Combined Theoretical and Experimental Studies of Nickel-Catalyzed Cross-Coupling of Methoxyarenes with Arylboronic Esters via C–O Bond Cleavage
Nickel(0)-catalyzed cross-coupling of methoxyarenes through C–O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy3-cat...
Saved in:
Published in | Journal of the American Chemical Society Vol. 139; no. 30; pp. 10347 - 10358 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
02.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nickel(0)-catalyzed cross-coupling of methoxyarenes through C–O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy3-catalyzed cross-coupling of methoxyarenes with arylboronic esters in which the addition of a stoichiometric base such as CsF is essential for the reaction to proceed. Recently, we have also found that the scope of the substrate in the Suzuki–Miyaura-type cross-coupling of methoxyarenes can be greatly expanded by using 1,3-dicyclohexylimidazol-2-ylidene (ICy) as the ligand. Interestingly, a stoichiometric amount of external base is not required for the nickel/ICy-catalyzed cross-coupling. For the mechanism and origin of the effect of the external base to be elucidated, density functional theory calculations are conducted. In the nickel/PCy3-catalyzed reactions, the activation energy for the oxidative addition of the C(aryl)–OMe bond is too high to occur under the catalytic conditions. However, the oxidative addition process becomes energetically feasible when CsF and an arylboronic ester interact with a Ni(PCy3)2/methoxyarene fragment to form a quaternary complex. In the nickel/ICy-catalyzed reactions, the oxidative addition of the C(aryl)–OMe bond can proceed more easily without the aid of CsF because the nickel-ligand bonds are stronger and therefore stabilize the transition state. The subsequent transmetalation from an Ar–Ni–OMe intermediate is determined to proceed through a pathway with lower energies than those required for β-hydrogen elimination. The overall driving force of the reaction is the reductive elimination to form the carbon–carbon bond. |
---|---|
AbstractList | Nickel(0)-catalyzed cross-coupling of methoxyarenes through C–O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy₃-catalyzed cross-coupling of methoxyarenes with arylboronic esters in which the addition of a stoichiometric base such as CsF is essential for the reaction to proceed. Recently, we have also found that the scope of the substrate in the Suzuki–Miyaura-type cross-coupling of methoxyarenes can be greatly expanded by using 1,3-dicyclohexylimidazol-2-ylidene (ICy) as the ligand. Interestingly, a stoichiometric amount of external base is not required for the nickel/ICy-catalyzed cross-coupling. For the mechanism and origin of the effect of the external base to be elucidated, density functional theory calculations are conducted. In the nickel/PCy₃-catalyzed reactions, the activation energy for the oxidative addition of the C(aryl)–OMe bond is too high to occur under the catalytic conditions. However, the oxidative addition process becomes energetically feasible when CsF and an arylboronic ester interact with a Ni(PCy₃)₂/methoxyarene fragment to form a quaternary complex. In the nickel/ICy-catalyzed reactions, the oxidative addition of the C(aryl)–OMe bond can proceed more easily without the aid of CsF because the nickel-ligand bonds are stronger and therefore stabilize the transition state. The subsequent transmetalation from an Ar–Ni–OMe intermediate is determined to proceed through a pathway with lower energies than those required for β-hydrogen elimination. The overall driving force of the reaction is the reductive elimination to form the carbon–carbon bond. Nickel(0)-catalyzed cross-coupling of methoxyarenes through C-O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy -catalyzed cross-coupling of methoxyarenes with arylboronic esters in which the addition of a stoichiometric base such as CsF is essential for the reaction to proceed. Recently, we have also found that the scope of the substrate in the Suzuki-Miyaura-type cross-coupling of methoxyarenes can be greatly expanded by using 1,3-dicyclohexylimidazol-2-ylidene (ICy) as the ligand. Interestingly, a stoichiometric amount of external base is not required for the nickel/ICy-catalyzed cross-coupling. For the mechanism and origin of the effect of the external base to be elucidated, density functional theory calculations are conducted. In the nickel/PCy -catalyzed reactions, the activation energy for the oxidative addition of the C(aryl)-OMe bond is too high to occur under the catalytic conditions. However, the oxidative addition process becomes energetically feasible when CsF and an arylboronic ester interact with a Ni(PCy ) /methoxyarene fragment to form a quaternary complex. In the nickel/ICy-catalyzed reactions, the oxidative addition of the C(aryl)-OMe bond can proceed more easily without the aid of CsF because the nickel-ligand bonds are stronger and therefore stabilize the transition state. The subsequent transmetalation from an Ar-Ni-OMe intermediate is determined to proceed through a pathway with lower energies than those required for β-hydrogen elimination. The overall driving force of the reaction is the reductive elimination to form the carbon-carbon bond. Nickel(0)-catalyzed cross-coupling of methoxyarenes through C–O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy3-catalyzed cross-coupling of methoxyarenes with arylboronic esters in which the addition of a stoichiometric base such as CsF is essential for the reaction to proceed. Recently, we have also found that the scope of the substrate in the Suzuki–Miyaura-type cross-coupling of methoxyarenes can be greatly expanded by using 1,3-dicyclohexylimidazol-2-ylidene (ICy) as the ligand. Interestingly, a stoichiometric amount of external base is not required for the nickel/ICy-catalyzed cross-coupling. For the mechanism and origin of the effect of the external base to be elucidated, density functional theory calculations are conducted. In the nickel/PCy3-catalyzed reactions, the activation energy for the oxidative addition of the C(aryl)–OMe bond is too high to occur under the catalytic conditions. However, the oxidative addition process becomes energetically feasible when CsF and an arylboronic ester interact with a Ni(PCy3)2/methoxyarene fragment to form a quaternary complex. In the nickel/ICy-catalyzed reactions, the oxidative addition of the C(aryl)–OMe bond can proceed more easily without the aid of CsF because the nickel-ligand bonds are stronger and therefore stabilize the transition state. The subsequent transmetalation from an Ar–Ni–OMe intermediate is determined to proceed through a pathway with lower energies than those required for β-hydrogen elimination. The overall driving force of the reaction is the reductive elimination to form the carbon–carbon bond. Nickel(0)-catalyzed cross-coupling of methoxyarenes through C-O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy3-catalyzed cross-coupling of methoxyarenes with arylboronic esters in which the addition of a stoichiometric base such as CsF is essential for the reaction to proceed. Recently, we have also found that the scope of the substrate in the Suzuki-Miyaura-type cross-coupling of methoxyarenes can be greatly expanded by using 1,3-dicyclohexylimidazol-2-ylidene (ICy) as the ligand. Interestingly, a stoichiometric amount of external base is not required for the nickel/ICy-catalyzed cross-coupling. For the mechanism and origin of the effect of the external base to be elucidated, density functional theory calculations are conducted. In the nickel/PCy3-catalyzed reactions, the activation energy for the oxidative addition of the C(aryl)-OMe bond is too high to occur under the catalytic conditions. However, the oxidative addition process becomes energetically feasible when CsF and an arylboronic ester interact with a Ni(PCy3)2/methoxyarene fragment to form a quaternary complex. In the nickel/ICy-catalyzed reactions, the oxidative addition of the C(aryl)-OMe bond can proceed more easily without the aid of CsF because the nickel-ligand bonds are stronger and therefore stabilize the transition state. The subsequent transmetalation from an Ar-Ni-OMe intermediate is determined to proceed through a pathway with lower energies than those required for β-hydrogen elimination. The overall driving force of the reaction is the reductive elimination to form the carbon-carbon bond.Nickel(0)-catalyzed cross-coupling of methoxyarenes through C-O bond activation has been the subject of considerable research because of their favorable features compared with those of the cross-coupling of aryl halides, such as atom economy and efficiency. In 2008, we have reported nickel/PCy3-catalyzed cross-coupling of methoxyarenes with arylboronic esters in which the addition of a stoichiometric base such as CsF is essential for the reaction to proceed. Recently, we have also found that the scope of the substrate in the Suzuki-Miyaura-type cross-coupling of methoxyarenes can be greatly expanded by using 1,3-dicyclohexylimidazol-2-ylidene (ICy) as the ligand. Interestingly, a stoichiometric amount of external base is not required for the nickel/ICy-catalyzed cross-coupling. For the mechanism and origin of the effect of the external base to be elucidated, density functional theory calculations are conducted. In the nickel/PCy3-catalyzed reactions, the activation energy for the oxidative addition of the C(aryl)-OMe bond is too high to occur under the catalytic conditions. However, the oxidative addition process becomes energetically feasible when CsF and an arylboronic ester interact with a Ni(PCy3)2/methoxyarene fragment to form a quaternary complex. In the nickel/ICy-catalyzed reactions, the oxidative addition of the C(aryl)-OMe bond can proceed more easily without the aid of CsF because the nickel-ligand bonds are stronger and therefore stabilize the transition state. The subsequent transmetalation from an Ar-Ni-OMe intermediate is determined to proceed through a pathway with lower energies than those required for β-hydrogen elimination. The overall driving force of the reaction is the reductive elimination to form the carbon-carbon bond. |
Author | Shimasaki, Toshiaki Tobisu, Mamoru Yasutome, Ayaka Konno, Ryosuke Ohtsuki, Akimichi Schwarzer, Martin C Hojo, Takayuki Nakamura, Keisuke Chatani, Naoto Mori, Seiji Takahashi, Hiroaki |
AuthorAffiliation | Center for Atomic and Molecular Technologies, Graduate School of Engineering Osaka University Faculty of Science Institute of Quantum Beam Science, Graduate School of Science and Engineering Department of Applied Chemistry, Faculty of Engineering Ibaraki University |
AuthorAffiliation_xml | – name: Center for Atomic and Molecular Technologies, Graduate School of Engineering – name: Osaka University – name: Ibaraki University – name: Institute of Quantum Beam Science, Graduate School of Science and Engineering – name: Faculty of Science – name: Department of Applied Chemistry, Faculty of Engineering |
Author_xml | – sequence: 1 givenname: Martin C orcidid: 0000-0001-8435-9624 surname: Schwarzer fullname: Schwarzer, Martin C – sequence: 2 givenname: Ryosuke surname: Konno fullname: Konno, Ryosuke – sequence: 3 givenname: Takayuki surname: Hojo fullname: Hojo, Takayuki – sequence: 4 givenname: Akimichi surname: Ohtsuki fullname: Ohtsuki, Akimichi – sequence: 5 givenname: Keisuke surname: Nakamura fullname: Nakamura, Keisuke – sequence: 6 givenname: Ayaka surname: Yasutome fullname: Yasutome, Ayaka – sequence: 7 givenname: Hiroaki surname: Takahashi fullname: Takahashi, Hiroaki – sequence: 8 givenname: Toshiaki orcidid: 0000-0002-3447-7435 surname: Shimasaki fullname: Shimasaki, Toshiaki – sequence: 9 givenname: Mamoru orcidid: 0000-0002-8415-2225 surname: Tobisu fullname: Tobisu, Mamoru email: tobisu@chem.eng.osaka-u.ac.jp – sequence: 10 givenname: Naoto orcidid: 0000-0001-8330-7478 surname: Chatani fullname: Chatani, Naoto email: chatani@chem.eng.osaka-u.ac.jp – sequence: 11 givenname: Seiji surname: Mori fullname: Mori, Seiji email: seiji.mori.compchem@vc.ibaraki.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28675702$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFHWvkJQtSbCcTO8sSDT9SoQvKOrpxrjseMvZgO6XDildAvCFPgqMOLBCI1ZWPvnOvdc4JOXLeISGPOTvjTPDnG9DxTPasErK5RxZ8KVix5KI-IgvGmCikqstjchLjJj8rofgDcixULZeSiQX51vptbx0O9GqNPmCyGkYKbqCr2x0Gu0WXsvA-TYPFSL2h76z-iGPRQtb3X7KxDT7GovXTbrTuekbeYlr72z0EdNnz2aY1PQ_7sffBO6vpKiYMkd5YoO2Pr98v6Quf77Ujwg1c40Ny38AY8dFhnpIPL1dX7evi4vLVm_b8ooByKVNRogRZlarRYJq6MT1Do6WBcjBVxVFKEKgqEINomkYYJphStVZCqmVvNDflKXl6t3cX_KcJY-q2NmocR3Dop9gJzmtVs5pV_0V5w-tS5v1lRp8c0Knf4tDtcoQQ9t2vxDPw7A7Qc2wBzW-Es24utJsL7Q6FZlz8gWubIFnvUgA7_st0-O8sbvwUXA7y7-hPYgSz3g |
CitedBy_id | crossref_primary_10_1039_C8DT03188F crossref_primary_10_3390_molecules24071234 crossref_primary_10_1007_s11244_021_01527_9 crossref_primary_10_1021_acs_joc_9b02154 crossref_primary_10_1002_ange_202401756 crossref_primary_10_1021_acs_orglett_2c00732 crossref_primary_10_1002_anie_202110785 crossref_primary_10_1021_acscatal_2c06054 crossref_primary_10_1021_jacs_3c11851 crossref_primary_10_1093_bulcsj_uoad015 crossref_primary_10_4019_bjscc_77_11 crossref_primary_10_1002_chem_202300977 crossref_primary_10_1021_acscatal_8b01224 crossref_primary_10_1021_acs_jpca_1c05412 crossref_primary_10_1021_acs_orglett_0c03507 crossref_primary_10_1246_bcsj_20200277 crossref_primary_10_1002_asia_202000763 crossref_primary_10_1021_acs_organomet_1c00664 crossref_primary_10_1021_acs_orglett_8b00674 crossref_primary_10_1021_jacs_0c00283 crossref_primary_10_1039_D3QO00023K crossref_primary_10_1055_a_1806_4513 crossref_primary_10_1002_ange_202004116 crossref_primary_10_1007_s41061_024_00484_7 crossref_primary_10_1038_s41467_022_30693_x crossref_primary_10_1021_acs_joc_8b02104 crossref_primary_10_1002_ajoc_202300094 crossref_primary_10_1021_acs_orglett_3c00979 crossref_primary_10_1021_acs_accounts_1c00050 crossref_primary_10_1039_D4CC02667E crossref_primary_10_1002_ajoc_201700645 crossref_primary_10_1016_j_tet_2018_10_025 crossref_primary_10_1039_D1CC05408B crossref_primary_10_1016_j_trechm_2019_08_004 crossref_primary_10_1021_acscatal_8b03436 crossref_primary_10_1021_acs_chemrev_0c00088 crossref_primary_10_1039_D3QO00042G crossref_primary_10_1021_jacs_4c13003 crossref_primary_10_1021_acscatal_4c02092 crossref_primary_10_1002_anie_202401756 crossref_primary_10_1038_s41467_018_03928_z crossref_primary_10_1070_RCR4977 crossref_primary_10_1039_C7CC08416A crossref_primary_10_1021_acs_organomet_8b00046 crossref_primary_10_1021_jacs_8b02134 crossref_primary_10_4274_haseki_galenos_2022_8233 crossref_primary_10_1021_acs_orglett_0c02236 crossref_primary_10_1002_anie_202004116 crossref_primary_10_1016_j_molstruc_2022_134336 crossref_primary_10_1016_j_scp_2022_100953 crossref_primary_10_1002_chem_202004132 crossref_primary_10_1039_D1QO00656H crossref_primary_10_1021_acscatal_1c04800 crossref_primary_10_3390_molecules30010051 crossref_primary_10_1039_D0CS01339K crossref_primary_10_1039_C7DT02532G crossref_primary_10_1021_acsomega_9b04450 crossref_primary_10_1002_ange_202110785 crossref_primary_10_1021_jacs_9b00097 crossref_primary_10_1021_jacs_1c03038 crossref_primary_10_1002_asia_202300283 crossref_primary_10_1016_j_jorganchem_2018_01_019 crossref_primary_10_1021_acs_organomet_8b00720 crossref_primary_10_1039_D3QO00861D crossref_primary_10_1002_ange_201809889 crossref_primary_10_1002_cctc_202300589 crossref_primary_10_1002_chem_201900498 crossref_primary_10_1021_acscatal_3c02852 crossref_primary_10_1021_acs_organomet_3c00162 crossref_primary_10_1021_acs_orglett_9b03170 crossref_primary_10_1021_acscatal_9b02636 crossref_primary_10_1021_acscatal_1c02790 crossref_primary_10_1021_acscatal_2c01974 crossref_primary_10_1002_cjoc_201700664 crossref_primary_10_1002_anie_202402231 crossref_primary_10_1021_acs_joc_0c00640 crossref_primary_10_1002_ange_202402231 crossref_primary_10_1021_acscatal_2c06264 crossref_primary_10_1021_jacs_0c05730 crossref_primary_10_1021_acs_orglett_8b01696 crossref_primary_10_1021_acs_organomet_2c00542 crossref_primary_10_1016_j_jelechem_2024_118739 crossref_primary_10_1021_acs_joc_1c02737 crossref_primary_10_1055_a_1349_3543 crossref_primary_10_1021_acs_joc_3c00370 crossref_primary_10_1002_anie_201809889 |
Cites_doi | 10.1002/jcc.22885 10.1021/ol502583h 10.1039/b508541a 10.1021/cr100259t 10.1002/jcc.23266 10.1021/ar00072a001 10.1002/chem.201502114 10.1021/jo9000383 10.1021/ja810157e 10.1002/chem.201001911 10.1021/ja311940s 10.1039/b810189b 10.1039/C5SC00305A 10.1021/ja511622e 10.1063/1.464913 10.1023/A:1011625728803 10.1007/3418_2012_42 10.1039/C4DT02374A 10.1021/ja200398c 10.1063/1.467146 10.1039/c1sc00230a 10.1021/op300236f 10.1021/jacs.6b10998 10.1021/cr00039a007 10.1021/ct0499783 10.1007/3-540-45313-X 10.1002/anie.201607646 10.1021/acscatal.5b02089 10.1063/1.3382344 10.1002/ejoc.201200914 10.1021/ar800036s 10.1002/cctc.201402326 10.1016/S0009-2614(96)01373-5 10.1103/PhysRevA.38.3098 10.1021/ol503707m 10.1021/jo402259z 10.1021/jacs.6b03253 10.1021/jo970944f 10.1016/j.molstruc.2015.01.046 10.1002/cctc.201301080 10.1021/cr9904009 10.1021/ic50170a033 10.1039/C5CC01378J 10.1039/C4CS00206G 10.1007/3-540-45313-X_2 10.1002/chem.201505106 10.1103/PhysRevB.33.8822 10.1063/1.452288 10.1139/p80-159 10.1002/anie.200801447 10.1021/ol4031815 10.1103/PhysRevB.37.785 10.1016/j.tet.2015.02.088 10.1021/ar100082d 10.1021/j100717a029 10.1021/jo4018809 10.1039/c3cs35521g 10.1021/acscatal.6b02964 10.1038/nature14615 10.1021/acs.orglett.5b03151 10.1021/j100096a001 10.1021/ol400639m 10.1021/ja412770h 10.1021/ja907281f 10.1021/ja4118413 10.1021/acs.joc.5b02557 10.1103/PhysRevLett.91.146401 10.1126/science.1200437 10.1021/ol901978e 10.1063/1.1674902 10.1063/1.456010 10.1016/0301-0104(81)85090-2 10.1021/ja4053416 10.1038/nchem.2388 10.1021/ja9093814 10.1063/1.1724823 10.1002/qua.560100211 10.1021/acs.orglett.5b03455 10.1002/anie.201510497 10.1007/s00214-007-0310-x 10.1002/ajoc.201600411 10.1021/ja5071174 10.1021/jacs.5b07677 10.1063/1.456066 10.1246/cl.150936 10.1246/cl.2011.894 10.1021/ja409803x 10.1063/1.478522 10.1063/1.3359469 10.1002/chem.201002273 10.1021/ja4127455 10.1021/j100377a021 10.1021/acs.accounts.5b00051 10.1002/1521-3773(20021115)41:22<4176::AID-ANIE4176>3.0.CO;2-U 10.1021/jacs.5b03955 10.1021/acs.orglett.5b02200 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.7b04279 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 10358 |
ExternalDocumentID | 28675702 10_1021_jacs_7b04279 h88593328 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a357t-3e7a74389caf969fb0efc7fa3df441e77a2e84a2d29992f020886c82785bfc1f3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Jul 10 22:00:02 EDT 2025 Fri Jul 11 01:31:36 EDT 2025 Wed Feb 19 02:41:26 EST 2025 Tue Jul 01 03:21:17 EDT 2025 Thu Apr 24 23:03:13 EDT 2025 Thu Aug 27 13:43:08 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a357t-3e7a74389caf969fb0efc7fa3df441e77a2e84a2d29992f020886c82785bfc1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3447-7435 0000-0001-8330-7478 0000-0002-8415-2225 0000-0001-8435-9624 |
PMID | 28675702 |
PQID | 1916378863 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2116860604 proquest_miscellaneous_1916378863 pubmed_primary_28675702 crossref_primary_10_1021_jacs_7b04279 crossref_citationtrail_10_1021_jacs_7b04279 acs_journals_10_1021_jacs_7b04279 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170802 2017-08-02 |
PublicationDateYYYYMMDD | 2017-08-02 |
PublicationDate_xml | – month: 08 year: 2017 text: 20170802 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 Glendening E. D. (ref31/cit31a) 2013 ref23/cit23 ref1/cit1c ref43/cit43a ref43/cit43c ref43/cit43b ref5/cit5b ref36/cit36d ref5/cit5c ref36/cit36e ref36/cit36f ref5/cit5a ref36/cit36g Plakhotnik V. N. (ref35/cit35a) 1974; 19 ref16/cit16b ref36/cit36a ref16/cit16a ref36/cit36b ref36/cit36c ref3/cit3b ref22/cit22a ref3/cit3c ref3/cit3a ref3/cit3f ref3/cit3g ref22/cit22d Miyaura N. (ref1/cit1a) 2002 ref3/cit3d ref22/cit22c ref3/cit3e ref22/cit22b ref5/cit5l ref5/cit5j ref19/cit19a ref5/cit5k ref5/cit5h ref5/cit5i ref5/cit5f ref36/cit36h ref5/cit5g ref36/cit36i ref5/cit5d ref36/cit36j ref5/cit5e ref36/cit36k ref6/cit6 ref19/cit19b ref29/cit29 ref10/cit10a ref10/cit10b ref10/cit10c ref21/cit21b ref31/cit31b ref21/cit21a ref28/cit28 ref18/cit18b ref4/cit4a (ref12/cit12) 2013 ref4/cit4b ref18/cit18a ref38/cit38b ref38/cit38a ref20/cit20a ref40/cit40b ref20/cit20b ref44/cit44 ref40/cit40a ref27/cit27 ref33/cit33a ref2/cit2g ref2/cit2f ref2/cit2e ref2/cit2d ref13/cit13a ref13/cit13b ref2/cit2h ref2/cit2c ref8/cit8 ref2/cit2b ref2/cit2a ref33/cit33b ref34/cit34 ref37/cit37 ref17/cit17 ref26/cit26b ref26/cit26c ref11/cit11c ref46/cit46 ref26/cit26a ref11/cit11a Suzuki A. (ref11/cit11b) 2003; 3 ref24/cit24 ref15/cit15a ref35/cit35b ref9/cit9b ref9/cit9a ref15/cit15b ref25/cit25 ref14/cit14 Bader R. W. (ref32/cit32) 1994 ref30/cit30 Diederich F. (ref1/cit1b) 2004 ref7/cit7 |
References_xml | – ident: ref33/cit33b doi: 10.1002/jcc.22885 – ident: ref10/cit10c doi: 10.1021/ol502583h – volume: 3 volume-title: Organic Synthesis via Boranes year: 2003 ident: ref11/cit11b – ident: ref15/cit15b doi: 10.1039/b508541a – ident: ref2/cit2c doi: 10.1021/cr100259t – ident: ref31/cit31b doi: 10.1002/jcc.23266 – ident: ref18/cit18b doi: 10.1021/ar00072a001 – ident: ref6/cit6 doi: 10.1002/chem.201502114 – ident: ref34/cit34 doi: 10.1021/jo9000383 – ident: ref3/cit3a doi: 10.1021/ja810157e – ident: ref43/cit43a doi: 10.1002/chem.201001911 – ident: ref7/cit7 doi: 10.1021/ja311940s – ident: ref25/cit25 doi: 10.1039/b810189b – ident: ref5/cit5c doi: 10.1039/C5SC00305A – ident: ref27/cit27 – ident: ref36/cit36g doi: 10.1021/ja511622e – ident: ref22/cit22b doi: 10.1063/1.464913 – ident: ref33/cit33a – ident: ref44/cit44 doi: 10.1023/A:1011625728803 – ident: ref2/cit2e doi: 10.1007/3418_2012_42 – ident: ref9/cit9a doi: 10.1039/C4DT02374A – volume-title: Atoms in Molecules: A Quantum Theory year: 1994 ident: ref32/cit32 – ident: ref3/cit3b doi: 10.1021/ja200398c – ident: ref15/cit15a doi: 10.1063/1.467146 – ident: ref3/cit3c doi: 10.1039/c1sc00230a – ident: ref2/cit2d doi: 10.1021/op300236f – ident: ref5/cit5k doi: 10.1021/jacs.6b10998 – ident: ref11/cit11c doi: 10.1021/cr00039a007 – ident: ref20/cit20b doi: 10.1021/ct0499783 – volume-title: Cross-Coupling Reactions: A Practical Guide year: 2002 ident: ref1/cit1a doi: 10.1007/3-540-45313-X – ident: ref5/cit5i doi: 10.1002/anie.201607646 – volume-title: Metal-Catalyzed Cross-Coupling Reactions year: 2004 ident: ref1/cit1b – ident: ref9/cit9b doi: 10.1021/acscatal.5b02089 – ident: ref14/cit14 doi: 10.1063/1.3382344 – ident: ref2/cit2f doi: 10.1002/ejoc.201200914 – ident: ref38/cit38b doi: 10.1021/ar800036s – ident: ref43/cit43c doi: 10.1002/cctc.201402326 – ident: ref21/cit21b doi: 10.1016/S0009-2614(96)01373-5 – ident: ref13/cit13a doi: 10.1103/PhysRevA.38.3098 – ident: ref5/cit5b doi: 10.1021/ol503707m – ident: ref37/cit37 doi: 10.1021/jo402259z – ident: ref5/cit5h doi: 10.1021/jacs.6b03253 – ident: ref28/cit28 doi: 10.1021/jo970944f – volume-title: Gaussian 09 year: 2013 ident: ref12/cit12 – ident: ref45/cit45 doi: 10.1016/j.molstruc.2015.01.046 – ident: ref43/cit43b doi: 10.1002/cctc.201301080 – ident: ref26/cit26b doi: 10.1021/cr9904009 – ident: ref30/cit30 doi: 10.1021/ic50170a033 – ident: ref36/cit36a doi: 10.1039/C5CC01378J – ident: ref4/cit4a doi: 10.1039/C4CS00206G – ident: ref11/cit11a doi: 10.1007/3-540-45313-X_2 – ident: ref5/cit5g doi: 10.1002/chem.201505106 – ident: ref13/cit13b doi: 10.1103/PhysRevB.33.8822 – ident: ref16/cit16a doi: 10.1063/1.452288 – ident: ref22/cit22d doi: 10.1139/p80-159 – ident: ref10/cit10a doi: 10.1002/anie.200801447 – volume: 19 start-page: 686 year: 1974 ident: ref35/cit35a publication-title: Russ. J. Inorg. Chem. – ident: ref36/cit36h doi: 10.1021/ol4031815 – ident: ref22/cit22c doi: 10.1103/PhysRevB.37.785 – ident: ref36/cit36c doi: 10.1016/j.tet.2015.02.088 – ident: ref2/cit2a doi: 10.1021/ar100082d – ident: ref18/cit18a doi: 10.1021/j100717a029 – ident: ref29/cit29 doi: 10.1021/jo4018809 – ident: ref2/cit2g doi: 10.1039/c3cs35521g – ident: ref2/cit2h doi: 10.1021/acscatal.6b02964 – ident: ref36/cit36e doi: 10.1038/nature14615 – ident: ref5/cit5f doi: 10.1021/acs.orglett.5b03151 – ident: ref22/cit22a doi: 10.1021/j100096a001 – ident: ref36/cit36i doi: 10.1021/ol400639m – ident: ref40/cit40a doi: 10.1021/ja412770h – ident: ref36/cit36j doi: 10.1021/ja907281f – ident: ref3/cit3d doi: 10.1021/ja4118413 – ident: ref36/cit36d doi: 10.1021/acs.joc.5b02557 – ident: ref24/cit24 doi: 10.1103/PhysRevLett.91.146401 – ident: ref8/cit8 doi: 10.1126/science.1200437 – ident: ref10/cit10b doi: 10.1021/ol901978e – ident: ref17/cit17 doi: 10.1063/1.1674902 – ident: ref19/cit19a doi: 10.1063/1.456010 – ident: ref26/cit26a doi: 10.1016/0301-0104(81)85090-2 – ident: ref40/cit40b doi: 10.1021/ja4053416 – ident: ref36/cit36f doi: 10.1038/nchem.2388 – ident: ref35/cit35b doi: 10.1021/ja9093814 – ident: ref20/cit20a doi: 10.1063/1.1724823 – ident: ref46/cit46 doi: 10.1002/qua.560100211 – ident: ref36/cit36k doi: 10.1021/acs.orglett.5b03455 – ident: ref5/cit5l doi: 10.1002/anie.201510497 – ident: ref23/cit23 doi: 10.1007/s00214-007-0310-x – ident: ref5/cit5j doi: 10.1002/ajoc.201600411 – ident: ref3/cit3f doi: 10.1021/ja5071174 – volume-title: Theoretical Chemistry Institute year: 2013 ident: ref31/cit31a – ident: ref36/cit36b doi: 10.1021/jacs.5b07677 – ident: ref16/cit16b doi: 10.1063/1.456066 – ident: ref5/cit5e doi: 10.1246/cl.150936 – ident: ref1/cit1c doi: 10.1246/cl.2011.894 – ident: ref3/cit3g doi: 10.1021/ja409803x – ident: ref21/cit21a doi: 10.1063/1.478522 – ident: ref26/cit26c doi: 10.1063/1.3359469 – ident: ref2/cit2b doi: 10.1002/chem.201002273 – ident: ref3/cit3e doi: 10.1021/ja4127455 – ident: ref19/cit19b doi: 10.1021/j100377a021 – ident: ref4/cit4b doi: 10.1021/acs.accounts.5b00051 – ident: ref38/cit38a doi: 10.1002/1521-3773(20021115)41:22<4176::AID-ANIE4176>3.0.CO;2-U – ident: ref5/cit5a doi: 10.1021/jacs.5b03955 – ident: ref5/cit5d doi: 10.1021/acs.orglett.5b02200 |
SSID | ssj0004281 |
Score | 2.5210514 |
Snippet | Nickel(0)-catalyzed cross-coupling of methoxyarenes through C–O bond activation has been the subject of considerable research because of their favorable... Nickel(0)-catalyzed cross-coupling of methoxyarenes through C-O bond activation has been the subject of considerable research because of their favorable... Nickel(0)-catalyzed cross-coupling of methoxyarenes through C–O bond activation has been the subject of considerable research because of their favorable... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10347 |
SubjectTerms | activation energy chemical bonding cleavage (chemistry) cross-coupling reactions density functional theory esters ligands nickel organic halogen compounds |
Title | Combined Theoretical and Experimental Studies of Nickel-Catalyzed Cross-Coupling of Methoxyarenes with Arylboronic Esters via C–O Bond Cleavage |
URI | http://dx.doi.org/10.1021/jacs.7b04279 https://www.ncbi.nlm.nih.gov/pubmed/28675702 https://www.proquest.com/docview/1916378863 https://www.proquest.com/docview/2116860604 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8omI8EJpWrtxHaOKCogJOAASNwq27ERapUg2iLKiV9A_CFfwkybUBZVcI3Gih0v8yaeeY-QPcm15WGkAu5UHUm1ZQAoIQ4iETqTypTXHQaKZ-fi5Do8vYluRgmyP2_wGfID2U5VGtSEiCfJNBNKYpB1mFyO6h-ZqpcwVyrBiwT3n63RAdnOdwc0BlUOvMvRPDkua3SGSSWtaq9rqvb5N2XjHx1fIHMFwKSHwxWxSCZctkRmklLXbZm8whEA4bBL6dWoiJHqLKWNL2z_tEgwpLmnsFparh0k-Ken_wwNExxZkOQ9LOe9RZMzFKJ-6mNlGbTBn7vQg37b5APqXdpAOoYOfbzTNHl_ebugqGZMk7bTj3CerZDro8ZVchIUwgyB5pHswrxKLVE23Wofi9ibmvNWes1TD-jKSamZU6FmKfi6mHnUAVXCKiZVZLyte75KprI8c-uE1lxYcwYcZGpCVP2IET-5WBjwmz4UokJ24TM2i43VaQ7uzBnELPi0-LgVclDOaNMWzOYosNEeY73_aX0_ZPQYY7dbLo4mzBDeo-jM5T3oA0BqpOEXfLwNxNVCCWQmqpC14cr6fBtTEKXJGtv4x9g2ySxDIIFJKmyLTHUfem4bYFDX7Az2wAcRNwK7 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH7a2IFdBhs_VsY2I40TCmrtxHaOKCrqNtodViRukZ3YCFElaGnRyol_Ae0_3F-y99K0HUiVuFrPyUts530v9vs-gC9KmEyEkQ6E0x0i1VYBooQ4iGTobK5y0XGUKPYHsncefruILppidaqFQScqvFJVb-Iv2QWIJggblSVpiPglvEIcwinXOkl-Lssgue7M0a7SUjTn3J_2pjiUVY_j0ApwWQeZ0w0YLNyrz5ZcH0_G9ji7e8Lc-Gz_N-FNAzfZyWx-vIUXrngH68lc5W0LHvCDgMmxy9lwWdLITJGz7n_c_6w5bshKz3DuXLtRkNB_n-kddkzoAYOknFBx7yWZ9EmW-veU6sywD_3qRQ-mI1vWRLysS-QMFbu9Miz5e__nByNtY5aMnLnFr9s2nJ92h0kvaGQaAiMiNcZRVkaRiHpmfCxjb9vOZ8obkXvEWk4pw50ODc8x8sXckyqolpnmSkfWZx0vdmCtKAv3HljbhW1nMVzmNiQNkJjQlIulxSjqQylbcICvMW2WWZXWO-gcMxhqbV5uC47mA5tmDc85yW2MVlgfLqxvZvweK-wO5nMkxRGiXRVTuHKCPiDAJlJ-KVbbYJYttSSeohbszibY4m5cY86m2nzvGc_2GdZ7w_5ZevZ18P0DvOYEMej4Ct-HtfGvifuIAGlsP9XL4h9K4gsc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VVgIuUL7KlhZcCU4o1cZObOdYhV21QAuCVuotshMbVV0lFdmtuj3xF1D_YX8JM9lkWyqtBNdknNixnXlje94DeKuEyUUU60A4HRKptgoQJSRBLCNnC1WI0FGguH8gd4-ij8fx8RKEXS4MVqLGJ9XNJj7N6rPCtwwDRBWEN5QleYjkHqzQjh3FWzvp95tUSK7DDvEqLUV71v1uafJFef23L1oAMBtHM3wM3-ZVbM6XnG5PxnY7v7zD3vhfbViFRy3sZDuzcfIEllz5FB6kndrbM_iNPwYMkl3BDm9SG5kpCza4pQHA2mOHrPIMx9CpGwUprf9ML7FgSo0M0mpCSb4_yGSf5KkvppRvhmVoyRdrMB3ZqiHkZQMiaajZ-Ylh6fWvqy-MNI5ZOnLmHP9yz-FoODhMd4NWriEwIlZj7G1lFImp58YnMvG273yuvBGFR8zllDLc6cjwAj1gwj2pg2qZa650bH0eevEClsuqdC-B9V3UdxbdZmEj0gJJCFW5RFr0pj6Ssgdb-BmzdrrVWbOTzjGSoavtx-3B-65zs7zlOyfZjdEC63dz67MZz8cCu61unGTYQ7S7YkpXTbAOCLSJnF-KxTYYbUstia-oB2uzQTZ_G9cYu6k-X_-Htr2B-18_DLPPewefXsFDTkiDTrHwDVge_5y4TcRJY_u6mRl_AOPxDZ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Theoretical+and+Experimental+Studies+of+Nickel-Catalyzed+Cross-Coupling+of+Methoxyarenes+with+Arylboronic+Esters+via+C-O+Bond+Cleavage&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Schwarzer%2C+Martin+C&rft.au=Konno%2C+Ryosuke&rft.au=Hojo%2C+Takayuki&rft.au=Ohtsuki%2C+Akimichi&rft.date=2017-08-02&rft.eissn=1520-5126&rft.volume=139&rft.issue=30&rft.spage=10347&rft_id=info:doi/10.1021%2Fjacs.7b04279&rft_id=info%3Apmid%2F28675702&rft.externalDocID=28675702 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |