Data fusion of vis–NIR and PXRF spectra to predict soil physical and chemical properties

We tested one front‐end data fusion method to combine visible near‐infrared (vis–NIR) and portable X‐ray fluorescence (PXRF) spectra for predicting different soil properties and investigated the contribution of different sensor data. A total of 197 soil samples were collected from 25 Alfisols and Mo...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of soil science Vol. 71; no. 3; pp. 316 - 333
Main Authors Zhang, Yakun, Hartemink, Alfred E.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.05.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We tested one front‐end data fusion method to combine visible near‐infrared (vis–NIR) and portable X‐ray fluorescence (PXRF) spectra for predicting different soil properties and investigated the contribution of different sensor data. A total of 197 soil samples were collected from 25 Alfisols and Mollisols in south‐central Wisconsin, USA. Soils were analysed in the laboratory for clay, sand, silt content, total carbon (TC), total nitrogen (TN) and pH. Air‐dried soil samples were scanned with vis–NIR and PXRF spectrometers. A principal component analysis (PCA) was applied to each of the vis–NIR and PXRF spectra to extract the first 10 principal components (PCs), which were used in the Cubist model. Five types of input data were compared for constructing the models using a front‐end data fusion approach, including: (a) 10 PCs from vis–NIR spectra, (b) 10 PCs from spectra of PXRF beam 1 (XRF40), (c) 10 PCs from spectra of PXRF beam 2 (XRF10), (d) concatenating 20 PCs from two PXRF spectra (XRF40 + 10), and (e) concatenating 30 PCs from two PXRF spectra and vis–NIR spectra (XRF40 + 10 + NIR). In addition, the performances of the preprocessing methods (four smoothing methods with or without background removal) of PXRF spectra were compared. Multiple linear regression was also used to predict soil properties directly from 11 PXRF‐estimated elements. Our results suggest that smoothing should be applied to the PXRF spectra prior to developing predictive models. PXRF spectra and elemental data can predict soil texture with validation R2 > 0.85, better than using solely vis–NIR spectra, and combining vis–NIR and PXRF spectra improved the prediction. Combining PXRF and vis–NIR can also predict TC and TN moderately well. Soil pH cannot be predicted from vis–NIR or PXRF spectra in this dataset due to its weak correlations with other soil properties and elements. It is concluded that PXRF spectra can be solely used to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN. Highlights The use of front‐end data fusion method to combine vis–NIR and PXRF spectra for predicting soil properties. Different preprocessing algorithms were compared systematically for PXRF spectra. Spectral smoothing should be applied to the PXRF spectra prior to developing predictive models. PXRF spectra can be used solely to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN.
AbstractList We tested one front‐end data fusion method to combine visible near‐infrared (vis–NIR) and portable X‐ray fluorescence (PXRF) spectra for predicting different soil properties and investigated the contribution of different sensor data. A total of 197 soil samples were collected from 25 Alfisols and Mollisols in south‐central Wisconsin, USA. Soils were analysed in the laboratory for clay, sand, silt content, total carbon (TC), total nitrogen (TN) and pH. Air‐dried soil samples were scanned with vis–NIR and PXRF spectrometers. A principal component analysis (PCA) was applied to each of the vis–NIR and PXRF spectra to extract the first 10 principal components (PCs), which were used in the Cubist model. Five types of input data were compared for constructing the models using a front‐end data fusion approach, including: (a) 10 PCs from vis–NIR spectra, (b) 10 PCs from spectra of PXRF beam 1 (XRF40), (c) 10 PCs from spectra of PXRF beam 2 (XRF10), (d) concatenating 20 PCs from two PXRF spectra (XRF40 + 10), and (e) concatenating 30 PCs from two PXRF spectra and vis–NIR spectra (XRF40 + 10 + NIR). In addition, the performances of the preprocessing methods (four smoothing methods with or without background removal) of PXRF spectra were compared. Multiple linear regression was also used to predict soil properties directly from 11 PXRF‐estimated elements. Our results suggest that smoothing should be applied to the PXRF spectra prior to developing predictive models. PXRF spectra and elemental data can predict soil texture with validation R2 > 0.85, better than using solely vis–NIR spectra, and combining vis–NIR and PXRF spectra improved the prediction. Combining PXRF and vis–NIR can also predict TC and TN moderately well. Soil pH cannot be predicted from vis–NIR or PXRF spectra in this dataset due to its weak correlations with other soil properties and elements. It is concluded that PXRF spectra can be solely used to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN. Highlights The use of front‐end data fusion method to combine vis–NIR and PXRF spectra for predicting soil properties. Different preprocessing algorithms were compared systematically for PXRF spectra. Spectral smoothing should be applied to the PXRF spectra prior to developing predictive models. PXRF spectra can be used solely to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN.
We tested one front‐end data fusion method to combine visible near‐infrared (vis–NIR) and portable X‐ray fluorescence (PXRF) spectra for predicting different soil properties and investigated the contribution of different sensor data. A total of 197 soil samples were collected from 25 Alfisols and Mollisols in south‐central Wisconsin, USA. Soils were analysed in the laboratory for clay, sand, silt content, total carbon (TC), total nitrogen (TN) and pH. Air‐dried soil samples were scanned with vis–NIR and PXRF spectrometers. A principal component analysis (PCA) was applied to each of the vis–NIR and PXRF spectra to extract the first 10 principal components (PCs), which were used in the Cubist model. Five types of input data were compared for constructing the models using a front‐end data fusion approach, including: (a) 10 PCs from vis–NIR spectra, (b) 10 PCs from spectra of PXRF beam 1 (XRF40), (c) 10 PCs from spectra of PXRF beam 2 (XRF10), (d) concatenating 20 PCs from two PXRF spectra (XRF40 + 10), and (e) concatenating 30 PCs from two PXRF spectra and vis–NIR spectra (XRF40 + 10 + NIR). In addition, the performances of the preprocessing methods (four smoothing methods with or without background removal) of PXRF spectra were compared. Multiple linear regression was also used to predict soil properties directly from 11 PXRF‐estimated elements. Our results suggest that smoothing should be applied to the PXRF spectra prior to developing predictive models. PXRF spectra and elemental data can predict soil texture with validation R² > 0.85, better than using solely vis–NIR spectra, and combining vis–NIR and PXRF spectra improved the prediction. Combining PXRF and vis–NIR can also predict TC and TN moderately well. Soil pH cannot be predicted from vis–NIR or PXRF spectra in this dataset due to its weak correlations with other soil properties and elements. It is concluded that PXRF spectra can be solely used to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN. HIGHLIGHTS: The use of front‐end data fusion method to combine vis–NIR and PXRF spectra for predicting soil properties. Different preprocessing algorithms were compared systematically for PXRF spectra. Spectral smoothing should be applied to the PXRF spectra prior to developing predictive models. PXRF spectra can be used solely to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN.
We tested one front‐end data fusion method to combine visible near‐infrared (vis–NIR) and portable X‐ray fluorescence (PXRF) spectra for predicting different soil properties and investigated the contribution of different sensor data. A total of 197 soil samples were collected from 25 Alfisols and Mollisols in south‐central Wisconsin, USA. Soils were analysed in the laboratory for clay, sand, silt content, total carbon (TC), total nitrogen (TN) and pH. Air‐dried soil samples were scanned with vis–NIR and PXRF spectrometers. A principal component analysis (PCA) was applied to each of the vis–NIR and PXRF spectra to extract the first 10 principal components (PCs), which were used in the Cubist model. Five types of input data were compared for constructing the models using a front‐end data fusion approach, including: (a) 10 PCs from vis–NIR spectra, (b) 10 PCs from spectra of PXRF beam 1 (XRF40), (c) 10 PCs from spectra of PXRF beam 2 (XRF10), (d) concatenating 20 PCs from two PXRF spectra (XRF40 + 10), and (e) concatenating 30 PCs from two PXRF spectra and vis–NIR spectra (XRF40 + 10 + NIR). In addition, the performances of the preprocessing methods (four smoothing methods with or without background removal) of PXRF spectra were compared. Multiple linear regression was also used to predict soil properties directly from 11 PXRF‐estimated elements. Our results suggest that smoothing should be applied to the PXRF spectra prior to developing predictive models. PXRF spectra and elemental data can predict soil texture with validation R2 > 0.85, better than using solely vis–NIR spectra, and combining vis–NIR and PXRF spectra improved the prediction. Combining PXRF and vis–NIR can also predict TC and TN moderately well. Soil pH cannot be predicted from vis–NIR or PXRF spectra in this dataset due to its weak correlations with other soil properties and elements. It is concluded that PXRF spectra can be solely used to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN.HighlightsThe use of front‐end data fusion method to combine vis–NIR and PXRF spectra for predicting soil properties.Different preprocessing algorithms were compared systematically for PXRF spectra.Spectral smoothing should be applied to the PXRF spectra prior to developing predictive models.PXRF spectra can be used solely to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN.
Author Hartemink, Alfred E.
Zhang, Yakun
Author_xml – sequence: 1
  givenname: Yakun
  surname: Zhang
  fullname: Zhang, Yakun
  organization: University of Wisconsin‐Madison
– sequence: 2
  givenname: Alfred E.
  orcidid: 0000-0002-5797-6798
  surname: Hartemink
  fullname: Hartemink, Alfred E.
  email: hartemink@wisc.edu
  organization: University of Wisconsin‐Madison
BookMark eNp9kM9KxDAQh4Mo-PfiEwS8iFDNJE2bHkVXXRGVVUG8hJhOMUu3qUlX2Zvv4Bv6JHZ3PYmYy2Tg-80M3yZZbXyDhOwCO4T-HeE4xkPgKpcrZANEJhMuVLE6_0tIWC7TdbIZ45gxEFAUG-Tp1HSGVtPofEN9Rd9c_Pr4vB6OqGlKevs4OqOxRdsFQztP24Clsx2N3tW0fZlFZ029IO0LThZNG3yLoXMYt8laZeqIOz91izycDe5PLpKrm_PhyfFVYoTMZQKyLBUqYJxJya00KX9OM_GMTOUp5ABSYWbQgESVFmVuUiVAqBQ4oq1KK7bI_nJuv_p1irHTExct1rVp0E-j5lJCwfM8Ez269wsd-2lo-us0F4UqsoKnvKfYkrLBxxiw0tZ1pusN9RpcrYHpuWw9l60XsvvIwa9IG9zEhNnfMCzhd1fj7B9SDy7v7paZb0E0kXA
CitedBy_id crossref_primary_10_1016_j_geoderma_2023_116594
crossref_primary_10_3390_agriengineering5020043
crossref_primary_10_1139_cjss_2022_0058
crossref_primary_10_1016_j_still_2024_106087
crossref_primary_10_1016_j_chemolab_2022_104578
crossref_primary_10_1002_saj2_20223
crossref_primary_10_1002_saj2_20388
crossref_primary_10_1016_j_catena_2020_104938
crossref_primary_10_3390_s24165126
crossref_primary_10_1038_s41598_022_27037_6
crossref_primary_10_1071_SR21272
crossref_primary_10_3390_soilsystems8020056
crossref_primary_10_1016_j_catena_2021_105190
crossref_primary_10_1016_j_aiia_2025_02_001
crossref_primary_10_1016_j_compag_2024_108643
crossref_primary_10_3390_rs12060963
crossref_primary_10_1016_j_geodrs_2022_e00573
crossref_primary_10_1111_ejss_13086
crossref_primary_10_1016_j_catena_2021_105954
crossref_primary_10_1016_S1002_0160_21_60092_9
crossref_primary_10_1071_SR20136
crossref_primary_10_5194_gmd_15_1219_2022
crossref_primary_10_1016_j_geoderma_2021_115091
crossref_primary_10_1016_j_jsames_2023_104449
crossref_primary_10_1016_j_jaridenv_2023_105087
crossref_primary_10_1016_j_geodrs_2024_e00813
crossref_primary_10_1016_j_jes_2023_09_016
crossref_primary_10_3390_s21072386
crossref_primary_10_1016_j_geoderma_2023_116582
crossref_primary_10_1590_0001_3765202120200646
crossref_primary_10_1134_S1064229322030061
crossref_primary_10_3390_rs16163009
crossref_primary_10_1016_j_compag_2024_109443
crossref_primary_10_3390_pr11092714
crossref_primary_10_1007_s40003_023_00690_7
crossref_primary_10_1016_j_catena_2021_105200
crossref_primary_10_1016_j_catena_2022_106514
crossref_primary_10_1016_j_compag_2024_109004
crossref_primary_10_1002_saj2_20593
crossref_primary_10_1016_j_microc_2023_108813
crossref_primary_10_2139_ssrn_3991690
crossref_primary_10_3390_molecules28020799
crossref_primary_10_1016_j_scitotenv_2023_168381
crossref_primary_10_1016_j_compag_2024_108636
crossref_primary_10_1002_saj2_70028
crossref_primary_10_1007_s10661_021_08946_x
crossref_primary_10_1016_j_conbuildmat_2022_128799
crossref_primary_10_1016_j_envres_2023_115300
crossref_primary_10_1111_ejss_13399
crossref_primary_10_3390_agronomy11061028
crossref_primary_10_1002_ldr_4408
crossref_primary_10_1016_j_geoderma_2021_115647
crossref_primary_10_1007_s44274_024_00097_3
crossref_primary_10_1016_j_geoderma_2021_115649
crossref_primary_10_3390_land12081580
crossref_primary_10_3390_s21010148
crossref_primary_10_1016_j_catena_2023_107319
crossref_primary_10_1016_j_jsames_2022_103873
crossref_primary_10_1016_j_geoderma_2024_116938
crossref_primary_10_1016_j_compag_2022_107459
crossref_primary_10_3390_agriculture12101540
crossref_primary_10_1016_j_apt_2023_104055
crossref_primary_10_1016_j_geodrs_2023_e00612
crossref_primary_10_1016_j_geoderma_2022_116301
crossref_primary_10_19159_tutad_823890
crossref_primary_10_1016_j_geoderma_2022_115936
crossref_primary_10_1016_j_geodrs_2021_e00464
crossref_primary_10_3390_rs13071229
crossref_primary_10_1016_j_catena_2023_107007
Cites_doi 10.1016/S0016-7061(03)00223-4
10.2136/sssaj2011.0354
10.1111/ejss.12729
10.1016/j.scitotenv.2015.01.087
10.1016/j.geoderma.2016.10.036
10.1016/j.chemolab.2008.06.003
10.1016/B978-012656446-4/50001-3
10.1016/j.geoderma.2014.05.005
10.1016/j.geoderma.2012.06.034
10.1016/j.still.2014.06.003
10.1016/j.geoderma.2017.03.017
10.2136/sssabookser5.3.c34
10.1016/B978-0-12-386473-4.00005-1
10.1016/j.geoderma.2019.05.036
10.1016/B978-0-12-802139-2.00001-9
10.1016/S0065-2113(10)07005-7
10.1016/j.catena.2016.01.007
10.2136/sssaj1995.03615995005900020014x
10.2136/sssaj2015.10.0361
10.1021/ac60214a047
10.1016/j.geoderma.2014.12.011
10.1016/j.trac.2010.05.006
10.1590/1413-70542018425017518
10.2136/sssabookser5.3.c37
10.1016/j.geoderma.2008.06.011
10.1016/j.geoderma.2019.02.011
10.1016/0168-583X(88)90063-8
10.2136/sssaj1979.03615995004300050038x
10.2136/sssaj2001.652480x
10.1016/j.geoderma.2019.01.006
10.18637/jss.v028.i05
10.1016/j.geoderma.2014.10.001
10.1016/j.geoderma.2018.12.032
10.1111/ejss.12228
10.1016/j.geoderma.2011.08.010
10.1016/j.geoderma.2016.05.005
10.1016/j.geoderma.2018.08.005
10.1111/ejss.12320
10.1016/j.geoderma.2005.03.007
ContentType Journal Article
Copyright Published 2019. This article is a U.S. Government work and is in the public domain in the USA.
2020 British Society of Soil Science
Copyright_xml – notice: Published 2019. This article is a U.S. Government work and is in the public domain in the USA.
– notice: 2020 British Society of Soil Science
DBID AAYXX
CITATION
7QL
7SN
7ST
7T7
7UA
8FD
C1K
F1W
FR3
H96
L.G
P64
SOI
7S9
L.6
DOI 10.1111/ejss.12875
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
Bacteriology Abstracts (Microbiology B)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1365-2389
EndPage 333
ExternalDocumentID 10_1111_ejss_12875
EJSS12875
Genre article
GeographicLocations Wisconsin
GeographicLocations_xml – name: Wisconsin
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XOL
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QL
7SN
7ST
7T7
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
L.G
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-a3575-15dd8e81020552c5a42b463be0874171158e6aea15e849d7a483138412eecfdc3
IEDL.DBID DR2
ISSN 1351-0754
IngestDate Fri Jul 11 18:29:40 EDT 2025
Fri Jul 25 21:05:57 EDT 2025
Tue Jul 01 04:19:27 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Wed Jan 22 16:33:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3575-15dd8e81020552c5a42b463be0874171158e6aea15e849d7a483138412eecfdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5797-6798
PQID 2398969242
PQPubID 2045158
PageCount 18
ParticipantIDs proquest_miscellaneous_2551927763
proquest_journals_2398969242
crossref_citationtrail_10_1111_ejss_12875
crossref_primary_10_1111_ejss_12875
wiley_primary_10_1111_ejss_12875_EJSS12875
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle European journal of soil science
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References 2011; 113
2003; 117
2010; 107
2015; 243–244
1988; 34
2006; 131
2011; 167–168
2008; 146
2018; 42
2014; 128
2000
2010; 29
2008; 28
1964; 36
2016; 80
2016; 279
2017; 288
2019; 352
2019; 70
2011
1995; 59
2015; 239–240
2008
2007
1996
2006
1993
1992
2003
2017; 298
2008; 94
2012; 76
2014; 232–234
2019; 342
2001; 65
2019; 341
2012; 189–190
2015; 66
2017; 12
2019; 335
2019
2018
2017
2016
2016; 139
2015
2015; 514
2014
2019; 338
2013
2014; 143
1979; 43
2016; 67
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Mahuteau L. (e_1_2_8_21_1) 2008
Adams M. J. (e_1_2_8_2_1) 2007
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Gates W. P. (e_1_2_8_11_1) 2006
e_1_2_8_42_1
Hu B. (e_1_2_8_16_1) 2017; 12
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
Gullayanon R. (e_1_2_8_14_1) 2011
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_37_1
e_1_2_8_10_1
Markowicz A. A. (e_1_2_8_24_1) 1993
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – year: 2011
– volume: 28
  start-page: 1
  year: 2008
  end-page: 26
  article-title: Building predictive models in R using the caret package
  publication-title: Journal of Statistical Software
– volume: 80
  start-page: 888
  year: 2016
  end-page: 899
  article-title: Synergistic use of Vis‐NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry
  publication-title: Soil Science Society of America Journal
– volume: 131
  start-page: 59
  year: 2006
  end-page: 75
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
– start-page: Click here to enter text. 961
  year: 1996
  end-page: Click here to enter text. 1010
– volume: 514
  start-page: 399
  year: 2015
  end-page: 408
  article-title: Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils
  publication-title: Science of the Total Environment
– volume: 66
  start-page: 631
  year: 2015
  end-page: 638
  article-title: Exploring the predictability of soil texture and organic matter content with a commercial integrated soil profiling tool
  publication-title: European Journal of Soil Science
– year: 2018
– year: 2014
– volume: 107
  start-page: 163
  year: 2010
  end-page: 215
  article-title: Visible and near infrared spectroscopy in soil science
  publication-title: Advances in Agronomy
– volume: 43
  start-page: 1004
  year: 1979
  end-page: 1007
  article-title: Particle size analysis by hydrometer: A simplified method for routine textural analysis and a sensitivity test of measurement parameters 1
  publication-title: Soil Science Society of America Journal
– volume: 42
  start-page: 501
  year: 2018
  end-page: 512
  article-title: Portable X‐ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses
  publication-title: Ciencia e Agrotecnologia
– volume: 113
  start-page: 243
  year: 2011
  end-page: 291
  article-title: Proximal soil sensing: An effective approach for soil measurements in space and time
  publication-title: Advances in Agronomy
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 12
  year: 2017
  article-title: Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution
  publication-title: PLoS ONE
– year: 2008
– volume: 239–240
  start-page: 130
  year: 2015
  end-page: 134
  article-title: Characterizing soils via portable X‐ray fluorescence spectrometer: 4. Cation exchange capacity (CEC)
  publication-title: Geoderma
– volume: 352
  start-page: 61
  year: 2019
  end-page: 69
  article-title: X‐ray fluorescence and visible near infrared sensor fusion for predicting soil chromium content
  publication-title: Geoderma
– volume: 76
  start-page: 1436
  year: 2012
  end-page: 1445
  article-title: Rapid, nondestructive total elemental analysis of vertisol soils using portable X‐ray fluorescence
  publication-title: Soil Science Society of America Journal
– year: 2019
– year: 1993
– volume: 189–190
  start-page: 268
  year: 2012
  end-page: 277
  article-title: Characterizing soils via portable X‐ray fluorescence spectrometer: 2. Spodic and Albic horizons
  publication-title: Geoderma
– year: 2015
– volume: 342
  start-page: 106
  year: 2019
  end-page: 108
  article-title: XRF‐measured rubidium concentration is the best predictor variable for estimating the soil clay content and salinity of semi‐humid soils in two catenas
  publication-title: Geoderma
– volume: 298
  start-page: 78
  year: 2017
  end-page: 91
  article-title: Soil characterization across catenas via advanced proximal sensors
  publication-title: Geoderma
– volume: 288
  start-page: 130
  year: 2017
  end-page: 142
  article-title: Non‐saturated soil organic horizon characterization via advanced proximal sensors
  publication-title: Geoderma
– volume: 65
  start-page: 480
  year: 2001
  end-page: 490
  article-title: Near‐infrared reflectance spectroscopy–principal components regression analyses of soil properties
  publication-title: Soil Science Society of America Journal
– volume: 143
  start-page: 95
  year: 2014
  end-page: 105
  article-title: Multiple on‐line soil sensors and data fusion approach for delineation of water holding capacity zones for site specific irrigation
  publication-title: Soil & Tillage Research
– year: 2007
– start-page: 1085
  year: 1996
  end-page: 1121
– year: 2003
– year: 2000
– start-page: 789
  year: 2006
  end-page: 864
– volume: 279
  start-page: 31
  year: 2016
  end-page: 44
  article-title: An assessment of model averaging to improve predictive power of portable vis‐NIR and XRF for the determination of agronomic soil properties
  publication-title: Geoderma
– volume: 139
  start-page: 220
  year: 2016
  end-page: 231
  article-title: Utilizing portable X‐ray fluorescence spectrometry for in‐field investigation of pedogenesis
  publication-title: Catena
– volume: 243–244
  start-page: 157
  year: 2015
  end-page: 167
  article-title: Synthesized use of VisNIR DRS and PXRF for soil characterization: Total carbon and total nitrogen
  publication-title: Geoderma
– volume: 128
  start-page: 1
  year: 2014
  end-page: 45
  article-title: Advances in portable X‐ray fluorescence (PXRF) for environmental, pedological, and agronomic applications
  publication-title: Advances in Agronomy
– year: 2016
– volume: 67
  start-page: 173
  year: 2016
  end-page: 183
  article-title: Simultaneous assessment of key properties of arid soil by combined PXRF and Vis–NIR data
  publication-title: European Journal of Soil Science
– year: 1992
– volume: 146
  start-page: 403
  year: 2008
  end-page: 411
  article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis‐NIR spectroscopy: An Australian case study
  publication-title: Geoderma
– volume: 341
  start-page: 111
  year: 2019
  end-page: 128
  article-title: Simultaneous measurement of multiple soil properties through proximal sensor data fusion: A case study
  publication-title: Geoderma
– volume: 94
  start-page: 72
  year: 2008
  end-page: 79
  article-title: Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 338
  start-page: 375
  year: 2019
  end-page: 382
  article-title: Determination of base saturation percentage in agricultural soils via portable X‐ray fluorescence spectrometer
  publication-title: Geoderma
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Analytical Chemistry
– volume: 70
  start-page: 162
  year: 2019
  end-page: 173
  article-title: Multi‐sensor fusion for the determination of several soil properties in the Yangtze River Delta, China
  publication-title: European Journal of Soil Science
– volume: 59
  start-page: 364
  year: 1995
  end-page: 372
  article-title: Near‐infrared analysis as a rapid method to simultaneously evaluate several soil properties
  publication-title: Soil Science Society of America Journal
– volume: 167–168
  start-page: 167
  year: 2011
  end-page: 177
  article-title: Characterizing soils using a portable X‐ray fluorescence spectrometer: 1. Soil texture
  publication-title: Geoderma
– volume: 232–234
  start-page: 141
  year: 2014
  end-page: 147
  article-title: Characterizing soils via portable X‐ray fluorescence spectrometer: 3. Soil reaction (pH)
  publication-title: Geoderma
– volume: 34
  start-page: 396
  year: 1988
  end-page: 402
  article-title: SNIP, a statistics‐sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications
  publication-title: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
– year: 2017
– volume: 29
  start-page: 1073
  year: 2010
  end-page: 1081
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: Trac‐Trends in Analytical Chemistry
– year: 2013
– volume: 335
  start-page: 35
  year: 2019
  end-page: 46
  article-title: Spectral fusion by Outer Product Analysis (OPA) to improve predictions of soil organic C
  publication-title: Geoderma
– ident: e_1_2_8_22_1
  doi: 10.1016/S0016-7061(03)00223-4
– ident: e_1_2_8_31_1
– ident: e_1_2_8_23_1
  doi: 10.2136/sssaj2011.0354
– ident: e_1_2_8_56_1
  doi: 10.1111/ejss.12729
– ident: e_1_2_8_7_1
  doi: 10.1016/j.scitotenv.2015.01.087
– ident: e_1_2_8_6_1
  doi: 10.1016/j.geoderma.2016.10.036
– ident: e_1_2_8_25_1
  doi: 10.1016/j.chemolab.2008.06.003
– ident: e_1_2_8_40_1
  doi: 10.1016/B978-012656446-4/50001-3
– volume-title: Chemometrics in analytical spectroscopy
  year: 2007
  ident: e_1_2_8_2_1
– ident: e_1_2_8_37_1
  doi: 10.1016/j.geoderma.2014.05.005
– ident: e_1_2_8_53_1
  doi: 10.1016/j.geoderma.2012.06.034
– ident: e_1_2_8_32_1
– ident: e_1_2_8_27_1
  doi: 10.1016/j.still.2014.06.003
– ident: e_1_2_8_9_1
  doi: 10.1016/j.geoderma.2017.03.017
– ident: e_1_2_8_10_1
– ident: e_1_2_8_28_1
  doi: 10.2136/sssabookser5.3.c34
– ident: e_1_2_8_47_1
  doi: 10.1016/B978-0-12-386473-4.00005-1
– ident: e_1_2_8_55_1
  doi: 10.1016/j.geoderma.2019.05.036
– volume: 12
  year: 2017
  ident: e_1_2_8_16_1
  article-title: Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution
  publication-title: PLoS ONE
– ident: e_1_2_8_18_1
– ident: e_1_2_8_15_1
– ident: e_1_2_8_51_1
  doi: 10.1016/B978-0-12-802139-2.00001-9
– ident: e_1_2_8_41_1
  doi: 10.1016/S0065-2113(10)07005-7
– ident: e_1_2_8_43_1
  doi: 10.1016/j.catena.2016.01.007
– ident: e_1_2_8_4_1
  doi: 10.2136/sssaj1995.03615995005900020014x
– ident: e_1_2_8_42_1
– ident: e_1_2_8_29_1
  doi: 10.2136/sssaj2015.10.0361
– ident: e_1_2_8_36_1
  doi: 10.1021/ac60214a047
– ident: e_1_2_8_49_1
  doi: 10.1016/j.geoderma.2014.12.011
– ident: e_1_2_8_50_1
– ident: e_1_2_8_26_1
– ident: e_1_2_8_34_1
– ident: e_1_2_8_3_1
  doi: 10.1016/j.trac.2010.05.006
– ident: e_1_2_8_44_1
  doi: 10.1590/1413-70542018425017518
– ident: e_1_2_8_5_1
  doi: 10.2136/sssabookser5.3.c37
– ident: e_1_2_8_13_1
  doi: 10.1016/j.geoderma.2008.06.011
– ident: e_1_2_8_17_1
– ident: e_1_2_8_39_1
– ident: e_1_2_8_46_1
  doi: 10.1016/j.geoderma.2019.02.011
– ident: e_1_2_8_35_1
  doi: 10.1016/0168-583X(88)90063-8
– ident: e_1_2_8_12_1
  doi: 10.2136/sssaj1979.03615995004300050038x
– ident: e_1_2_8_8_1
  doi: 10.2136/sssaj2001.652480x
– start-page: 789
  volume-title: Developments in clay science
  year: 2006
  ident: e_1_2_8_11_1
– ident: e_1_2_8_19_1
  doi: 10.1016/j.geoderma.2019.01.006
– ident: e_1_2_8_20_1
  doi: 10.18637/jss.v028.i05
– volume-title: Handbook of X‐ray spectrometry: Methods and techniques
  year: 1993
  ident: e_1_2_8_24_1
– ident: e_1_2_8_38_1
  doi: 10.1016/j.geoderma.2014.10.001
– ident: e_1_2_8_33_1
  doi: 10.1016/j.geoderma.2018.12.032
– ident: e_1_2_8_54_1
  doi: 10.1111/ejss.12228
– ident: e_1_2_8_57_1
  doi: 10.1016/j.geoderma.2011.08.010
– ident: e_1_2_8_30_1
  doi: 10.1016/j.geoderma.2016.05.005
– ident: e_1_2_8_45_1
  doi: 10.1016/j.geoderma.2018.08.005
– ident: e_1_2_8_52_1
  doi: 10.1111/ejss.12320
– ident: e_1_2_8_48_1
  doi: 10.1016/j.geoderma.2005.03.007
– volume-title: Study of algorithms for analysis of XRF spectra to automate inspection of carpets
  year: 2008
  ident: e_1_2_8_21_1
– volume-title: A calibration methodology for energy dispersive X‐ray fluorescence measurements based upon synthetically generated reference spectra
  year: 2011
  ident: e_1_2_8_14_1
SSID ssj0013199
Score 2.5203993
Snippet We tested one front‐end data fusion method to combine visible near‐infrared (vis–NIR) and portable X‐ray fluorescence (PXRF) spectra for predicting different...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 316
SubjectTerms air drying
Alfisols
Algorithms
carbon
Chemical properties
Chemicophysical properties
Clay
cubist model
Data
data collection
data fusion
Data integration
Fluorescence
Methods
Mollisols
pH effects
prediction
Prediction models
Preprocessing
principal component analysis
Principal components analysis
PXRF spectra
Regression analysis
sand
silt fraction
Smoothing
Soil analysis
Soil chemistry
soil elements
Soil investigations
Soil pH
Soil properties
Soil texture
Soils
Spectra
Spectrometers
Texture
total nitrogen
vis–NIR spectra
Wisconsin
X-radiation
Title Data fusion of vis–NIR and PXRF spectra to predict soil physical and chemical properties
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejss.12875
https://www.proquest.com/docview/2398969242
https://www.proquest.com/docview/2551927763
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5CTu2hvyndNg0q7SUFL2tZsrXQS0izpIGGsklgKRQjyaOSNtjL2ptDTn2HvmGfpBrZ3k1KCLQ3g8fY1mhGnzQz3wC8TR1qN3I6MpK7SFijIsNFFhXENicSo1JLhcKfjtPDM3E0k7MNeN_XwrT8EKsDN7KM4K_JwLWprxk5fq_rofeuGVWYU7IWIaIpX4cQ2uaR1IEu8uui6LhJKY1n_ejN1WgNMa8D1bDSTB7C1_4b2wSTH8NlY4b26i_6xv_9iUfwoIOgbK-dM49hA8sncH_v26Kj4cCn8OWDbjRzSzpKY5Vjl-f175-_jj9OmS4L9nk2nbBQornQrKnYfEHRnobV1fkFm3eKD5K2oyPwItWcMrix3oKzycHp_mHUdWGIdOKxXBTLolCoPBAZScmt1IIbkSYGR8qjkcwjSoWpRh1LVGJcZFqoJE6UiDmidYVNnsFmWZX4HFiKMhE6wRilFcoZrTzcsU5T7494LO0Adntt5LajKKdOGRd5v1Wh8crDeA3gzUp23hJz3Cq13Ss174yzzonycJz6jScfwOvVbW9WFCvRJVZLL-OR5Jhn3vsO4F3Q4B1vyQ-OTk7C1Yt_EX4J9zjt3kP65DZsNoslvvIQpzE7YSr_AaCq-J0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGdgAO4-dE2QBPcAEpVePYiXucYFU3tmrqNqniEtnO87QxJVWT7sCJ_2H_IX8Jfo7bDoSQ4BYpz4ri52d_z37-PkLepRaU7VkVacFsxI2WkWY8iwpkm-OJlqnBi8LHo3R4zg8nYhJqc_AuTMsPsdxww8jw8zUGOG5I34lyuKrrrpteM3GPbKCkt8-oxmx1iNDKR6IGXeRWRh7YSbGQZ9X21_VoBTLvQlW_1gwetYKqtacoxBKTr915o7vm228Ejv_9G4_JZkChdK8dNk_IGpRPycO9i1lg4oBn5Msn1Shq57ibRitLby7rH99vRwdjqsqCnkzGA-pvac4UbSo6neGBT0Pr6vKaToPvvaUJjATOpJpiETfUz8n5YP_s4zAKQgyRShyci2JRFBKkwyI9IZgRijPN00RDTzpAkjlQKSFVoGIBkveLTHGZxInkMQMwtjDJFlkvqxJeEJqCSLhKIAZhuLRaSYd4jFUo_xH3hemQ9wt35CawlKNYxnW-yFawv3LfXx3ydmk7bbk5_mi1s_BqHuKzzpH1sJ-63JN1yO7ytYssPC5RJVRzZ-PAZJ9lbgLukA_ehX_5Sr5_eHrqn17-i_Ebcn94dnyUHx2MPm-TBwyTeV9NuUPWm9kcXjnE0-jXflz_BCHM_Lg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEB9qC6IP2qqlp7Wu6ItCjstmN9kDX4rXo3_0KFcLhyBhdzNbqiUJl5wPPvkd_IZ-Enc3yV0tIuhbIBOS7OzM_HZn9jcAL2OD0gyMDBSnJmBaiUBRlgSZY5tjkRKxdgeF30_iw3N2POOzNXjTnYVp-CGWG27OMry_dgZeZuaakePnqupb75rwW7DB4oFwc3o0pascQtM90rWgC2xgZC05qavjWT37ezhaYczrSNWHmvF9-NR9ZFNh8qW_qFVff7vB3_i_f7EJ91oMSvabSbMFa5g_gLv7F_OWhwMfwseRrCUxC7eXRgpDvl5WP7__mBxNicwzcjqbjok_ozmXpC5IOXfpnppUxeUVKVvNe0nd8hFYkaJ0JdxYPYLz8cGHt4dB24YhkJEFc0HIs0ygsEhkwDnVXDKqWBwpHAgLRxILKQXGEmXIUbBhlkgmojASLKSI2mQ62ob1vMhxB0iMPGIywhC5ZsIoKSze0Ua65h_hkOsevOq0keqWo9y1yrhKu7WKG6_Uj1cPXixly4aZ449Su51S09Y6q9RxHg5ju_KkPXi-vG3tyiVLZI7FwspYKDmkiXW_PXjtNfiXt6QHx2dn_urxvwg_g9uno3H67mhy8gTuULeS96WUu7Bezxf41MKdWu35Wf0LT1P7cA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+fusion+of+vis%E2%80%93NIR+and+PXRF+spectra+to+predict+soil+physical+and+chemical+properties&rft.jtitle=European+journal+of+soil+science&rft.au=Zhang%2C+Yakun&rft.au=Hartemink%2C+Alfred+E&rft.date=2020-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1351-0754&rft.eissn=1365-2389&rft.volume=71&rft.issue=3&rft.spage=316&rft.epage=333&rft_id=info:doi/10.1111%2Fejss.12875&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon