Biomolding Technique to Fabricate the Hierarchical Topographical Scaffold of POMA To Enhance the Differentiation of Neural Stem Cells

In this paper, a biomolding technique was first used to fabricate a scaffold of hierarchical topography with biomimetic morphology for tissue engineering. First, poly­(ortho-methoxyaniline) (POMA) was synthesized by conventional oxidative polymerization, followed by characterizations with Fourier tr...

Full description

Saved in:
Bibliographic Details
Published inACS biomaterials science & engineering Vol. 3; no. 8; pp. 1527 - 1534
Main Authors Hsu, Chien-Hua, Huang, Ting-Yu, Chen, Rui-Da, Liu, Yuan-Xian, Chin, Ting-Yu, Chen-Yang, Yui Whei, Yeh, Jui-Ming
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a biomolding technique was first used to fabricate a scaffold of hierarchical topography with biomimetic morphology for tissue engineering. First, poly­(ortho-methoxyaniline) (POMA) was synthesized by conventional oxidative polymerization, followed by characterizations with Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). Moreover, the POMA scaffold with 3D biomimetic morphology was fabricated using poly­(dimethylsiloxane) (PDMS) as negative soft template from natural leaf surfaces of Xanthosoma sagittifolium, followed by transferring the pattern of PDMS template to POMA. The as-fabricated POMA scaffold with biomimetic morphology was investigated by scanning electron microscopy (SEM). Subsequently, cell–scaffold interactions were carried out by culturing rat neural stem cells (rNSCs) on biomimetic and nonbiomimetic, or flat, POMA scaffolds, as well as on poly­(d-lysine) (PDL)-coated substrate, and evaluating the corresponding adhesion, cell viability, and differentiation of rNSCs. Results showed that there was no significant difference in the attachment of rNSCs on the three surface types, however, both the biomimetic and flat POMA scaffolds induced growth arrest relative to the PDL-coated substrate. In addition, the percentage of cells with elongated neurites after 19 days of culture was higher on the biomimetic POMA scaffold relative to flat POMA and PDL. In summary, the POMA scaffold with biomimetic morphology shows promise in promoting rNSCs differentiation and neurite outgrowth for long-term studies on nerve regenerative medicine.
AbstractList In this paper, a biomolding technique was first used to fabricate a scaffold of hierarchical topography with biomimetic morphology for tissue engineering. First, poly­(ortho-methoxyaniline) (POMA) was synthesized by conventional oxidative polymerization, followed by characterizations with Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). Moreover, the POMA scaffold with 3D biomimetic morphology was fabricated using poly­(dimethylsiloxane) (PDMS) as negative soft template from natural leaf surfaces of Xanthosoma sagittifolium, followed by transferring the pattern of PDMS template to POMA. The as-fabricated POMA scaffold with biomimetic morphology was investigated by scanning electron microscopy (SEM). Subsequently, cell–scaffold interactions were carried out by culturing rat neural stem cells (rNSCs) on biomimetic and nonbiomimetic, or flat, POMA scaffolds, as well as on poly­(d-lysine) (PDL)-coated substrate, and evaluating the corresponding adhesion, cell viability, and differentiation of rNSCs. Results showed that there was no significant difference in the attachment of rNSCs on the three surface types, however, both the biomimetic and flat POMA scaffolds induced growth arrest relative to the PDL-coated substrate. In addition, the percentage of cells with elongated neurites after 19 days of culture was higher on the biomimetic POMA scaffold relative to flat POMA and PDL. In summary, the POMA scaffold with biomimetic morphology shows promise in promoting rNSCs differentiation and neurite outgrowth for long-term studies on nerve regenerative medicine.
In this paper, a biomolding technique was first used to fabricate a scaffold of hierarchical topography with biomimetic morphology for tissue engineering. First, poly( -methoxyaniline) (POMA) was synthesized by conventional oxidative polymerization, followed by characterizations with Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). Moreover, the POMA scaffold with 3D biomimetic morphology was fabricated using poly(dimethylsiloxane) (PDMS) as negative soft template from natural leaf surfaces of , followed by transferring the pattern of PDMS template to POMA. The as-fabricated POMA scaffold with biomimetic morphology was investigated by scanning electron microscopy (SEM). Subsequently, cell-scaffold interactions were carried out by culturing rat neural stem cells (rNSCs) on biomimetic and nonbiomimetic, or flat, POMA scaffolds, as well as on poly(d-lysine) (PDL)-coated substrate, and evaluating the corresponding adhesion, cell viability, and differentiation of rNSCs. Results showed that there was no significant difference in the attachment of rNSCs on the three surface types, however, both the biomimetic and flat POMA scaffolds induced growth arrest relative to the PDL-coated substrate. In addition, the percentage of cells with elongated neurites after 19 days of culture was higher on the biomimetic POMA scaffold relative to flat POMA and PDL. In summary, the POMA scaffold with biomimetic morphology shows promise in promoting rNSCs differentiation and neurite outgrowth for long-term studies on nerve regenerative medicine.
Author Yeh, Jui-Ming
Chen, Rui-Da
Huang, Ting-Yu
Liu, Yuan-Xian
Chen-Yang, Yui Whei
Chin, Ting-Yu
Hsu, Chien-Hua
AuthorAffiliation Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology
Master Program in Nanotechnology and Center for Nanotechnology
Chung Yuan Christian University
Department of Bioscience Technology, Centre for Nanotechnology and Institute of Biomedical Technology
AuthorAffiliation_xml – name:
– name: Master Program in Nanotechnology and Center for Nanotechnology
– name: Chung Yuan Christian University
– name: Department of Bioscience Technology, Centre for Nanotechnology and Institute of Biomedical Technology
– name: Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology
Author_xml – sequence: 1
  givenname: Chien-Hua
  surname: Hsu
  fullname: Hsu, Chien-Hua
– sequence: 2
  givenname: Ting-Yu
  surname: Huang
  fullname: Huang, Ting-Yu
– sequence: 3
  givenname: Rui-Da
  surname: Chen
  fullname: Chen, Rui-Da
– sequence: 4
  givenname: Yuan-Xian
  surname: Liu
  fullname: Liu, Yuan-Xian
– sequence: 5
  givenname: Ting-Yu
  surname: Chin
  fullname: Chin, Ting-Yu
  email: tychin@cycu.edu.tw
– sequence: 6
  givenname: Yui Whei
  surname: Chen-Yang
  fullname: Chen-Yang, Yui Whei
– sequence: 7
  givenname: Jui-Ming
  orcidid: 0000-0003-2930-0405
  surname: Yeh
  fullname: Yeh, Jui-Ming
  email: juiming@cycu.edu.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33429639$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAUha2KCijlFaiXbIbasWdsL-kApRIUJKbryLm5ZowSe7CTBQ_Ae9ejDBXqhpX_vnPuPb5fyF6IAQn5xtkZZxX_biE3PvZ2wORtl89Uwxgz_BM5rIQSM6OV3nu3PyDHOT8VhAs9l1LukwMhZGUWwhyS1x_FKXatD490hbAO_nlEOkR6ZZvkodSgwxrptcdkE6zLTUdXcRMfk91MpwewzhUHGh29v7s9L8_0MqxtgEl64Z3DhGHwdvAxbLHfOKatcsCeLrHr8lfy2ZUkeLxbj8ifq8vV8np2c_fz1_L8ZmbFXA0zybAF7sBg6V8q46AxUDFnNCoBoLVeuAUzrW5Vo6HlWkILJfG8VQuJlRRH5HTy3aRYcuah7n2G0oENGMdcF1NVzY3iqqBqQiHFnBO6epN8b9NLzVm9HUP93xjq3RiK8mRXZGx6bP_p3j69AGICikP9FMcUtvKPbP8CAp2dWQ
CitedBy_id crossref_primary_10_1002_adma_202110267
crossref_primary_10_1016_j_bioactmat_2023_06_002
crossref_primary_10_1016_j_actbio_2023_12_025
crossref_primary_10_1021_acsbiomaterials_1c00030
crossref_primary_10_1016_j_msec_2019_110045
crossref_primary_10_1039_C7NR02822A
crossref_primary_10_1016_j_surfin_2022_102548
crossref_primary_10_1016_j_porgcoat_2024_108610
crossref_primary_10_1021_acsbiomaterials_7b00535
crossref_primary_10_1016_j_porgcoat_2021_106679
crossref_primary_10_1016_j_surfcoat_2024_130700
crossref_primary_10_3390_polym16121673
crossref_primary_10_1088_1748_3190_ac7afe
crossref_primary_10_1021_acsabm_2c00323
crossref_primary_10_1088_1748_605X_ac21a7
crossref_primary_10_1021_acsomega_1c02796
crossref_primary_10_1002_adfm_201907792
crossref_primary_10_1039_C8TA06329J
Cites_doi 10.1016/j.biomaterials.2007.10.025
10.1002/anie.200805179
10.1146/annurev-bioeng-070909-105351
10.1126/science.1179773
10.1038/nrn918
10.1002/anie.200460333
10.1016/j.carbon.2013.08.052
10.1038/nrn809
10.1021/am402156f
10.1016/j.biomaterials.2006.02.002
10.1016/j.biomaterials.2008.10.004
10.1021/la703821h
10.4252/wjsc.v6.i1.11
10.1039/c3tb21070g
10.1021/nn501182f
10.1016/j.biomaterials.2009.10.037
10.1063/1.1931054
10.1002/anie.200461092
10.1163/092050610X488241
10.1038/nmat3980
10.1016/0379-6779(89)90311-1
10.1021/la049411+
10.1080/0892701021000057882
10.1021/ma0511189
10.1039/c3ta13758a
10.1146/annurev.neuro.28.051804.101459
10.1038/nmat3058
10.1088/0034-4885/68/11/R01
10.1080/08927019909378388
10.1002/app.22226
10.1016/j.porgcoat.2005.09.012
10.1007/s10544-009-9392-7
10.1002/smll.201200490
10.1021/la052110v
10.1021/cs200163r
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsbiomaterials.7b00091
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2373-9878
EndPage 1534
ExternalDocumentID 10_1021_acsbiomaterials_7b00091
33429639
c405291925
Genre Journal Article
GroupedDBID ABMVS
ABUCX
ACGFS
ACS
AEESW
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
EJD
UI2
VF5
VG9
W1F
53G
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a357t-40edc1fc9e342479fcb9c20f98e73cc8886f609d8d7b8cd184cdc4445d764e243
IEDL.DBID ACS
ISSN 2373-9878
IngestDate Fri Aug 16 10:10:41 EDT 2024
Fri Aug 23 00:34:42 EDT 2024
Sat Sep 28 08:45:08 EDT 2024
Thu Aug 27 13:41:57 EDT 2020
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords hierarchical topography
differentiation
neurite
biomimetic
long-term
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-40edc1fc9e342479fcb9c20f98e73cc8886f609d8d7b8cd184cdc4445d764e243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2930-0405
PMID 33429639
PQID 2477259717
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2477259717
crossref_primary_10_1021_acsbiomaterials_7b00091
pubmed_primary_33429639
acs_journals_10_1021_acsbiomaterials_7b00091
ProviderPackageCode ACS
AEESW
AFEFF
VF5
VG9
ABMVS
ABUCX
AQSVZ
W1F
UI2
PublicationCentury 2000
PublicationDate 2017-08-14
PublicationDateYYYYMMDD 2017-08-14
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS biomaterials science & engineering
PublicationTitleAlternate ACS Biomater. Sci. Eng
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Institute of Laboratory Animal Research, Commission on Life Science, NRC (ref29/cit29) 1996
ref11/cit11
ref25/cit25
ref16/cit16
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref15/cit15
  doi: 10.1016/j.biomaterials.2007.10.025
– ident: ref12/cit12
  doi: 10.1002/anie.200805179
– ident: ref13/cit13
  doi: 10.1146/annurev-bioeng-070909-105351
– ident: ref10/cit10
  doi: 10.1126/science.1179773
– ident: ref37/cit37
  doi: 10.1038/nrn918
– ident: ref1/cit1
  doi: 10.1002/anie.200460333
– ident: ref21/cit21
  doi: 10.1016/j.carbon.2013.08.052
– ident: ref24/cit24
  doi: 10.1038/nrn809
– ident: ref34/cit34
  doi: 10.1021/am402156f
– ident: ref33/cit33
  doi: 10.1016/j.biomaterials.2006.02.002
– ident: ref16/cit16
  doi: 10.1016/j.biomaterials.2008.10.004
– ident: ref20/cit20
  doi: 10.1021/la703821h
– ident: ref26/cit26
  doi: 10.4252/wjsc.v6.i1.11
– ident: ref30/cit30
  doi: 10.1039/c3tb21070g
– ident: ref18/cit18
  doi: 10.1021/nn501182f
– ident: ref36/cit36
  doi: 10.1016/j.biomaterials.2009.10.037
– ident: ref3/cit3
  doi: 10.1063/1.1931054
– ident: ref5/cit5
  doi: 10.1002/anie.200461092
– ident: ref35/cit35
  doi: 10.1163/092050610X488241
– ident: ref28/cit28
  doi: 10.1021/am402156f
– ident: ref25/cit25
  doi: 10.1038/nmat3980
– ident: ref32/cit32
  doi: 10.1016/0379-6779(89)90311-1
– ident: ref19/cit19
  doi: 10.1021/la049411+
– ident: ref6/cit6
  doi: 10.1080/0892701021000057882
– ident: ref2/cit2
  doi: 10.1021/ma0511189
– ident: ref22/cit22
  doi: 10.1039/c3ta13758a
– ident: ref23/cit23
  doi: 10.1146/annurev.neuro.28.051804.101459
– ident: ref17/cit17
  doi: 10.1038/nmat3058
– volume-title: Guide for the Care and Use of Laboratory Animals
  year: 1996
  ident: ref29/cit29
  contributor:
    fullname: Institute of Laboratory Animal Research, Commission on Life Science, NRC
– ident: ref8/cit8
  doi: 10.1088/0034-4885/68/11/R01
– ident: ref7/cit7
  doi: 10.1080/08927019909378388
– ident: ref31/cit31
  doi: 10.1002/app.22226
– ident: ref9/cit9
  doi: 10.1016/j.porgcoat.2005.09.012
– ident: ref14/cit14
  doi: 10.1007/s10544-009-9392-7
– ident: ref27/cit27
  doi: 10.1002/smll.201200490
– ident: ref4/cit4
  doi: 10.1021/la052110v
– ident: ref11/cit11
  doi: 10.1021/cs200163r
SSID ssj0001385444
Score 2.1957655
Snippet In this paper, a biomolding technique was first used to fabricate a scaffold of hierarchical topography with biomimetic morphology for tissue engineering....
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 1527
Title Biomolding Technique to Fabricate the Hierarchical Topographical Scaffold of POMA To Enhance the Differentiation of Neural Stem Cells
URI http://dx.doi.org/10.1021/acsbiomaterials.7b00091
https://www.ncbi.nlm.nih.gov/pubmed/33429639
https://search.proquest.com/docview/2477259717
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQXNoD0JbHAq1ciSNZEtuJ4yNsWa0qlaKySNwiP7WIJUEke-He_92xk0AfWhWOUTwjP8aZ78vYMwgdpnGslaM0Au8GBMWoOFImU5GTIiMGIIiW4bTFeTa5Yl-v0-sVlCyJ4JPkWOra30SXTbsiQx5wARCeNcJhi3g0NLp8_q1C85SFEq6EchoBo877U13LdXnPpOs_PdMSuBnczngD_egv77SnTW6Hi0YN9eO_uRxfPqJNtN6BUHzSWs07tGLL9-jtb6kJP6CfpyDbRqbwtM_zipsKj6UKlYXgYWbx5MZfYA71VOZ4Wt23CbDD06WWzoEGXDl88f3bCbzGZ-XMW1kQ_dKVZmla4_DNfKYQL9nYOzyy83m9ha7GZ9PRJOpKNkSSprwBNmqNTpwWljLCuHBaCU1iJ3LLqdZAtzOXxcLkhqtcG6CX2mhYr9TwjFnC6DZaLavS7iLMMgvtGZNSJIw4UMFjJ3Poe5zbTCQDdAQTWXRbri5CNJ0kxV-zW3SzO0Bxv7rFfZvI4_8in3srKGDT-UiKLG21qAsYGgfeCFR4gHZa83hSSmHk8FUTe6_r3z56Qzxi8Nl22QFabR4W9iPgnUZ9Chb-C5Vp_4A
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heqA9tNAXW1rqSj022yR24vhIF1ZLC7QSi0RPkZ-iYpugJnvpvf-bsZNAQUIVPTrxjMb2ODOTsb8BeJ_FsVaO0gitGwYoRsWRMrmKnBR5atAF0TKctjjKZyfs82l2ugLFcBcGhWiQUxOS-NfoAslHfOYvpMu2W5gxD-4Bxj0PMo5m0ztFk-Prvyu0yFio5JpSTiMMrIvhcNfdvLyB0s1NA3WH1xmsz_QJfL-SOxw6OR8vWzXWv29BOv7PwNbhce-Skp1OhzZgxVZP4dFfQIXP4M8npO3yVGQ-oL6StiZTqUKdIWycWTL74a8zh-oqCzKvLzo47NA61tI55EBqR759PdzB12SvOvM6F0h3-0ItbacqvpvHDfGUrf1JJnaxaJ7DyXRvPplFfQGHSNKMtxibWqMTp4WlLGVcOK2ETmMnCsup1hh85y6PhSkMV4U2GGxqo3HZMsNzZlNGX8BqVVd2EwjLLfZnTEqRsNQhCx47WaDscWFzkYzgA05k2W_Apgy59TQpb81u2c_uCOJhkcuLDtbj3yTvBmUocQv6vIqsbL1sShwaxygSA-MRvOy05IopxZHjN068up98b2FtNj88KA_2j75swcPU-xIeh5e9htX219K-QU-oVdtB6S8BQ1gH9A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJw4P1YaIuROJIliZ04lnpZtl0tr1KpW6kXFPmpIpZkRbIX7vxvxk5S2kpVRY9OPKOxPc7MZOxvAN5kcayVozRC64YBilFxpEyuIidFnhp0QbQMpy0O8vkx-3iSnWzA7nAXBoVokFMTkvh-V6-M6xEGknf43F9Kl223OGMeXASMfW5lPAlJ2sn06N8fFlpkLFRzTSmnEQbXxXDA62pe3kjp5qKRusLzDBZodh--nckeDp78GK9bNda_L8E63nRwD-Be75qSSadLD2HDVo_g7jnAwsfw5z3SdvkqshjQX0lbk5lUod4QNk4tmX_315pDlZUlWdSrDhY7tI60dA45kNqRw69fJvia7FenXvcC6V5fsKXtVMZ38_ghnrK1P8nULpfNEzie7S-m86gv5BBJmvEWY1RrdOK0sJSljAunldBp7ERhOdUag_Dc5bEwheGq0AaDTm00Ll1meM5syuhT2Kzqyj4HwnKL_RmTUiQsdciCx04WKHtc2FwkI3iLE1n2G7EpQ449TcpLs1v2szuCeFjoctXBe1xP8npQiBK3os-vyMrW66bEoXGMJjFAHsGzTlPOmFIcOX7rxIv_k-8V3D7cm5WfPxx8egl3Uu9SeDhetgWb7a-13UaHqFU7Qe__AozCCm4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomolding+Technique+to+Fabricate+the+Hierarchical+Topographical+Scaffold+of+POMA+To+Enhance+the+Differentiation+of+Neural+Stem+Cells&rft.jtitle=ACS+biomaterials+science+%26+engineering&rft.au=Hsu%2C+Chien-Hua&rft.au=Huang%2C+Ting-Yu&rft.au=Chen%2C+Rui-Da&rft.au=Liu%2C+Yuan-Xian&rft.date=2017-08-14&rft.eissn=2373-9878&rft.volume=3&rft.issue=8&rft.spage=1527&rft_id=info:doi/10.1021%2Facsbiomaterials.7b00091&rft_id=info%3Apmid%2F33429639&rft.externalDocID=33429639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-9878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-9878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-9878&client=summon