Biomolding Technique to Fabricate the Hierarchical Topographical Scaffold of POMA To Enhance the Differentiation of Neural Stem Cells
In this paper, a biomolding technique was first used to fabricate a scaffold of hierarchical topography with biomimetic morphology for tissue engineering. First, poly(ortho-methoxyaniline) (POMA) was synthesized by conventional oxidative polymerization, followed by characterizations with Fourier tr...
Saved in:
Published in | ACS biomaterials science & engineering Vol. 3; no. 8; pp. 1527 - 1534 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a biomolding technique was first used to fabricate a scaffold of hierarchical topography with biomimetic morphology for tissue engineering. First, poly(ortho-methoxyaniline) (POMA) was synthesized by conventional oxidative polymerization, followed by characterizations with Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). Moreover, the POMA scaffold with 3D biomimetic morphology was fabricated using poly(dimethylsiloxane) (PDMS) as negative soft template from natural leaf surfaces of Xanthosoma sagittifolium, followed by transferring the pattern of PDMS template to POMA. The as-fabricated POMA scaffold with biomimetic morphology was investigated by scanning electron microscopy (SEM). Subsequently, cell–scaffold interactions were carried out by culturing rat neural stem cells (rNSCs) on biomimetic and nonbiomimetic, or flat, POMA scaffolds, as well as on poly(d-lysine) (PDL)-coated substrate, and evaluating the corresponding adhesion, cell viability, and differentiation of rNSCs. Results showed that there was no significant difference in the attachment of rNSCs on the three surface types, however, both the biomimetic and flat POMA scaffolds induced growth arrest relative to the PDL-coated substrate. In addition, the percentage of cells with elongated neurites after 19 days of culture was higher on the biomimetic POMA scaffold relative to flat POMA and PDL. In summary, the POMA scaffold with biomimetic morphology shows promise in promoting rNSCs differentiation and neurite outgrowth for long-term studies on nerve regenerative medicine. |
---|---|
AbstractList | In this paper, a biomolding technique was first used to fabricate a scaffold of hierarchical topography with biomimetic morphology for tissue engineering. First, poly(ortho-methoxyaniline) (POMA) was synthesized by conventional oxidative polymerization, followed by characterizations with Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). Moreover, the POMA scaffold with 3D biomimetic morphology was fabricated using poly(dimethylsiloxane) (PDMS) as negative soft template from natural leaf surfaces of Xanthosoma sagittifolium, followed by transferring the pattern of PDMS template to POMA. The as-fabricated POMA scaffold with biomimetic morphology was investigated by scanning electron microscopy (SEM). Subsequently, cell–scaffold interactions were carried out by culturing rat neural stem cells (rNSCs) on biomimetic and nonbiomimetic, or flat, POMA scaffolds, as well as on poly(d-lysine) (PDL)-coated substrate, and evaluating the corresponding adhesion, cell viability, and differentiation of rNSCs. Results showed that there was no significant difference in the attachment of rNSCs on the three surface types, however, both the biomimetic and flat POMA scaffolds induced growth arrest relative to the PDL-coated substrate. In addition, the percentage of cells with elongated neurites after 19 days of culture was higher on the biomimetic POMA scaffold relative to flat POMA and PDL. In summary, the POMA scaffold with biomimetic morphology shows promise in promoting rNSCs differentiation and neurite outgrowth for long-term studies on nerve regenerative medicine. In this paper, a biomolding technique was first used to fabricate a scaffold of hierarchical topography with biomimetic morphology for tissue engineering. First, poly( -methoxyaniline) (POMA) was synthesized by conventional oxidative polymerization, followed by characterizations with Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). Moreover, the POMA scaffold with 3D biomimetic morphology was fabricated using poly(dimethylsiloxane) (PDMS) as negative soft template from natural leaf surfaces of , followed by transferring the pattern of PDMS template to POMA. The as-fabricated POMA scaffold with biomimetic morphology was investigated by scanning electron microscopy (SEM). Subsequently, cell-scaffold interactions were carried out by culturing rat neural stem cells (rNSCs) on biomimetic and nonbiomimetic, or flat, POMA scaffolds, as well as on poly(d-lysine) (PDL)-coated substrate, and evaluating the corresponding adhesion, cell viability, and differentiation of rNSCs. Results showed that there was no significant difference in the attachment of rNSCs on the three surface types, however, both the biomimetic and flat POMA scaffolds induced growth arrest relative to the PDL-coated substrate. In addition, the percentage of cells with elongated neurites after 19 days of culture was higher on the biomimetic POMA scaffold relative to flat POMA and PDL. In summary, the POMA scaffold with biomimetic morphology shows promise in promoting rNSCs differentiation and neurite outgrowth for long-term studies on nerve regenerative medicine. |
Author | Yeh, Jui-Ming Chen, Rui-Da Huang, Ting-Yu Liu, Yuan-Xian Chen-Yang, Yui Whei Chin, Ting-Yu Hsu, Chien-Hua |
AuthorAffiliation | Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology Master Program in Nanotechnology and Center for Nanotechnology Chung Yuan Christian University Department of Bioscience Technology, Centre for Nanotechnology and Institute of Biomedical Technology |
AuthorAffiliation_xml | – name: – name: Master Program in Nanotechnology and Center for Nanotechnology – name: Chung Yuan Christian University – name: Department of Bioscience Technology, Centre for Nanotechnology and Institute of Biomedical Technology – name: Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology |
Author_xml | – sequence: 1 givenname: Chien-Hua surname: Hsu fullname: Hsu, Chien-Hua – sequence: 2 givenname: Ting-Yu surname: Huang fullname: Huang, Ting-Yu – sequence: 3 givenname: Rui-Da surname: Chen fullname: Chen, Rui-Da – sequence: 4 givenname: Yuan-Xian surname: Liu fullname: Liu, Yuan-Xian – sequence: 5 givenname: Ting-Yu surname: Chin fullname: Chin, Ting-Yu email: tychin@cycu.edu.tw – sequence: 6 givenname: Yui Whei surname: Chen-Yang fullname: Chen-Yang, Yui Whei – sequence: 7 givenname: Jui-Ming orcidid: 0000-0003-2930-0405 surname: Yeh fullname: Yeh, Jui-Ming email: juiming@cycu.edu.tw |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33429639$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1O3DAUha2KCijlFaiXbIbasWdsL-kApRIUJKbryLm5ZowSe7CTBQ_Ae9ejDBXqhpX_vnPuPb5fyF6IAQn5xtkZZxX_biE3PvZ2wORtl89Uwxgz_BM5rIQSM6OV3nu3PyDHOT8VhAs9l1LukwMhZGUWwhyS1x_FKXatD490hbAO_nlEOkR6ZZvkodSgwxrptcdkE6zLTUdXcRMfk91MpwewzhUHGh29v7s9L8_0MqxtgEl64Z3DhGHwdvAxbLHfOKatcsCeLrHr8lfy2ZUkeLxbj8ifq8vV8np2c_fz1_L8ZmbFXA0zybAF7sBg6V8q46AxUDFnNCoBoLVeuAUzrW5Vo6HlWkILJfG8VQuJlRRH5HTy3aRYcuah7n2G0oENGMdcF1NVzY3iqqBqQiHFnBO6epN8b9NLzVm9HUP93xjq3RiK8mRXZGx6bP_p3j69AGICikP9FMcUtvKPbP8CAp2dWQ |
CitedBy_id | crossref_primary_10_1002_adma_202110267 crossref_primary_10_1016_j_bioactmat_2023_06_002 crossref_primary_10_1016_j_actbio_2023_12_025 crossref_primary_10_1021_acsbiomaterials_1c00030 crossref_primary_10_1016_j_msec_2019_110045 crossref_primary_10_1039_C7NR02822A crossref_primary_10_1016_j_surfin_2022_102548 crossref_primary_10_1016_j_porgcoat_2024_108610 crossref_primary_10_1021_acsbiomaterials_7b00535 crossref_primary_10_1016_j_porgcoat_2021_106679 crossref_primary_10_1016_j_surfcoat_2024_130700 crossref_primary_10_3390_polym16121673 crossref_primary_10_1088_1748_3190_ac7afe crossref_primary_10_1021_acsabm_2c00323 crossref_primary_10_1088_1748_605X_ac21a7 crossref_primary_10_1021_acsomega_1c02796 crossref_primary_10_1002_adfm_201907792 crossref_primary_10_1039_C8TA06329J |
Cites_doi | 10.1016/j.biomaterials.2007.10.025 10.1002/anie.200805179 10.1146/annurev-bioeng-070909-105351 10.1126/science.1179773 10.1038/nrn918 10.1002/anie.200460333 10.1016/j.carbon.2013.08.052 10.1038/nrn809 10.1021/am402156f 10.1016/j.biomaterials.2006.02.002 10.1016/j.biomaterials.2008.10.004 10.1021/la703821h 10.4252/wjsc.v6.i1.11 10.1039/c3tb21070g 10.1021/nn501182f 10.1016/j.biomaterials.2009.10.037 10.1063/1.1931054 10.1002/anie.200461092 10.1163/092050610X488241 10.1038/nmat3980 10.1016/0379-6779(89)90311-1 10.1021/la049411+ 10.1080/0892701021000057882 10.1021/ma0511189 10.1039/c3ta13758a 10.1146/annurev.neuro.28.051804.101459 10.1038/nmat3058 10.1088/0034-4885/68/11/R01 10.1080/08927019909378388 10.1002/app.22226 10.1016/j.porgcoat.2005.09.012 10.1007/s10544-009-9392-7 10.1002/smll.201200490 10.1021/la052110v 10.1021/cs200163r |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acsbiomaterials.7b00091 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2373-9878 |
EndPage | 1534 |
ExternalDocumentID | 10_1021_acsbiomaterials_7b00091 33429639 c405291925 |
Genre | Journal Article |
GroupedDBID | ABMVS ABUCX ACGFS ACS AEESW AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS EJD UI2 VF5 VG9 W1F 53G ABQRX ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a357t-40edc1fc9e342479fcb9c20f98e73cc8886f609d8d7b8cd184cdc4445d764e243 |
IEDL.DBID | ACS |
ISSN | 2373-9878 |
IngestDate | Fri Aug 16 10:10:41 EDT 2024 Fri Aug 23 00:34:42 EDT 2024 Sat Sep 28 08:45:08 EDT 2024 Thu Aug 27 13:41:57 EDT 2020 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Keywords | hierarchical topography differentiation neurite biomimetic long-term |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-40edc1fc9e342479fcb9c20f98e73cc8886f609d8d7b8cd184cdc4445d764e243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2930-0405 |
PMID | 33429639 |
PQID | 2477259717 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2477259717 crossref_primary_10_1021_acsbiomaterials_7b00091 pubmed_primary_33429639 acs_journals_10_1021_acsbiomaterials_7b00091 |
ProviderPackageCode | ACS AEESW AFEFF VF5 VG9 ABMVS ABUCX AQSVZ W1F UI2 |
PublicationCentury | 2000 |
PublicationDate | 2017-08-14 |
PublicationDateYYYYMMDD | 2017-08-14 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS biomaterials science & engineering |
PublicationTitleAlternate | ACS Biomater. Sci. Eng |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 Institute of Laboratory Animal Research, Commission on Life Science, NRC (ref29/cit29) 1996 ref11/cit11 ref25/cit25 ref16/cit16 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref15/cit15 doi: 10.1016/j.biomaterials.2007.10.025 – ident: ref12/cit12 doi: 10.1002/anie.200805179 – ident: ref13/cit13 doi: 10.1146/annurev-bioeng-070909-105351 – ident: ref10/cit10 doi: 10.1126/science.1179773 – ident: ref37/cit37 doi: 10.1038/nrn918 – ident: ref1/cit1 doi: 10.1002/anie.200460333 – ident: ref21/cit21 doi: 10.1016/j.carbon.2013.08.052 – ident: ref24/cit24 doi: 10.1038/nrn809 – ident: ref34/cit34 doi: 10.1021/am402156f – ident: ref33/cit33 doi: 10.1016/j.biomaterials.2006.02.002 – ident: ref16/cit16 doi: 10.1016/j.biomaterials.2008.10.004 – ident: ref20/cit20 doi: 10.1021/la703821h – ident: ref26/cit26 doi: 10.4252/wjsc.v6.i1.11 – ident: ref30/cit30 doi: 10.1039/c3tb21070g – ident: ref18/cit18 doi: 10.1021/nn501182f – ident: ref36/cit36 doi: 10.1016/j.biomaterials.2009.10.037 – ident: ref3/cit3 doi: 10.1063/1.1931054 – ident: ref5/cit5 doi: 10.1002/anie.200461092 – ident: ref35/cit35 doi: 10.1163/092050610X488241 – ident: ref28/cit28 doi: 10.1021/am402156f – ident: ref25/cit25 doi: 10.1038/nmat3980 – ident: ref32/cit32 doi: 10.1016/0379-6779(89)90311-1 – ident: ref19/cit19 doi: 10.1021/la049411+ – ident: ref6/cit6 doi: 10.1080/0892701021000057882 – ident: ref2/cit2 doi: 10.1021/ma0511189 – ident: ref22/cit22 doi: 10.1039/c3ta13758a – ident: ref23/cit23 doi: 10.1146/annurev.neuro.28.051804.101459 – ident: ref17/cit17 doi: 10.1038/nmat3058 – volume-title: Guide for the Care and Use of Laboratory Animals year: 1996 ident: ref29/cit29 contributor: fullname: Institute of Laboratory Animal Research, Commission on Life Science, NRC – ident: ref8/cit8 doi: 10.1088/0034-4885/68/11/R01 – ident: ref7/cit7 doi: 10.1080/08927019909378388 – ident: ref31/cit31 doi: 10.1002/app.22226 – ident: ref9/cit9 doi: 10.1016/j.porgcoat.2005.09.012 – ident: ref14/cit14 doi: 10.1007/s10544-009-9392-7 – ident: ref27/cit27 doi: 10.1002/smll.201200490 – ident: ref4/cit4 doi: 10.1021/la052110v – ident: ref11/cit11 doi: 10.1021/cs200163r |
SSID | ssj0001385444 |
Score | 2.1957655 |
Snippet | In this paper, a biomolding technique was first used to fabricate a scaffold of hierarchical topography with biomimetic morphology for tissue engineering.... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1527 |
Title | Biomolding Technique to Fabricate the Hierarchical Topographical Scaffold of POMA To Enhance the Differentiation of Neural Stem Cells |
URI | http://dx.doi.org/10.1021/acsbiomaterials.7b00091 https://www.ncbi.nlm.nih.gov/pubmed/33429639 https://search.proquest.com/docview/2477259717 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQXNoD0JbHAq1ciSNZEtuJ4yNsWa0qlaKySNwiP7WIJUEke-He_92xk0AfWhWOUTwjP8aZ78vYMwgdpnGslaM0Au8GBMWoOFImU5GTIiMGIIiW4bTFeTa5Yl-v0-sVlCyJ4JPkWOra30SXTbsiQx5wARCeNcJhi3g0NLp8_q1C85SFEq6EchoBo877U13LdXnPpOs_PdMSuBnczngD_egv77SnTW6Hi0YN9eO_uRxfPqJNtN6BUHzSWs07tGLL9-jtb6kJP6CfpyDbRqbwtM_zipsKj6UKlYXgYWbx5MZfYA71VOZ4Wt23CbDD06WWzoEGXDl88f3bCbzGZ-XMW1kQ_dKVZmla4_DNfKYQL9nYOzyy83m9ha7GZ9PRJOpKNkSSprwBNmqNTpwWljLCuHBaCU1iJ3LLqdZAtzOXxcLkhqtcG6CX2mhYr9TwjFnC6DZaLavS7iLMMgvtGZNSJIw4UMFjJ3Poe5zbTCQDdAQTWXRbri5CNJ0kxV-zW3SzO0Bxv7rFfZvI4_8in3srKGDT-UiKLG21qAsYGgfeCFR4gHZa83hSSmHk8FUTe6_r3z56Qzxi8Nl22QFabR4W9iPgnUZ9Chb-C5Vp_4A |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heqA9tNAXW1rqSj022yR24vhIF1ZLC7QSi0RPkZ-iYpugJnvpvf-bsZNAQUIVPTrxjMb2ODOTsb8BeJ_FsVaO0gitGwYoRsWRMrmKnBR5atAF0TKctjjKZyfs82l2ugLFcBcGhWiQUxOS-NfoAslHfOYvpMu2W5gxD-4Bxj0PMo5m0ztFk-Prvyu0yFio5JpSTiMMrIvhcNfdvLyB0s1NA3WH1xmsz_QJfL-SOxw6OR8vWzXWv29BOv7PwNbhce-Skp1OhzZgxVZP4dFfQIXP4M8npO3yVGQ-oL6StiZTqUKdIWycWTL74a8zh-oqCzKvLzo47NA61tI55EBqR759PdzB12SvOvM6F0h3-0ItbacqvpvHDfGUrf1JJnaxaJ7DyXRvPplFfQGHSNKMtxibWqMTp4WlLGVcOK2ETmMnCsup1hh85y6PhSkMV4U2GGxqo3HZMsNzZlNGX8BqVVd2EwjLLfZnTEqRsNQhCx47WaDscWFzkYzgA05k2W_Apgy59TQpb81u2c_uCOJhkcuLDtbj3yTvBmUocQv6vIqsbL1sShwaxygSA-MRvOy05IopxZHjN068up98b2FtNj88KA_2j75swcPU-xIeh5e9htX219K-QU-oVdtB6S8BQ1gH9A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJw4P1YaIuROJIliZ04lnpZtl0tr1KpW6kXFPmpIpZkRbIX7vxvxk5S2kpVRY9OPKOxPc7MZOxvAN5kcayVozRC64YBilFxpEyuIidFnhp0QbQMpy0O8vkx-3iSnWzA7nAXBoVokFMTkvh-V6-M6xEGknf43F9Kl223OGMeXASMfW5lPAlJ2sn06N8fFlpkLFRzTSmnEQbXxXDA62pe3kjp5qKRusLzDBZodh--nckeDp78GK9bNda_L8E63nRwD-Be75qSSadLD2HDVo_g7jnAwsfw5z3SdvkqshjQX0lbk5lUod4QNk4tmX_315pDlZUlWdSrDhY7tI60dA45kNqRw69fJvia7FenXvcC6V5fsKXtVMZ38_ghnrK1P8nULpfNEzie7S-m86gv5BBJmvEWY1RrdOK0sJSljAunldBp7ERhOdUag_Dc5bEwheGq0AaDTm00Ll1meM5syuhT2Kzqyj4HwnKL_RmTUiQsdciCx04WKHtc2FwkI3iLE1n2G7EpQ449TcpLs1v2szuCeFjoctXBe1xP8npQiBK3os-vyMrW66bEoXGMJjFAHsGzTlPOmFIcOX7rxIv_k-8V3D7cm5WfPxx8egl3Uu9SeDhetgWb7a-13UaHqFU7Qe__AozCCm4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomolding+Technique+to+Fabricate+the+Hierarchical+Topographical+Scaffold+of+POMA+To+Enhance+the+Differentiation+of+Neural+Stem+Cells&rft.jtitle=ACS+biomaterials+science+%26+engineering&rft.au=Hsu%2C+Chien-Hua&rft.au=Huang%2C+Ting-Yu&rft.au=Chen%2C+Rui-Da&rft.au=Liu%2C+Yuan-Xian&rft.date=2017-08-14&rft.eissn=2373-9878&rft.volume=3&rft.issue=8&rft.spage=1527&rft_id=info:doi/10.1021%2Facsbiomaterials.7b00091&rft_id=info%3Apmid%2F33429639&rft.externalDocID=33429639 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-9878&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-9878&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-9878&client=summon |