Combined Theoretical and Experimental Studies of Nickel-Catalyzed Cross-Coupling of Methoxyarenes with Arylboronic Esters via C–O Bond Cleavage

Nickel­(0)-catalyzed cross-coupling of methoxyarenes through C–O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy3-cat...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 139; no. 30; pp. 10347 - 10358
Main Authors Schwarzer, Martin C, Konno, Ryosuke, Hojo, Takayuki, Ohtsuki, Akimichi, Nakamura, Keisuke, Yasutome, Ayaka, Takahashi, Hiroaki, Shimasaki, Toshiaki, Tobisu, Mamoru, Chatani, Naoto, Mori, Seiji
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nickel­(0)-catalyzed cross-coupling of methoxyarenes through C–O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy3-catalyzed cross-coupling of methoxy­arenes with arylboronic esters in which the addition of a stoichiometric base such as CsF is essential for the reaction to proceed. Recently, we have also found that the scope of the substrate in the Suzuki–Miyaura-type cross-coupling of methoxyarenes can be greatly expanded by using 1,3-dicyclohexylimidazol-2-ylidene (ICy) as the ligand. Interestingly, a stoichiometric amount of external base is not required for the nickel/ICy-catalyzed cross-coupling. For the mechanism and origin of the effect of the external base to be elucidated, density functional theory calculations are conducted. In the nickel/PCy3-catalyzed reactions, the activation energy for the oxidative addition of the C­(aryl)–OMe bond is too high to occur under the catalytic conditions. However, the oxidative addition process becomes energetically feasible when CsF and an arylboronic ester interact with a Ni­(PCy3)2/methoxyarene fragment to form a quaternary complex. In the nickel/ICy-catalyzed reactions, the oxidative addition of the C­(aryl)–OMe bond can proceed more easily without the aid of CsF because the nickel-ligand bonds are stronger and therefore stabilize the transition state. The subsequent transmetalation from an Ar–Ni–OMe intermediate is determined to proceed through a pathway with lower energies than those required for β-hydrogen elimination. The overall driving force of the reaction is the reductive elimination to form the carbon–carbon bond.
AbstractList Nickel(0)-catalyzed cross-coupling of methoxyarenes through C–O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy₃-catalyzed cross-coupling of methoxyarenes with arylboronic esters in which the addition of a stoichiometric base such as CsF is essential for the reaction to proceed. Recently, we have also found that the scope of the substrate in the Suzuki–Miyaura-type cross-coupling of methoxyarenes can be greatly expanded by using 1,3-dicyclohexylimidazol-2-ylidene (ICy) as the ligand. Interestingly, a stoichiometric amount of external base is not required for the nickel/ICy-catalyzed cross-coupling. For the mechanism and origin of the effect of the external base to be elucidated, density functional theory calculations are conducted. In the nickel/PCy₃-catalyzed reactions, the activation energy for the oxidative addition of the C(aryl)–OMe bond is too high to occur under the catalytic conditions. However, the oxidative addition process becomes energetically feasible when CsF and an arylboronic ester interact with a Ni(PCy₃)₂/methoxyarene fragment to form a quaternary complex. In the nickel/ICy-catalyzed reactions, the oxidative addition of the C(aryl)–OMe bond can proceed more easily without the aid of CsF because the nickel-ligand bonds are stronger and therefore stabilize the transition state. The subsequent transmetalation from an Ar–Ni–OMe intermediate is determined to proceed through a pathway with lower energies than those required for β-hydrogen elimination. The overall driving force of the reaction is the reductive elimination to form the carbon–carbon bond.
Nickel(0)-catalyzed cross-coupling of methoxyarenes through C-O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy -catalyzed cross-coupling of methoxyarenes with arylboronic esters in which the addition of a stoichiometric base such as CsF is essential for the reaction to proceed. Recently, we have also found that the scope of the substrate in the Suzuki-Miyaura-type cross-coupling of methoxyarenes can be greatly expanded by using 1,3-dicyclohexylimidazol-2-ylidene (ICy) as the ligand. Interestingly, a stoichiometric amount of external base is not required for the nickel/ICy-catalyzed cross-coupling. For the mechanism and origin of the effect of the external base to be elucidated, density functional theory calculations are conducted. In the nickel/PCy -catalyzed reactions, the activation energy for the oxidative addition of the C(aryl)-OMe bond is too high to occur under the catalytic conditions. However, the oxidative addition process becomes energetically feasible when CsF and an arylboronic ester interact with a Ni(PCy ) /methoxyarene fragment to form a quaternary complex. In the nickel/ICy-catalyzed reactions, the oxidative addition of the C(aryl)-OMe bond can proceed more easily without the aid of CsF because the nickel-ligand bonds are stronger and therefore stabilize the transition state. The subsequent transmetalation from an Ar-Ni-OMe intermediate is determined to proceed through a pathway with lower energies than those required for β-hydrogen elimination. The overall driving force of the reaction is the reductive elimination to form the carbon-carbon bond.
Nickel­(0)-catalyzed cross-coupling of methoxyarenes through C–O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy3-catalyzed cross-coupling of methoxy­arenes with arylboronic esters in which the addition of a stoichiometric base such as CsF is essential for the reaction to proceed. Recently, we have also found that the scope of the substrate in the Suzuki–Miyaura-type cross-coupling of methoxyarenes can be greatly expanded by using 1,3-dicyclohexylimidazol-2-ylidene (ICy) as the ligand. Interestingly, a stoichiometric amount of external base is not required for the nickel/ICy-catalyzed cross-coupling. For the mechanism and origin of the effect of the external base to be elucidated, density functional theory calculations are conducted. In the nickel/PCy3-catalyzed reactions, the activation energy for the oxidative addition of the C­(aryl)–OMe bond is too high to occur under the catalytic conditions. However, the oxidative addition process becomes energetically feasible when CsF and an arylboronic ester interact with a Ni­(PCy3)2/methoxyarene fragment to form a quaternary complex. In the nickel/ICy-catalyzed reactions, the oxidative addition of the C­(aryl)–OMe bond can proceed more easily without the aid of CsF because the nickel-ligand bonds are stronger and therefore stabilize the transition state. The subsequent transmetalation from an Ar–Ni–OMe intermediate is determined to proceed through a pathway with lower energies than those required for β-hydrogen elimination. The overall driving force of the reaction is the reductive elimination to form the carbon–carbon bond.
Nickel(0)-catalyzed cross-coupling of methoxyarenes through C-O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy3-catalyzed cross-coupling of methoxyarenes with arylboronic esters in which the addition of a stoichiometric base such as CsF is essential for the reaction to proceed. Recently, we have also found that the scope of the substrate in the Suzuki-Miyaura-type cross-coupling of methoxyarenes can be greatly expanded by using 1,3-dicyclohexylimidazol-2-ylidene (ICy) as the ligand. Interestingly, a stoichiometric amount of external base is not required for the nickel/ICy-catalyzed cross-coupling. For the mechanism and origin of the effect of the external base to be elucidated, density functional theory calculations are conducted. In the nickel/PCy3-catalyzed reactions, the activation energy for the oxidative addition of the C(aryl)-OMe bond is too high to occur under the catalytic conditions. However, the oxidative addition process becomes energetically feasible when CsF and an arylboronic ester interact with a Ni(PCy3)2/methoxyarene fragment to form a quaternary complex. In the nickel/ICy-catalyzed reactions, the oxidative addition of the C(aryl)-OMe bond can proceed more easily without the aid of CsF because the nickel-ligand bonds are stronger and therefore stabilize the transition state. The subsequent transmetalation from an Ar-Ni-OMe intermediate is determined to proceed through a pathway with lower energies than those required for β-hydrogen elimination. The overall driving force of the reaction is the reductive elimination to form the carbon-carbon bond.Nickel(0)-catalyzed cross-coupling of methoxyarenes through C-O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy3-catalyzed cross-coupling of methoxyarenes with arylboronic esters in which the addition of a stoichiometric base such as CsF is essential for the reaction to proceed. Recently, we have also found that the scope of the substrate in the Suzuki-Miyaura-type cross-coupling of methoxyarenes can be greatly expanded by using 1,3-dicyclohexylimidazol-2-ylidene (ICy) as the ligand. Interestingly, a stoichiometric amount of external base is not required for the nickel/ICy-catalyzed cross-coupling. For the mechanism and origin of the effect of the external base to be elucidated, density functional theory calculations are conducted. In the nickel/PCy3-catalyzed reactions, the activation energy for the oxidative addition of the C(aryl)-OMe bond is too high to occur under the catalytic conditions. However, the oxidative addition process becomes energetically feasible when CsF and an arylboronic ester interact with a Ni(PCy3)2/methoxyarene fragment to form a quaternary complex. In the nickel/ICy-catalyzed reactions, the oxidative addition of the C(aryl)-OMe bond can proceed more easily without the aid of CsF because the nickel-ligand bonds are stronger and therefore stabilize the transition state. The subsequent transmetalation from an Ar-Ni-OMe intermediate is determined to proceed through a pathway with lower energies than those required for β-hydrogen elimination. The overall driving force of the reaction is the reductive elimination to form the carbon-carbon bond.
Author Shimasaki, Toshiaki
Tobisu, Mamoru
Yasutome, Ayaka
Konno, Ryosuke
Ohtsuki, Akimichi
Schwarzer, Martin C
Hojo, Takayuki
Nakamura, Keisuke
Chatani, Naoto
Mori, Seiji
Takahashi, Hiroaki
AuthorAffiliation Center for Atomic and Molecular Technologies, Graduate School of Engineering
Osaka University
Faculty of Science
Institute of Quantum Beam Science, Graduate School of Science and Engineering
Department of Applied Chemistry, Faculty of Engineering
Ibaraki University
AuthorAffiliation_xml – name: Center for Atomic and Molecular Technologies, Graduate School of Engineering
– name: Osaka University
– name: Ibaraki University
– name: Institute of Quantum Beam Science, Graduate School of Science and Engineering
– name: Faculty of Science
– name: Department of Applied Chemistry, Faculty of Engineering
Author_xml – sequence: 1
  givenname: Martin C
  orcidid: 0000-0001-8435-9624
  surname: Schwarzer
  fullname: Schwarzer, Martin C
– sequence: 2
  givenname: Ryosuke
  surname: Konno
  fullname: Konno, Ryosuke
– sequence: 3
  givenname: Takayuki
  surname: Hojo
  fullname: Hojo, Takayuki
– sequence: 4
  givenname: Akimichi
  surname: Ohtsuki
  fullname: Ohtsuki, Akimichi
– sequence: 5
  givenname: Keisuke
  surname: Nakamura
  fullname: Nakamura, Keisuke
– sequence: 6
  givenname: Ayaka
  surname: Yasutome
  fullname: Yasutome, Ayaka
– sequence: 7
  givenname: Hiroaki
  surname: Takahashi
  fullname: Takahashi, Hiroaki
– sequence: 8
  givenname: Toshiaki
  orcidid: 0000-0002-3447-7435
  surname: Shimasaki
  fullname: Shimasaki, Toshiaki
– sequence: 9
  givenname: Mamoru
  orcidid: 0000-0002-8415-2225
  surname: Tobisu
  fullname: Tobisu, Mamoru
  email: tobisu@chem.eng.osaka-u.ac.jp
– sequence: 10
  givenname: Naoto
  orcidid: 0000-0001-8330-7478
  surname: Chatani
  fullname: Chatani, Naoto
  email: chatani@chem.eng.osaka-u.ac.jp
– sequence: 11
  givenname: Seiji
  surname: Mori
  fullname: Mori, Seiji
  email: seiji.mori.compchem@vc.ibaraki.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28675702$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFHWvkJQtSbCcTO8sSDT9SoQvKOrpxrjseMvZgO6XDildAvCFPgqMOLBCI1ZWPvnOvdc4JOXLeISGPOTvjTPDnG9DxTPasErK5RxZ8KVix5KI-IgvGmCikqstjchLjJj8rofgDcixULZeSiQX51vptbx0O9GqNPmCyGkYKbqCr2x0Gu0WXsvA-TYPFSL2h76z-iGPRQtb3X7KxDT7GovXTbrTuekbeYlr72z0EdNnz2aY1PQ_7sffBO6vpKiYMkd5YoO2Pr98v6Quf77Ujwg1c40Ny38AY8dFhnpIPL1dX7evi4vLVm_b8ooByKVNRogRZlarRYJq6MT1Do6WBcjBVxVFKEKgqEINomkYYJphStVZCqmVvNDflKXl6t3cX_KcJY-q2NmocR3Dop9gJzmtVs5pV_0V5w-tS5v1lRp8c0Knf4tDtcoQQ9t2vxDPw7A7Qc2wBzW-Es24utJsL7Q6FZlz8gWubIFnvUgA7_st0-O8sbvwUXA7y7-hPYgSz3g
CitedBy_id crossref_primary_10_1039_C8DT03188F
crossref_primary_10_3390_molecules24071234
crossref_primary_10_1007_s11244_021_01527_9
crossref_primary_10_1021_acs_joc_9b02154
crossref_primary_10_1002_ange_202401756
crossref_primary_10_1021_acs_orglett_2c00732
crossref_primary_10_1002_anie_202110785
crossref_primary_10_1021_acscatal_2c06054
crossref_primary_10_1021_jacs_3c11851
crossref_primary_10_1093_bulcsj_uoad015
crossref_primary_10_4019_bjscc_77_11
crossref_primary_10_1002_chem_202300977
crossref_primary_10_1021_acscatal_8b01224
crossref_primary_10_1021_acs_jpca_1c05412
crossref_primary_10_1021_acs_orglett_0c03507
crossref_primary_10_1246_bcsj_20200277
crossref_primary_10_1002_asia_202000763
crossref_primary_10_1021_acs_organomet_1c00664
crossref_primary_10_1021_acs_orglett_8b00674
crossref_primary_10_1021_jacs_0c00283
crossref_primary_10_1039_D3QO00023K
crossref_primary_10_1055_a_1806_4513
crossref_primary_10_1002_ange_202004116
crossref_primary_10_1007_s41061_024_00484_7
crossref_primary_10_1038_s41467_022_30693_x
crossref_primary_10_1021_acs_joc_8b02104
crossref_primary_10_1002_ajoc_202300094
crossref_primary_10_1021_acs_orglett_3c00979
crossref_primary_10_1021_acs_accounts_1c00050
crossref_primary_10_1039_D4CC02667E
crossref_primary_10_1002_ajoc_201700645
crossref_primary_10_1016_j_tet_2018_10_025
crossref_primary_10_1039_D1CC05408B
crossref_primary_10_1016_j_trechm_2019_08_004
crossref_primary_10_1021_acscatal_8b03436
crossref_primary_10_1021_acs_chemrev_0c00088
crossref_primary_10_1039_D3QO00042G
crossref_primary_10_1021_jacs_4c13003
crossref_primary_10_1021_acscatal_4c02092
crossref_primary_10_1002_anie_202401756
crossref_primary_10_1038_s41467_018_03928_z
crossref_primary_10_1070_RCR4977
crossref_primary_10_1039_C7CC08416A
crossref_primary_10_1021_acs_organomet_8b00046
crossref_primary_10_1021_jacs_8b02134
crossref_primary_10_4274_haseki_galenos_2022_8233
crossref_primary_10_1021_acs_orglett_0c02236
crossref_primary_10_1002_anie_202004116
crossref_primary_10_1016_j_molstruc_2022_134336
crossref_primary_10_1016_j_scp_2022_100953
crossref_primary_10_1002_chem_202004132
crossref_primary_10_1039_D1QO00656H
crossref_primary_10_1021_acscatal_1c04800
crossref_primary_10_3390_molecules30010051
crossref_primary_10_1039_D0CS01339K
crossref_primary_10_1039_C7DT02532G
crossref_primary_10_1021_acsomega_9b04450
crossref_primary_10_1002_ange_202110785
crossref_primary_10_1021_jacs_9b00097
crossref_primary_10_1021_jacs_1c03038
crossref_primary_10_1002_asia_202300283
crossref_primary_10_1016_j_jorganchem_2018_01_019
crossref_primary_10_1021_acs_organomet_8b00720
crossref_primary_10_1039_D3QO00861D
crossref_primary_10_1002_ange_201809889
crossref_primary_10_1002_cctc_202300589
crossref_primary_10_1002_chem_201900498
crossref_primary_10_1021_acscatal_3c02852
crossref_primary_10_1021_acs_organomet_3c00162
crossref_primary_10_1021_acs_orglett_9b03170
crossref_primary_10_1021_acscatal_9b02636
crossref_primary_10_1021_acscatal_1c02790
crossref_primary_10_1021_acscatal_2c01974
crossref_primary_10_1002_cjoc_201700664
crossref_primary_10_1002_anie_202402231
crossref_primary_10_1021_acs_joc_0c00640
crossref_primary_10_1002_ange_202402231
crossref_primary_10_1021_acscatal_2c06264
crossref_primary_10_1021_jacs_0c05730
crossref_primary_10_1021_acs_orglett_8b01696
crossref_primary_10_1021_acs_organomet_2c00542
crossref_primary_10_1016_j_jelechem_2024_118739
crossref_primary_10_1021_acs_joc_1c02737
crossref_primary_10_1055_a_1349_3543
crossref_primary_10_1021_acs_joc_3c00370
crossref_primary_10_1002_anie_201809889
Cites_doi 10.1002/jcc.22885
10.1021/ol502583h
10.1039/b508541a
10.1021/cr100259t
10.1002/jcc.23266
10.1021/ar00072a001
10.1002/chem.201502114
10.1021/jo9000383
10.1021/ja810157e
10.1002/chem.201001911
10.1021/ja311940s
10.1039/b810189b
10.1039/C5SC00305A
10.1021/ja511622e
10.1063/1.464913
10.1023/A:1011625728803
10.1007/3418_2012_42
10.1039/C4DT02374A
10.1021/ja200398c
10.1063/1.467146
10.1039/c1sc00230a
10.1021/op300236f
10.1021/jacs.6b10998
10.1021/cr00039a007
10.1021/ct0499783
10.1007/3-540-45313-X
10.1002/anie.201607646
10.1021/acscatal.5b02089
10.1063/1.3382344
10.1002/ejoc.201200914
10.1021/ar800036s
10.1002/cctc.201402326
10.1016/S0009-2614(96)01373-5
10.1103/PhysRevA.38.3098
10.1021/ol503707m
10.1021/jo402259z
10.1021/jacs.6b03253
10.1021/jo970944f
10.1016/j.molstruc.2015.01.046
10.1002/cctc.201301080
10.1021/cr9904009
10.1021/ic50170a033
10.1039/C5CC01378J
10.1039/C4CS00206G
10.1007/3-540-45313-X_2
10.1002/chem.201505106
10.1103/PhysRevB.33.8822
10.1063/1.452288
10.1139/p80-159
10.1002/anie.200801447
10.1021/ol4031815
10.1103/PhysRevB.37.785
10.1016/j.tet.2015.02.088
10.1021/ar100082d
10.1021/j100717a029
10.1021/jo4018809
10.1039/c3cs35521g
10.1021/acscatal.6b02964
10.1038/nature14615
10.1021/acs.orglett.5b03151
10.1021/j100096a001
10.1021/ol400639m
10.1021/ja412770h
10.1021/ja907281f
10.1021/ja4118413
10.1021/acs.joc.5b02557
10.1103/PhysRevLett.91.146401
10.1126/science.1200437
10.1021/ol901978e
10.1063/1.1674902
10.1063/1.456010
10.1016/0301-0104(81)85090-2
10.1021/ja4053416
10.1038/nchem.2388
10.1021/ja9093814
10.1063/1.1724823
10.1002/qua.560100211
10.1021/acs.orglett.5b03455
10.1002/anie.201510497
10.1007/s00214-007-0310-x
10.1002/ajoc.201600411
10.1021/ja5071174
10.1021/jacs.5b07677
10.1063/1.456066
10.1246/cl.150936
10.1246/cl.2011.894
10.1021/ja409803x
10.1063/1.478522
10.1063/1.3359469
10.1002/chem.201002273
10.1021/ja4127455
10.1021/j100377a021
10.1021/acs.accounts.5b00051
10.1002/1521-3773(20021115)41:22<4176::AID-ANIE4176>3.0.CO;2-U
10.1021/jacs.5b03955
10.1021/acs.orglett.5b02200
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.7b04279
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 10358
ExternalDocumentID 28675702
10_1021_jacs_7b04279
h88593328
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-a357t-3e7a74389caf969fb0efc7fa3df441e77a2e84a2d29992f020886c82785bfc1f3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Jul 10 22:00:02 EDT 2025
Fri Jul 11 01:31:36 EDT 2025
Wed Feb 19 02:41:26 EST 2025
Tue Jul 01 03:21:17 EDT 2025
Thu Apr 24 23:03:13 EDT 2025
Thu Aug 27 13:43:08 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-3e7a74389caf969fb0efc7fa3df441e77a2e84a2d29992f020886c82785bfc1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3447-7435
0000-0001-8330-7478
0000-0002-8415-2225
0000-0001-8435-9624
PMID 28675702
PQID 1916378863
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2116860604
proquest_miscellaneous_1916378863
pubmed_primary_28675702
crossref_primary_10_1021_jacs_7b04279
crossref_citationtrail_10_1021_jacs_7b04279
acs_journals_10_1021_jacs_7b04279
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170802
2017-08-02
PublicationDateYYYYMMDD 2017-08-02
PublicationDate_xml – month: 08
  year: 2017
  text: 20170802
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
Glendening E. D. (ref31/cit31a) 2013
ref23/cit23
ref1/cit1c
ref43/cit43a
ref43/cit43c
ref43/cit43b
ref5/cit5b
ref36/cit36d
ref5/cit5c
ref36/cit36e
ref36/cit36f
ref5/cit5a
ref36/cit36g
Plakhotnik V. N. (ref35/cit35a) 1974; 19
ref16/cit16b
ref36/cit36a
ref16/cit16a
ref36/cit36b
ref36/cit36c
ref3/cit3b
ref22/cit22a
ref3/cit3c
ref3/cit3a
ref3/cit3f
ref3/cit3g
ref22/cit22d
Miyaura N. (ref1/cit1a) 2002
ref3/cit3d
ref22/cit22c
ref3/cit3e
ref22/cit22b
ref5/cit5l
ref5/cit5j
ref19/cit19a
ref5/cit5k
ref5/cit5h
ref5/cit5i
ref5/cit5f
ref36/cit36h
ref5/cit5g
ref36/cit36i
ref5/cit5d
ref36/cit36j
ref5/cit5e
ref36/cit36k
ref6/cit6
ref19/cit19b
ref29/cit29
ref10/cit10a
ref10/cit10b
ref10/cit10c
ref21/cit21b
ref31/cit31b
ref21/cit21a
ref28/cit28
ref18/cit18b
ref4/cit4a
(ref12/cit12) 2013
ref4/cit4b
ref18/cit18a
ref38/cit38b
ref38/cit38a
ref20/cit20a
ref40/cit40b
ref20/cit20b
ref44/cit44
ref40/cit40a
ref27/cit27
ref33/cit33a
ref2/cit2g
ref2/cit2f
ref2/cit2e
ref2/cit2d
ref13/cit13a
ref13/cit13b
ref2/cit2h
ref2/cit2c
ref8/cit8
ref2/cit2b
ref2/cit2a
ref33/cit33b
ref34/cit34
ref37/cit37
ref17/cit17
ref26/cit26b
ref26/cit26c
ref11/cit11c
ref46/cit46
ref26/cit26a
ref11/cit11a
Suzuki A. (ref11/cit11b) 2003; 3
ref24/cit24
ref15/cit15a
ref35/cit35b
ref9/cit9b
ref9/cit9a
ref15/cit15b
ref25/cit25
ref14/cit14
Bader R. W. (ref32/cit32) 1994
ref30/cit30
Diederich F. (ref1/cit1b) 2004
ref7/cit7
References_xml – ident: ref33/cit33b
  doi: 10.1002/jcc.22885
– ident: ref10/cit10c
  doi: 10.1021/ol502583h
– volume: 3
  volume-title: Organic Synthesis via Boranes
  year: 2003
  ident: ref11/cit11b
– ident: ref15/cit15b
  doi: 10.1039/b508541a
– ident: ref2/cit2c
  doi: 10.1021/cr100259t
– ident: ref31/cit31b
  doi: 10.1002/jcc.23266
– ident: ref18/cit18b
  doi: 10.1021/ar00072a001
– ident: ref6/cit6
  doi: 10.1002/chem.201502114
– ident: ref34/cit34
  doi: 10.1021/jo9000383
– ident: ref3/cit3a
  doi: 10.1021/ja810157e
– ident: ref43/cit43a
  doi: 10.1002/chem.201001911
– ident: ref7/cit7
  doi: 10.1021/ja311940s
– ident: ref25/cit25
  doi: 10.1039/b810189b
– ident: ref5/cit5c
  doi: 10.1039/C5SC00305A
– ident: ref27/cit27
– ident: ref36/cit36g
  doi: 10.1021/ja511622e
– ident: ref22/cit22b
  doi: 10.1063/1.464913
– ident: ref33/cit33a
– ident: ref44/cit44
  doi: 10.1023/A:1011625728803
– ident: ref2/cit2e
  doi: 10.1007/3418_2012_42
– ident: ref9/cit9a
  doi: 10.1039/C4DT02374A
– volume-title: Atoms in Molecules: A Quantum Theory
  year: 1994
  ident: ref32/cit32
– ident: ref3/cit3b
  doi: 10.1021/ja200398c
– ident: ref15/cit15a
  doi: 10.1063/1.467146
– ident: ref3/cit3c
  doi: 10.1039/c1sc00230a
– ident: ref2/cit2d
  doi: 10.1021/op300236f
– ident: ref5/cit5k
  doi: 10.1021/jacs.6b10998
– ident: ref11/cit11c
  doi: 10.1021/cr00039a007
– ident: ref20/cit20b
  doi: 10.1021/ct0499783
– volume-title: Cross-Coupling Reactions: A Practical Guide
  year: 2002
  ident: ref1/cit1a
  doi: 10.1007/3-540-45313-X
– ident: ref5/cit5i
  doi: 10.1002/anie.201607646
– volume-title: Metal-Catalyzed Cross-Coupling Reactions
  year: 2004
  ident: ref1/cit1b
– ident: ref9/cit9b
  doi: 10.1021/acscatal.5b02089
– ident: ref14/cit14
  doi: 10.1063/1.3382344
– ident: ref2/cit2f
  doi: 10.1002/ejoc.201200914
– ident: ref38/cit38b
  doi: 10.1021/ar800036s
– ident: ref43/cit43c
  doi: 10.1002/cctc.201402326
– ident: ref21/cit21b
  doi: 10.1016/S0009-2614(96)01373-5
– ident: ref13/cit13a
  doi: 10.1103/PhysRevA.38.3098
– ident: ref5/cit5b
  doi: 10.1021/ol503707m
– ident: ref37/cit37
  doi: 10.1021/jo402259z
– ident: ref5/cit5h
  doi: 10.1021/jacs.6b03253
– ident: ref28/cit28
  doi: 10.1021/jo970944f
– volume-title: Gaussian 09
  year: 2013
  ident: ref12/cit12
– ident: ref45/cit45
  doi: 10.1016/j.molstruc.2015.01.046
– ident: ref43/cit43b
  doi: 10.1002/cctc.201301080
– ident: ref26/cit26b
  doi: 10.1021/cr9904009
– ident: ref30/cit30
  doi: 10.1021/ic50170a033
– ident: ref36/cit36a
  doi: 10.1039/C5CC01378J
– ident: ref4/cit4a
  doi: 10.1039/C4CS00206G
– ident: ref11/cit11a
  doi: 10.1007/3-540-45313-X_2
– ident: ref5/cit5g
  doi: 10.1002/chem.201505106
– ident: ref13/cit13b
  doi: 10.1103/PhysRevB.33.8822
– ident: ref16/cit16a
  doi: 10.1063/1.452288
– ident: ref22/cit22d
  doi: 10.1139/p80-159
– ident: ref10/cit10a
  doi: 10.1002/anie.200801447
– volume: 19
  start-page: 686
  year: 1974
  ident: ref35/cit35a
  publication-title: Russ. J. Inorg. Chem.
– ident: ref36/cit36h
  doi: 10.1021/ol4031815
– ident: ref22/cit22c
  doi: 10.1103/PhysRevB.37.785
– ident: ref36/cit36c
  doi: 10.1016/j.tet.2015.02.088
– ident: ref2/cit2a
  doi: 10.1021/ar100082d
– ident: ref18/cit18a
  doi: 10.1021/j100717a029
– ident: ref29/cit29
  doi: 10.1021/jo4018809
– ident: ref2/cit2g
  doi: 10.1039/c3cs35521g
– ident: ref2/cit2h
  doi: 10.1021/acscatal.6b02964
– ident: ref36/cit36e
  doi: 10.1038/nature14615
– ident: ref5/cit5f
  doi: 10.1021/acs.orglett.5b03151
– ident: ref22/cit22a
  doi: 10.1021/j100096a001
– ident: ref36/cit36i
  doi: 10.1021/ol400639m
– ident: ref40/cit40a
  doi: 10.1021/ja412770h
– ident: ref36/cit36j
  doi: 10.1021/ja907281f
– ident: ref3/cit3d
  doi: 10.1021/ja4118413
– ident: ref36/cit36d
  doi: 10.1021/acs.joc.5b02557
– ident: ref24/cit24
  doi: 10.1103/PhysRevLett.91.146401
– ident: ref8/cit8
  doi: 10.1126/science.1200437
– ident: ref10/cit10b
  doi: 10.1021/ol901978e
– ident: ref17/cit17
  doi: 10.1063/1.1674902
– ident: ref19/cit19a
  doi: 10.1063/1.456010
– ident: ref26/cit26a
  doi: 10.1016/0301-0104(81)85090-2
– ident: ref40/cit40b
  doi: 10.1021/ja4053416
– ident: ref36/cit36f
  doi: 10.1038/nchem.2388
– ident: ref35/cit35b
  doi: 10.1021/ja9093814
– ident: ref20/cit20a
  doi: 10.1063/1.1724823
– ident: ref46/cit46
  doi: 10.1002/qua.560100211
– ident: ref36/cit36k
  doi: 10.1021/acs.orglett.5b03455
– ident: ref5/cit5l
  doi: 10.1002/anie.201510497
– ident: ref23/cit23
  doi: 10.1007/s00214-007-0310-x
– ident: ref5/cit5j
  doi: 10.1002/ajoc.201600411
– ident: ref3/cit3f
  doi: 10.1021/ja5071174
– volume-title: Theoretical Chemistry Institute
  year: 2013
  ident: ref31/cit31a
– ident: ref36/cit36b
  doi: 10.1021/jacs.5b07677
– ident: ref16/cit16b
  doi: 10.1063/1.456066
– ident: ref5/cit5e
  doi: 10.1246/cl.150936
– ident: ref1/cit1c
  doi: 10.1246/cl.2011.894
– ident: ref3/cit3g
  doi: 10.1021/ja409803x
– ident: ref21/cit21a
  doi: 10.1063/1.478522
– ident: ref26/cit26c
  doi: 10.1063/1.3359469
– ident: ref2/cit2b
  doi: 10.1002/chem.201002273
– ident: ref3/cit3e
  doi: 10.1021/ja4127455
– ident: ref19/cit19b
  doi: 10.1021/j100377a021
– ident: ref4/cit4b
  doi: 10.1021/acs.accounts.5b00051
– ident: ref38/cit38a
  doi: 10.1002/1521-3773(20021115)41:22<4176::AID-ANIE4176>3.0.CO;2-U
– ident: ref5/cit5a
  doi: 10.1021/jacs.5b03955
– ident: ref5/cit5d
  doi: 10.1021/acs.orglett.5b02200
SSID ssj0004281
Score 2.5210514
Snippet Nickel­(0)-catalyzed cross-coupling of methoxyarenes through C–O bond activation has been the subject of considerable research because of their favorable...
Nickel(0)-catalyzed cross-coupling of methoxyarenes through C-O bond activation has been the subject of considerable research because of their favorable...
Nickel(0)-catalyzed cross-coupling of methoxyarenes through C–O bond activation has been the subject of considerable research because of their favorable...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10347
SubjectTerms activation energy
chemical bonding
cleavage (chemistry)
cross-coupling reactions
density functional theory
esters
ligands
nickel
organic halogen compounds
Title Combined Theoretical and Experimental Studies of Nickel-Catalyzed Cross-Coupling of Methoxyarenes with Arylboronic Esters via C–O Bond Cleavage
URI http://dx.doi.org/10.1021/jacs.7b04279
https://www.ncbi.nlm.nih.gov/pubmed/28675702
https://www.proquest.com/docview/1916378863
https://www.proquest.com/docview/2116860604
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8omI8EJpWrtxHaOKCogJOAASNwq27ERapUg2iLKiV9A_CFfwkybUBZVcI3Gih0v8yaeeY-QPcm15WGkAu5UHUm1ZQAoIQ4iETqTypTXHQaKZ-fi5Do8vYluRgmyP2_wGfID2U5VGtSEiCfJNBNKYpB1mFyO6h-ZqpcwVyrBiwT3n63RAdnOdwc0BlUOvMvRPDkua3SGSSWtaq9rqvb5N2XjHx1fIHMFwKSHwxWxSCZctkRmklLXbZm8whEA4bBL6dWoiJHqLKWNL2z_tEgwpLmnsFparh0k-Ken_wwNExxZkOQ9LOe9RZMzFKJ-6mNlGbTBn7vQg37b5APqXdpAOoYOfbzTNHl_ebugqGZMk7bTj3CerZDro8ZVchIUwgyB5pHswrxKLVE23Wofi9ibmvNWes1TD-jKSamZU6FmKfi6mHnUAVXCKiZVZLyte75KprI8c-uE1lxYcwYcZGpCVP2IET-5WBjwmz4UokJ24TM2i43VaQ7uzBnELPi0-LgVclDOaNMWzOYosNEeY73_aX0_ZPQYY7dbLo4mzBDeo-jM5T3oA0BqpOEXfLwNxNVCCWQmqpC14cr6fBtTEKXJGtv4x9g2ySxDIIFJKmyLTHUfem4bYFDX7Az2wAcRNwK7
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH7a2IFdBhs_VsY2I40TCmrtxHaOKCrqNtodViRukZ3YCFElaGnRyol_Ae0_3F-y99K0HUiVuFrPyUts530v9vs-gC9KmEyEkQ6E0x0i1VYBooQ4iGTobK5y0XGUKPYHsncefruILppidaqFQScqvFJVb-Iv2QWIJggblSVpiPglvEIcwinXOkl-Lssgue7M0a7SUjTn3J_2pjiUVY_j0ApwWQeZ0w0YLNyrz5ZcH0_G9ji7e8Lc-Gz_N-FNAzfZyWx-vIUXrngH68lc5W0LHvCDgMmxy9lwWdLITJGz7n_c_6w5bshKz3DuXLtRkNB_n-kddkzoAYOknFBx7yWZ9EmW-veU6sywD_3qRQ-mI1vWRLysS-QMFbu9Miz5e__nByNtY5aMnLnFr9s2nJ92h0kvaGQaAiMiNcZRVkaRiHpmfCxjb9vOZ8obkXvEWk4pw50ODc8x8sXckyqolpnmSkfWZx0vdmCtKAv3HljbhW1nMVzmNiQNkJjQlIulxSjqQylbcICvMW2WWZXWO-gcMxhqbV5uC47mA5tmDc85yW2MVlgfLqxvZvweK-wO5nMkxRGiXRVTuHKCPiDAJlJ-KVbbYJYttSSeohbszibY4m5cY86m2nzvGc_2GdZ7w_5ZevZ18P0DvOYEMej4Ct-HtfGvifuIAGlsP9XL4h9K4gsc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VVgIuUL7KlhZcCU4o1cZObOdYhV21QAuCVuotshMbVV0lFdmtuj3xF1D_YX8JM9lkWyqtBNdknNixnXlje94DeKuEyUUU60A4HRKptgoQJSRBLCNnC1WI0FGguH8gd4-ij8fx8RKEXS4MVqLGJ9XNJj7N6rPCtwwDRBWEN5QleYjkHqzQjh3FWzvp95tUSK7DDvEqLUV71v1uafJFef23L1oAMBtHM3wM3-ZVbM6XnG5PxnY7v7zD3vhfbViFRy3sZDuzcfIEllz5FB6kndrbM_iNPwYMkl3BDm9SG5kpCza4pQHA2mOHrPIMx9CpGwUprf9ML7FgSo0M0mpCSb4_yGSf5KkvppRvhmVoyRdrMB3ZqiHkZQMiaajZ-Ylh6fWvqy-MNI5ZOnLmHP9yz-FoODhMd4NWriEwIlZj7G1lFImp58YnMvG273yuvBGFR8zllDLc6cjwAj1gwj2pg2qZa650bH0eevEClsuqdC-B9V3UdxbdZmEj0gJJCFW5RFr0pj6Ssgdb-BmzdrrVWbOTzjGSoavtx-3B-65zs7zlOyfZjdEC63dz67MZz8cCu61unGTYQ7S7YkpXTbAOCLSJnF-KxTYYbUstia-oB2uzQTZ_G9cYu6k-X_-Htr2B-18_DLPPewefXsFDTkiDTrHwDVge_5y4TcRJY_u6mRl_AOPxDZ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Theoretical+and+Experimental+Studies+of+Nickel-Catalyzed+Cross-Coupling+of+Methoxyarenes+with+Arylboronic+Esters+via+C-O+Bond+Cleavage&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Schwarzer%2C+Martin+C&rft.au=Konno%2C+Ryosuke&rft.au=Hojo%2C+Takayuki&rft.au=Ohtsuki%2C+Akimichi&rft.date=2017-08-02&rft.eissn=1520-5126&rft.volume=139&rft.issue=30&rft.spage=10347&rft_id=info:doi/10.1021%2Fjacs.7b04279&rft_id=info%3Apmid%2F28675702&rft.externalDocID=28675702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon