021_jacs_4c07559 crossref_primary_10_1039_D3BM01088K crossref_primary_10_1111_jace_17861 crossref_primary_10_1021_acsami_2c19246 crossref_primary_10_1039_D1CS00804H crossref_primary_10_1021_acsami_4c03685 crossref_primary_10_1002_smll_202301044 crossref_primary_10_3390_en16041977 crossref_primary_10_1021_acsami_4c05989 |
Cites_doi | 10.1021/bc700410z 10.1039/C2TA00534D 10.1039/C6CC00853D 10.1016/j.eurpolymj.2010.11.006 10.1063/1.2335783 10.1016/j.chroma.2018.06.066 10.1002/chem.201705232 10.2147/IJN.S76134 10.1039/b807696k 10.1021/jacs.7b00925 10.1039/C7TB01807J 10.1016/j.drup.2015.02.002 10.1002/adma.201603006 10.1002/chem.201806242 10.1039/C5GC02197A 10.1039/C7CE00344G 10.1002/anie.201606155 10.1021/ja8096256 10.1002/marc.200800494 10.1021/acsnano.9b06467 10.1016/j.talanta.2018.01.036 10.1016/j.biomaterials.2008.07.020 10.1080/02656736.2018.1430867 10.1039/C3CS60374A 10.1039/D0TA01037E 10.1002/jgm.237 10.1021/ja206846p 10.1039/C9CC08217D 10.1016/j.jmmm.2013.11.006 10.1021/acsami.9b00361 10.1080/00222348.2019.1638593 10.1080/10611860290007559 10.3109/02656736.2010.483635 10.1039/C7NR02932B 10.1021/bi011441d 10.1021/jacs.9b09643 10.1038/nphys2337 10.1021/nn700344x 10.1039/C7CC00482F 10.1021/acsami.6b00284 10.1039/C9CC04668B 10.1038/ncomms7786 10.1038/s41598-017-13827-w 10.1039/C6CC10188G 10.1021/bm1000907 10.1097/00000421-198806000-00013 10.1021/jacs.9b07695 10.1039/c3tb00429e 10.1021/acsami.9b08394 10.1039/C6TA05784E 10.1021/acsami.6b13643 10.1016/S0927-7757(01)00690-2 10.1016/j.ijpharm.2015.10.058 10.1021/acs.nanolett.7b03817 10.1039/C5RA25953C 10.1021/acsanm.9b01969 10.1088/2043-6254/aaa6f0 10.1002/1521-3773(20020415)41:8<1339::AID-ANIE1339>3.0.CO;2-N 10.1016/j.isci.2019.03.028 10.1016/0039-6028(86)90253-0 10.1021/jacs.7b06913 10.3389/fphar.2018.00879 10.3390/magnetochemistry5040067 10.1039/C9NR02140J 10.1038/s41467-018-04910-5 10.1002/adfm.202002046 10.2165/00003088-200342050-00002 10.1016/j.clon.2007.03.015 10.1016/S0008-6223(03)00091-5 10.1016/0304-3835(91)90174-G 10.1021/la502656u 10.1021/acs.chemmater.6b01370 10.1039/C6RA27126J 10.1021/ja01019a045 10.1002/anie.200603052 10.1038/srep21042 10.1039/C6CP00468G 10.1002/adfm.201902757 10.3390/nano10030426 10.2147/IJN.S30320 10.1039/C8SC02842G 10.1242/dev.123.1.95 10.1021/ja3100319 10.1038/nm1467 10.1021/acs.inorgchem.8b00053 10.1126/science.aat7679 10.1002/marc.201900570 10.1039/D0SC00847H 10.1038/nrm2217 10.1016/j.jmmm.2005.01.064 10.1038/nmat1093 10.1016/j.bpc.2013.02.004 10.3389/fphys.2018.00170 10.1016/j.molcata.2008.01.013 10.1142/S1793984410000067 10.1021/nn204591r 10.1002/ange.201606155 10.1021/nn501162x 10.1148/radiol.2341031236 10.1039/C9SC01218D 10.1039/C8AY01572D 10.3390/min4010089 10.1016/0360-3016(91)90201-E |
ContentType | Journal Article |
Copyright | 2020 American Chemical Society |
Copyright_xml | – notice: 2020 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.0c05381 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 18794 |
ExternalDocumentID | 33090806 10_1021_jacs_0c05381 c834970563 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH2 IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK XSW YQT ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7X8 AAYWT 7S9 L.6 |
ID | FETCH-LOGICAL-a357t-4b3da2cf88618c0633077579257fc77498d48301783a643fd673986da81f3ac83 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Mon Jul 21 11:00:45 EDT 2025 Mon Jul 21 10:51:25 EDT 2025 Wed Feb 19 02:27:53 EST 2025 Tue Jul 01 00:44:33 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Fri Nov 06 14:15:01 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-4b3da2cf88618c0633077579257fc77498d48301783a643fd673986da81f3ac83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6129-539X 0000-0001-9555-6009 0000-0003-3450-6328 0000-0001-7494-7887 0000-0002-1671-6260 |
PMID | 33090806 |
PQID | 2454126081 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2524251605 proquest_miscellaneous_2454126081 pubmed_primary_33090806 crossref_citationtrail_10_1021_jacs_0c05381 crossref_primary_10_1021_jacs_0c05381 acs_journals_10_1021_jacs_0c05381 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-04 |
PublicationDateYYYYMMDD | 2020-11-04 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 Herman T. S. (ref100/cit100) 1992; 12 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref13/cit13 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 Hammerschmidt M. (ref105/cit105) 1996; 123 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref64/cit64 doi: 10.1021/bc700410z – ident: ref31/cit31 doi: 10.1039/C2TA00534D – ident: ref3/cit3 doi: 10.1039/C6CC00853D – ident: ref77/cit77 doi: 10.1016/j.eurpolymj.2010.11.006 – ident: ref96/cit96 doi: 10.1063/1.2335783 – ident: ref20/cit20 doi: 10.1016/j.chroma.2018.06.066 – ident: ref52/cit52 doi: 10.1002/chem.201705232 – ident: ref92/cit92 doi: 10.2147/IJN.S76134 – ident: ref38/cit38 doi: 10.1039/b807696k – ident: ref6/cit6 doi: 10.1021/jacs.7b00925 – ident: ref21/cit21 doi: 10.1039/C7TB01807J – ident: ref85/cit85 doi: 10.1016/j.drup.2015.02.002 – ident: ref5/cit5 doi: 10.1002/adma.201603006 – ident: ref4/cit4 doi: 10.1002/chem.201806242 – ident: ref53/cit53 doi: 10.1039/C5GC02197A – ident: ref45/cit45 doi: 10.1039/C7CE00344G – ident: ref11/cit11 doi: 10.1002/anie.201606155 – ident: ref1/cit1 doi: 10.1021/ja8096256 – ident: ref37/cit37 doi: 10.1002/marc.200800494 – ident: ref15/cit15 doi: 10.1021/acsnano.9b06467 – ident: ref25/cit25 doi: 10.1016/j.talanta.2018.01.036 – ident: ref40/cit40 doi: 10.1016/j.biomaterials.2008.07.020 – ident: ref88/cit88 doi: 10.1080/02656736.2018.1430867 – ident: ref59/cit59 doi: 10.1039/C3CS60374A – ident: ref44/cit44 doi: 10.1039/D0TA01037E – ident: ref62/cit62 doi: 10.1002/jgm.237 – ident: ref41/cit41 doi: 10.1021/ja206846p – ident: ref51/cit51 doi: 10.1039/C9CC08217D – ident: ref80/cit80 doi: 10.1016/j.jmmm.2013.11.006 – ident: ref16/cit16 doi: 10.1021/acsami.9b00361 – ident: ref82/cit82 doi: 10.1080/00222348.2019.1638593 – ident: ref93/cit93 doi: 10.1080/10611860290007559 – ident: ref97/cit97 doi: 10.3109/02656736.2010.483635 – ident: ref24/cit24 doi: 10.1039/C7NR02932B – ident: ref35/cit35 doi: 10.1021/bi011441d – ident: ref46/cit46 doi: 10.1021/jacs.9b09643 – ident: ref66/cit66 doi: 10.1038/nphys2337 – ident: ref65/cit65 doi: 10.1021/nn700344x – ident: ref19/cit19 doi: 10.1039/C7CC00482F – ident: ref84/cit84 doi: 10.1021/acsami.6b00284 – ident: ref13/cit13 doi: 10.1039/C9CC04668B – ident: ref49/cit49 doi: 10.1038/ncomms7786 – ident: ref79/cit79 doi: 10.1038/s41598-017-13827-w – ident: ref26/cit26 doi: 10.1039/C6CC10188G – ident: ref36/cit36 doi: 10.1021/bm1000907 – ident: ref98/cit98 doi: 10.1097/00000421-198806000-00013 – ident: ref9/cit9 doi: 10.1021/jacs.9b07695 – ident: ref73/cit73 doi: 10.1039/c3tb00429e – ident: ref17/cit17 doi: 10.1021/acsami.9b08394 – ident: ref61/cit61 doi: 10.1039/C6TA05784E – ident: ref28/cit28 doi: 10.1021/acsami.6b13643 – ident: ref57/cit57 doi: 10.1016/S0927-7757(01)00690-2 – ident: ref69/cit69 doi: 10.1016/j.ijpharm.2015.10.058 – ident: ref67/cit67 doi: 10.1021/acs.nanolett.7b03817 – volume: 12 start-page: 827 year: 1992 ident: ref100/cit100 publication-title: Anticancer Res. – ident: ref71/cit71 doi: 10.1039/C5RA25953C – ident: ref27/cit27 doi: 10.1021/acsanm.9b01969 – ident: ref30/cit30 doi: 10.1088/2043-6254/aaa6f0 – ident: ref33/cit33 doi: 10.1002/1521-3773(20020415)41:8<1339::AID-ANIE1339>3.0.CO;2-N – ident: ref8/cit8 doi: 10.1016/j.isci.2019.03.028 – ident: ref55/cit55 doi: 10.1016/0039-6028(86)90253-0 – ident: ref42/cit42 doi: 10.1021/jacs.7b06913 – ident: ref87/cit87 doi: 10.3389/fphar.2018.00879 – ident: ref72/cit72 doi: 10.3390/magnetochemistry5040067 – ident: ref10/cit10 doi: 10.1039/C9NR02140J – ident: ref48/cit48 doi: 10.1038/s41467-018-04910-5 – ident: ref18/cit18 doi: 10.1002/adfm.202002046 – ident: ref94/cit94 doi: 10.2165/00003088-200342050-00002 – ident: ref99/cit99 doi: 10.1016/j.clon.2007.03.015 – ident: ref78/cit78 doi: 10.1016/S0008-6223(03)00091-5 – ident: ref101/cit101 doi: 10.1016/0304-3835(91)90174-G – ident: ref70/cit70 doi: 10.1021/la502656u – ident: ref56/cit56 doi: 10.1021/acs.chemmater.6b01370 – ident: ref60/cit60 doi: 10.1039/C6RA27126J – ident: ref34/cit34 doi: 10.1021/ja01019a045 – ident: ref74/cit74 doi: 10.1002/anie.200603052 – ident: ref54/cit54 doi: 10.1038/srep21042 – ident: ref81/cit81 doi: 10.1039/C6CP00468G – ident: ref12/cit12 doi: 10.1002/adfm.201902757 – ident: ref29/cit29 doi: 10.3390/nano10030426 – ident: ref91/cit91 doi: 10.2147/IJN.S30320 – ident: ref47/cit47 doi: 10.1039/C8SC02842G – volume: 123 start-page: 95 year: 1996 ident: ref105/cit105 publication-title: Development doi: 10.1242/dev.123.1.95 – ident: ref43/cit43 doi: 10.1021/ja3100319 – ident: ref76/cit76 doi: 10.1038/nm1467 – ident: ref104/cit104 doi: 10.1021/acs.inorgchem.8b00053 – ident: ref2/cit2 doi: 10.1126/science.aat7679 – ident: ref7/cit7 doi: 10.1002/marc.201900570 – ident: ref14/cit14 doi: 10.1039/D0SC00847H – ident: ref89/cit89 doi: 10.1038/nrm2217 – ident: ref63/cit63 doi: 10.1016/j.jmmm.2005.01.064 – ident: ref39/cit39 doi: 10.1038/nmat1093 – ident: ref83/cit83 doi: 10.1016/j.bpc.2013.02.004 – ident: ref86/cit86 doi: 10.3389/fphys.2018.00170 – ident: ref58/cit58 doi: 10.1016/j.molcata.2008.01.013 – ident: ref95/cit95 doi: 10.1142/S1793984410000067 – ident: ref75/cit75 doi: 10.1021/nn204591r – ident: ref23/cit23 doi: 10.1002/ange.201606155 – ident: ref68/cit68 doi: 10.1021/nn501162x – ident: ref90/cit90 doi: 10.1148/radiol.2341031236 – ident: ref103/cit103 doi: 10.1039/C9SC01218D – ident: ref22/cit22 doi: 10.1039/C8AY01572D – ident: ref32/cit32 doi: 10.3390/min4010089 – ident: ref102/cit102 doi: 10.1016/0360-3016(91)90201-E |
SSID | ssj0004281 |
Score | 2.618391 |
Snippet | Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18782 |
SubjectTerms | Animals Antineoplastic Agents - chemistry Antineoplastic Agents - metabolism Antineoplastic Agents - pharmacology aqueous solutions Cell Line, Tumor Cell Survival - drug effects cytotoxicity Danio rerio doxorubicin Doxorubicin - chemistry Doxorubicin - metabolism Doxorubicin - pharmacology Drug Carriers - chemistry Embryo, Nonmammalian - drug effects endosomes Ferric Compounds - chemistry fever glioblastoma heat transfer HEK293 Cells Humans Hydrogen-Ion Concentration Hyperthermia, Induced Imines - chemistry lysine lysosomes magnetic fields Magnetic Resonance Imaging Magnetite Nanoparticles - chemistry Nanoparticles - chemistry Polylysine - chemistry polymers Porosity Temperature Zebrafish - growth & development |
Title | Covalent Organic Framework Embedded with Magnetic Nanoparticles for MRI and Chemo-Thermotherapy |
URI | http://dx.doi.org/10.1021/jacs.0c05381 https://www.ncbi.nlm.nih.gov/pubmed/33090806 https://www.proquest.com/docview/2454126081 https://www.proquest.com/docview/2524251605 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVQOcCFfSmbXAlOKFVjJ45zrKKWRSoHoFJvke04HKAJatMDfD3jxGlFUYFrNNnGY8979iwIXUpJuAS_5Eg_NS3MUuIATk4c3ydayI7UuuyiMHhgt0PvfuSPFgGyyyf4xNQHUtN2R4GxmAzrdcJ4YEhWN3pa5D8S7tYwN-CM2gD35buNA1LT7w5oBaosvUt_G93UOTpVUMlre1bItvr8WbLxjw_fQVsWYOJuZRG7aE1ne2gjqvu67aM4ysG6wNfgKg9T4X4doIV7Y6lhJUqw2Z7FA_GSmRxHDEswcGsbQocB5uLB4x0WWYLNc3MHbG0ytqlcHwdo2O89R7eObbPgCOoHheNJmgiiUs6ZyxVAFmrK4gUhTOZUAToMeeJxWAcCTgXglzRhAQ05SwR3UyoUp4eokeWZPkZYcAYIw_OkwWkiFIKlvgSApDUXgndYE7VAKbGdJtO4PAEnwEDMVauqJrquxydWtk65aZfxtkL6ai79XtXnWCHXqoc6Bn2bUxGR6Xw2jYnney6wul9lfMPMXKB-TXRU2cn8baCuEGA3O_nHv52iTWL4utmW9s5Qo5jM9DmAmkJelBb9BQ357ps |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB1BOcCFfSmrkeCEgho7cZ0DB1SoWqAcWCRuwXYcDkCCmlYI_oVf4dsYp0kRSEVckLhaI8exx35v7FkAdpSiQiEuOcqPbQmzmDrIkyPH96mRqqaMyasodM5569o7ufFvxuCtjIXBQWTYU5Y_4n9mF7BpgrCxplFnhFv4UJ6al2e00LKD9hEu5y6lzeOrRsspigg4kvn1nuMpFkmqYyG4KzQCMrNJ3-oBqmqskfsEIvIEs0XqmUR0jiNeZ4HgkRRuzKQWDPsdhwnkPdTadoeNy8-wSyrckl3XBWeFX_330Vrc09lX3BtBZnNQa87A-3A6cl-W-_1-T-3r12-ZIv_tfM3CdEGnyeFA_-dgzCTzMNkoq9gtQNhIcS8hspJB1KkmzdIdjRw_KoPnbkTsZTTpyLvERnQSBJz0qXQYJEjqSeeiTWQSEdtv6uDO6j4WgWsvi3D9J_-3BJUkTcwKECk48inPU5aVykBKHvsK6aAxQkpR41XYxkUIi0MhC_P3for2lm0tlqYKe6VahLrIym6LgzyMkN4dSj8NspGMkNsuNSzE-bZvQDIxaT8Lqed7LtqwP8r41g510dCtwvJAPYdfw-kK0Mjgq7_4ty2YbF11zsKz9vnpGkxRe1NhL-S9daj0un2zgXSupzbzTUXg9q-18gMSm010 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB4BlYALbaGULW0xUjmhoI2deJ0DB7SwYqGLEC0St9R2HA6FZEV2VdG36avwZMxkna2KtFUvSL0mluOMZzzfeP4APhnDlUG9FJg4pxZmOQ8QJ2dBHHOnTds4V3dRGJzJ48vo5Cq-moNfTS4MLqLCmaraiU9SPcxyX2GASgXhi7ZFvlGhj6M8dfc_0Eqr9vuHuKU7nPeOvnaPA99IINAi7oyCyIhMc5srJUNlUSkLKvzWSZBdc4v4J1FZpAQ1qhcaNXSeyY5IlMy0CnOhrRI47zy8IA8h2XcH3S-_Uy-5ChuE3VFS-Nj6p6sl3WerP3XfDEBbK7beS3iYkqSOZ_m-Nx6ZPfvzSbXI_5pmr2DFw2p2MJGD1zDnilVY6jbd7NYg7ZYoU6hh2ST71LJeE5bGjm6Nw_M3Y3QpzQb6uqDMToaKpxw2gYMMwT0bXPSZLjJG85YBStjdrU9gu38Dl8_yf-uwUJSF2wCmlURcFUWG0KlOtJZ5bBAWOqe0Vm3Zgm3chNQfDlVa-_052l301G9NC3Yb1kitr85OTUJuZozemY4eTqqSzBi33XBZivQmX5AuXDmuUh7FUYi27F_HxGSPhmjwtuDthEWnX0NyJWhsyHf_8G9bsHh-2Es_989ON2GZ04UF3ctH72FhdDd2HxDVjczHWq4YfHtupnwEUktP9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Organic+Framework+Embedded+with+Magnetic+Nanoparticles+for+MRI+and+Chemo-Thermotherapy&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Benyettou%2C+Farah&rft.au=D%C4%81sa%2C+Gobinda&rft.au=Nair%2C+Anjana+Ramdas&rft.au=Prakasam%2C+Thirumurugan&rft.date=2020-11-04&rft.issn=1520-5126&rft.volume=142&rft.issue=44+p.18782-18794&rft.spage=18782&rft.epage=18794&rft_id=info:doi/10.1021%2Fjacs.0c05381&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |