Data fusion of vis–NIR and PXRF spectra to predict soil physical and chemical properties
We tested one front‐end data fusion method to combine visible near‐infrared (vis–NIR) and portable X‐ray fluorescence (PXRF) spectra for predicting different soil properties and investigated the contribution of different sensor data. A total of 197 soil samples were collected from 25 Alfisols and Mo...
Saved in:
Published in | European journal of soil science Vol. 71; no. 3; pp. 316 - 333 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.05.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We tested one front‐end data fusion method to combine visible near‐infrared (vis–NIR) and portable X‐ray fluorescence (PXRF) spectra for predicting different soil properties and investigated the contribution of different sensor data. A total of 197 soil samples were collected from 25 Alfisols and Mollisols in south‐central Wisconsin, USA. Soils were analysed in the laboratory for clay, sand, silt content, total carbon (TC), total nitrogen (TN) and pH. Air‐dried soil samples were scanned with vis–NIR and PXRF spectrometers. A principal component analysis (PCA) was applied to each of the vis–NIR and PXRF spectra to extract the first 10 principal components (PCs), which were used in the Cubist model. Five types of input data were compared for constructing the models using a front‐end data fusion approach, including: (a) 10 PCs from vis–NIR spectra, (b) 10 PCs from spectra of PXRF beam 1 (XRF40), (c) 10 PCs from spectra of PXRF beam 2 (XRF10), (d) concatenating 20 PCs from two PXRF spectra (XRF40 + 10), and (e) concatenating 30 PCs from two PXRF spectra and vis–NIR spectra (XRF40 + 10 + NIR). In addition, the performances of the preprocessing methods (four smoothing methods with or without background removal) of PXRF spectra were compared. Multiple linear regression was also used to predict soil properties directly from 11 PXRF‐estimated elements. Our results suggest that smoothing should be applied to the PXRF spectra prior to developing predictive models. PXRF spectra and elemental data can predict soil texture with validation R2 > 0.85, better than using solely vis–NIR spectra, and combining vis–NIR and PXRF spectra improved the prediction. Combining PXRF and vis–NIR can also predict TC and TN moderately well. Soil pH cannot be predicted from vis–NIR or PXRF spectra in this dataset due to its weak correlations with other soil properties and elements. It is concluded that PXRF spectra can be solely used to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN.
Highlights
The use of front‐end data fusion method to combine vis–NIR and PXRF spectra for predicting soil properties.
Different preprocessing algorithms were compared systematically for PXRF spectra.
Spectral smoothing should be applied to the PXRF spectra prior to developing predictive models.
PXRF spectra can be used solely to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN. |
---|---|
AbstractList | We tested one front‐end data fusion method to combine visible near‐infrared (vis–NIR) and portable X‐ray fluorescence (PXRF) spectra for predicting different soil properties and investigated the contribution of different sensor data. A total of 197 soil samples were collected from 25 Alfisols and Mollisols in south‐central Wisconsin, USA. Soils were analysed in the laboratory for clay, sand, silt content, total carbon (TC), total nitrogen (TN) and pH. Air‐dried soil samples were scanned with vis–NIR and PXRF spectrometers. A principal component analysis (PCA) was applied to each of the vis–NIR and PXRF spectra to extract the first 10 principal components (PCs), which were used in the Cubist model. Five types of input data were compared for constructing the models using a front‐end data fusion approach, including: (a) 10 PCs from vis–NIR spectra, (b) 10 PCs from spectra of PXRF beam 1 (XRF40), (c) 10 PCs from spectra of PXRF beam 2 (XRF10), (d) concatenating 20 PCs from two PXRF spectra (XRF40 + 10), and (e) concatenating 30 PCs from two PXRF spectra and vis–NIR spectra (XRF40 + 10 + NIR). In addition, the performances of the preprocessing methods (four smoothing methods with or without background removal) of PXRF spectra were compared. Multiple linear regression was also used to predict soil properties directly from 11 PXRF‐estimated elements. Our results suggest that smoothing should be applied to the PXRF spectra prior to developing predictive models. PXRF spectra and elemental data can predict soil texture with validation R2 > 0.85, better than using solely vis–NIR spectra, and combining vis–NIR and PXRF spectra improved the prediction. Combining PXRF and vis–NIR can also predict TC and TN moderately well. Soil pH cannot be predicted from vis–NIR or PXRF spectra in this dataset due to its weak correlations with other soil properties and elements. It is concluded that PXRF spectra can be solely used to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN.
Highlights
The use of front‐end data fusion method to combine vis–NIR and PXRF spectra for predicting soil properties.
Different preprocessing algorithms were compared systematically for PXRF spectra.
Spectral smoothing should be applied to the PXRF spectra prior to developing predictive models.
PXRF spectra can be used solely to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN. We tested one front‐end data fusion method to combine visible near‐infrared (vis–NIR) and portable X‐ray fluorescence (PXRF) spectra for predicting different soil properties and investigated the contribution of different sensor data. A total of 197 soil samples were collected from 25 Alfisols and Mollisols in south‐central Wisconsin, USA. Soils were analysed in the laboratory for clay, sand, silt content, total carbon (TC), total nitrogen (TN) and pH. Air‐dried soil samples were scanned with vis–NIR and PXRF spectrometers. A principal component analysis (PCA) was applied to each of the vis–NIR and PXRF spectra to extract the first 10 principal components (PCs), which were used in the Cubist model. Five types of input data were compared for constructing the models using a front‐end data fusion approach, including: (a) 10 PCs from vis–NIR spectra, (b) 10 PCs from spectra of PXRF beam 1 (XRF40), (c) 10 PCs from spectra of PXRF beam 2 (XRF10), (d) concatenating 20 PCs from two PXRF spectra (XRF40 + 10), and (e) concatenating 30 PCs from two PXRF spectra and vis–NIR spectra (XRF40 + 10 + NIR). In addition, the performances of the preprocessing methods (four smoothing methods with or without background removal) of PXRF spectra were compared. Multiple linear regression was also used to predict soil properties directly from 11 PXRF‐estimated elements. Our results suggest that smoothing should be applied to the PXRF spectra prior to developing predictive models. PXRF spectra and elemental data can predict soil texture with validation R² > 0.85, better than using solely vis–NIR spectra, and combining vis–NIR and PXRF spectra improved the prediction. Combining PXRF and vis–NIR can also predict TC and TN moderately well. Soil pH cannot be predicted from vis–NIR or PXRF spectra in this dataset due to its weak correlations with other soil properties and elements. It is concluded that PXRF spectra can be solely used to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN. HIGHLIGHTS: The use of front‐end data fusion method to combine vis–NIR and PXRF spectra for predicting soil properties. Different preprocessing algorithms were compared systematically for PXRF spectra. Spectral smoothing should be applied to the PXRF spectra prior to developing predictive models. PXRF spectra can be used solely to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN. We tested one front‐end data fusion method to combine visible near‐infrared (vis–NIR) and portable X‐ray fluorescence (PXRF) spectra for predicting different soil properties and investigated the contribution of different sensor data. A total of 197 soil samples were collected from 25 Alfisols and Mollisols in south‐central Wisconsin, USA. Soils were analysed in the laboratory for clay, sand, silt content, total carbon (TC), total nitrogen (TN) and pH. Air‐dried soil samples were scanned with vis–NIR and PXRF spectrometers. A principal component analysis (PCA) was applied to each of the vis–NIR and PXRF spectra to extract the first 10 principal components (PCs), which were used in the Cubist model. Five types of input data were compared for constructing the models using a front‐end data fusion approach, including: (a) 10 PCs from vis–NIR spectra, (b) 10 PCs from spectra of PXRF beam 1 (XRF40), (c) 10 PCs from spectra of PXRF beam 2 (XRF10), (d) concatenating 20 PCs from two PXRF spectra (XRF40 + 10), and (e) concatenating 30 PCs from two PXRF spectra and vis–NIR spectra (XRF40 + 10 + NIR). In addition, the performances of the preprocessing methods (four smoothing methods with or without background removal) of PXRF spectra were compared. Multiple linear regression was also used to predict soil properties directly from 11 PXRF‐estimated elements. Our results suggest that smoothing should be applied to the PXRF spectra prior to developing predictive models. PXRF spectra and elemental data can predict soil texture with validation R2 > 0.85, better than using solely vis–NIR spectra, and combining vis–NIR and PXRF spectra improved the prediction. Combining PXRF and vis–NIR can also predict TC and TN moderately well. Soil pH cannot be predicted from vis–NIR or PXRF spectra in this dataset due to its weak correlations with other soil properties and elements. It is concluded that PXRF spectra can be solely used to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN.HighlightsThe use of front‐end data fusion method to combine vis–NIR and PXRF spectra for predicting soil properties.Different preprocessing algorithms were compared systematically for PXRF spectra.Spectral smoothing should be applied to the PXRF spectra prior to developing predictive models.PXRF spectra can be used solely to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN. |
Author | Hartemink, Alfred E. Zhang, Yakun |
Author_xml | – sequence: 1 givenname: Yakun surname: Zhang fullname: Zhang, Yakun organization: University of Wisconsin‐Madison – sequence: 2 givenname: Alfred E. orcidid: 0000-0002-5797-6798 surname: Hartemink fullname: Hartemink, Alfred E. email: hartemink@wisc.edu organization: University of Wisconsin‐Madison |
BookMark | eNp9kM9KxDAQh4Mo-PfiEwS8iFDNJE2bHkVXXRGVVUG8hJhOMUu3qUlX2Zvv4Bv6JHZ3PYmYy2Tg-80M3yZZbXyDhOwCO4T-HeE4xkPgKpcrZANEJhMuVLE6_0tIWC7TdbIZ45gxEFAUG-Tp1HSGVtPofEN9Rd9c_Pr4vB6OqGlKevs4OqOxRdsFQztP24Clsx2N3tW0fZlFZ029IO0LThZNG3yLoXMYt8laZeqIOz91izycDe5PLpKrm_PhyfFVYoTMZQKyLBUqYJxJya00KX9OM_GMTOUp5ABSYWbQgESVFmVuUiVAqBQ4oq1KK7bI_nJuv_p1irHTExct1rVp0E-j5lJCwfM8Ez269wsd-2lo-us0F4UqsoKnvKfYkrLBxxiw0tZ1pusN9RpcrYHpuWw9l60XsvvIwa9IG9zEhNnfMCzhd1fj7B9SDy7v7paZb0E0kXA |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2023_116594 crossref_primary_10_3390_agriengineering5020043 crossref_primary_10_1139_cjss_2022_0058 crossref_primary_10_1016_j_still_2024_106087 crossref_primary_10_1016_j_chemolab_2022_104578 crossref_primary_10_1002_saj2_20223 crossref_primary_10_1002_saj2_20388 crossref_primary_10_1016_j_catena_2020_104938 crossref_primary_10_3390_s24165126 crossref_primary_10_1038_s41598_022_27037_6 crossref_primary_10_1071_SR21272 crossref_primary_10_3390_soilsystems8020056 crossref_primary_10_1016_j_catena_2021_105190 crossref_primary_10_1016_j_aiia_2025_02_001 crossref_primary_10_1016_j_compag_2024_108643 crossref_primary_10_3390_rs12060963 crossref_primary_10_1016_j_geodrs_2022_e00573 crossref_primary_10_1111_ejss_13086 crossref_primary_10_1016_j_catena_2021_105954 crossref_primary_10_1016_S1002_0160_21_60092_9 crossref_primary_10_1071_SR20136 crossref_primary_10_5194_gmd_15_1219_2022 crossref_primary_10_1016_j_geoderma_2021_115091 crossref_primary_10_1016_j_jsames_2023_104449 crossref_primary_10_1016_j_jaridenv_2023_105087 crossref_primary_10_1016_j_geodrs_2024_e00813 crossref_primary_10_1016_j_jes_2023_09_016 crossref_primary_10_3390_s21072386 crossref_primary_10_1016_j_geoderma_2023_116582 crossref_primary_10_1590_0001_3765202120200646 crossref_primary_10_1134_S1064229322030061 crossref_primary_10_3390_rs16163009 crossref_primary_10_1016_j_compag_2024_109443 crossref_primary_10_3390_pr11092714 crossref_primary_10_1007_s40003_023_00690_7 crossref_primary_10_1016_j_catena_2021_105200 crossref_primary_10_1016_j_catena_2022_106514 crossref_primary_10_1016_j_compag_2024_109004 crossref_primary_10_1002_saj2_20593 crossref_primary_10_1016_j_microc_2023_108813 crossref_primary_10_2139_ssrn_3991690 crossref_primary_10_3390_molecules28020799 crossref_primary_10_1016_j_scitotenv_2023_168381 crossref_primary_10_1016_j_compag_2024_108636 crossref_primary_10_1002_saj2_70028 crossref_primary_10_1007_s10661_021_08946_x crossref_primary_10_1016_j_conbuildmat_2022_128799 crossref_primary_10_1016_j_envres_2023_115300 crossref_primary_10_1111_ejss_13399 crossref_primary_10_3390_agronomy11061028 crossref_primary_10_1002_ldr_4408 crossref_primary_10_1016_j_geoderma_2021_115647 crossref_primary_10_1007_s44274_024_00097_3 crossref_primary_10_1016_j_geoderma_2021_115649 crossref_primary_10_3390_land12081580 crossref_primary_10_3390_s21010148 crossref_primary_10_1016_j_catena_2023_107319 crossref_primary_10_1016_j_jsames_2022_103873 crossref_primary_10_1016_j_geoderma_2024_116938 crossref_primary_10_1016_j_compag_2022_107459 crossref_primary_10_3390_agriculture12101540 crossref_primary_10_1016_j_apt_2023_104055 crossref_primary_10_1016_j_geodrs_2023_e00612 crossref_primary_10_1016_j_geoderma_2022_116301 crossref_primary_10_19159_tutad_823890 crossref_primary_10_1016_j_geoderma_2022_115936 crossref_primary_10_1016_j_geodrs_2021_e00464 crossref_primary_10_3390_rs13071229 crossref_primary_10_1016_j_catena_2023_107007 |
Cites_doi | 10.1016/S0016-7061(03)00223-4 10.2136/sssaj2011.0354 10.1111/ejss.12729 10.1016/j.scitotenv.2015.01.087 10.1016/j.geoderma.2016.10.036 10.1016/j.chemolab.2008.06.003 10.1016/B978-012656446-4/50001-3 10.1016/j.geoderma.2014.05.005 10.1016/j.geoderma.2012.06.034 10.1016/j.still.2014.06.003 10.1016/j.geoderma.2017.03.017 10.2136/sssabookser5.3.c34 10.1016/B978-0-12-386473-4.00005-1 10.1016/j.geoderma.2019.05.036 10.1016/B978-0-12-802139-2.00001-9 10.1016/S0065-2113(10)07005-7 10.1016/j.catena.2016.01.007 10.2136/sssaj1995.03615995005900020014x 10.2136/sssaj2015.10.0361 10.1021/ac60214a047 10.1016/j.geoderma.2014.12.011 10.1016/j.trac.2010.05.006 10.1590/1413-70542018425017518 10.2136/sssabookser5.3.c37 10.1016/j.geoderma.2008.06.011 10.1016/j.geoderma.2019.02.011 10.1016/0168-583X(88)90063-8 10.2136/sssaj1979.03615995004300050038x 10.2136/sssaj2001.652480x 10.1016/j.geoderma.2019.01.006 10.18637/jss.v028.i05 10.1016/j.geoderma.2014.10.001 10.1016/j.geoderma.2018.12.032 10.1111/ejss.12228 10.1016/j.geoderma.2011.08.010 10.1016/j.geoderma.2016.05.005 10.1016/j.geoderma.2018.08.005 10.1111/ejss.12320 10.1016/j.geoderma.2005.03.007 |
ContentType | Journal Article |
Copyright | Published 2019. This article is a U.S. Government work and is in the public domain in the USA. 2020 British Society of Soil Science |
Copyright_xml | – notice: Published 2019. This article is a U.S. Government work and is in the public domain in the USA. – notice: 2020 British Society of Soil Science |
DBID | AAYXX CITATION 7QL 7SN 7ST 7T7 7UA 8FD C1K F1W FR3 H96 L.G P64 SOI 7S9 L.6 |
DOI | 10.1111/ejss.12875 |
DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database Bacteriology Abstracts (Microbiology B) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1365-2389 |
EndPage | 333 |
ExternalDocumentID | 10_1111_ejss_12875 EJSS12875 |
Genre | article |
GeographicLocations | Wisconsin |
GeographicLocations_xml | – name: Wisconsin |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABJNI ABOGM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 VH1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XOL Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7QL 7SN 7ST 7T7 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 L.G P64 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-a3575-15dd8e81020552c5a42b463be0874171158e6aea15e849d7a483138412eecfdc3 |
IEDL.DBID | DR2 |
ISSN | 1351-0754 |
IngestDate | Fri Jul 11 18:29:40 EDT 2025 Fri Jul 25 21:05:57 EDT 2025 Tue Jul 01 04:19:27 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Wed Jan 22 16:33:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3575-15dd8e81020552c5a42b463be0874171158e6aea15e849d7a483138412eecfdc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5797-6798 |
PQID | 2398969242 |
PQPubID | 2045158 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2551927763 proquest_journals_2398969242 crossref_citationtrail_10_1111_ejss_12875 crossref_primary_10_1111_ejss_12875 wiley_primary_10_1111_ejss_12875_EJSS12875 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | European journal of soil science |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | 2011; 113 2003; 117 2010; 107 2015; 243–244 1988; 34 2006; 131 2011; 167–168 2008; 146 2018; 42 2014; 128 2000 2010; 29 2008; 28 1964; 36 2016; 80 2016; 279 2017; 288 2019; 352 2019; 70 2011 1995; 59 2015; 239–240 2008 2007 1996 2006 1993 1992 2003 2017; 298 2008; 94 2012; 76 2014; 232–234 2019; 342 2001; 65 2019; 341 2012; 189–190 2015; 66 2017; 12 2019; 335 2019 2018 2017 2016 2016; 139 2015 2015; 514 2014 2019; 338 2013 2014; 143 1979; 43 2016; 67 e_1_2_8_28_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Mahuteau L. (e_1_2_8_21_1) 2008 Adams M. J. (e_1_2_8_2_1) 2007 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 Gates W. P. (e_1_2_8_11_1) 2006 e_1_2_8_42_1 Hu B. (e_1_2_8_16_1) 2017; 12 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 Gullayanon R. (e_1_2_8_14_1) 2011 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_37_1 e_1_2_8_10_1 Markowicz A. A. (e_1_2_8_24_1) 1993 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – year: 2011 – volume: 28 start-page: 1 year: 2008 end-page: 26 article-title: Building predictive models in R using the caret package publication-title: Journal of Statistical Software – volume: 80 start-page: 888 year: 2016 end-page: 899 article-title: Synergistic use of Vis‐NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry publication-title: Soil Science Society of America Journal – volume: 131 start-page: 59 year: 2006 end-page: 75 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma – start-page: Click here to enter text. 961 year: 1996 end-page: Click here to enter text. 1010 – volume: 514 start-page: 399 year: 2015 end-page: 408 article-title: Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils publication-title: Science of the Total Environment – volume: 66 start-page: 631 year: 2015 end-page: 638 article-title: Exploring the predictability of soil texture and organic matter content with a commercial integrated soil profiling tool publication-title: European Journal of Soil Science – year: 2018 – year: 2014 – volume: 107 start-page: 163 year: 2010 end-page: 215 article-title: Visible and near infrared spectroscopy in soil science publication-title: Advances in Agronomy – volume: 43 start-page: 1004 year: 1979 end-page: 1007 article-title: Particle size analysis by hydrometer: A simplified method for routine textural analysis and a sensitivity test of measurement parameters 1 publication-title: Soil Science Society of America Journal – volume: 42 start-page: 501 year: 2018 end-page: 512 article-title: Portable X‐ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses publication-title: Ciencia e Agrotecnologia – volume: 113 start-page: 243 year: 2011 end-page: 291 article-title: Proximal soil sensing: An effective approach for soil measurements in space and time publication-title: Advances in Agronomy – volume: 117 start-page: 3 year: 2003 end-page: 52 article-title: On digital soil mapping publication-title: Geoderma – volume: 12 year: 2017 article-title: Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution publication-title: PLoS ONE – year: 2008 – volume: 239–240 start-page: 130 year: 2015 end-page: 134 article-title: Characterizing soils via portable X‐ray fluorescence spectrometer: 4. Cation exchange capacity (CEC) publication-title: Geoderma – volume: 352 start-page: 61 year: 2019 end-page: 69 article-title: X‐ray fluorescence and visible near infrared sensor fusion for predicting soil chromium content publication-title: Geoderma – volume: 76 start-page: 1436 year: 2012 end-page: 1445 article-title: Rapid, nondestructive total elemental analysis of vertisol soils using portable X‐ray fluorescence publication-title: Soil Science Society of America Journal – year: 2019 – year: 1993 – volume: 189–190 start-page: 268 year: 2012 end-page: 277 article-title: Characterizing soils via portable X‐ray fluorescence spectrometer: 2. Spodic and Albic horizons publication-title: Geoderma – year: 2015 – volume: 342 start-page: 106 year: 2019 end-page: 108 article-title: XRF‐measured rubidium concentration is the best predictor variable for estimating the soil clay content and salinity of semi‐humid soils in two catenas publication-title: Geoderma – volume: 298 start-page: 78 year: 2017 end-page: 91 article-title: Soil characterization across catenas via advanced proximal sensors publication-title: Geoderma – volume: 288 start-page: 130 year: 2017 end-page: 142 article-title: Non‐saturated soil organic horizon characterization via advanced proximal sensors publication-title: Geoderma – volume: 65 start-page: 480 year: 2001 end-page: 490 article-title: Near‐infrared reflectance spectroscopy–principal components regression analyses of soil properties publication-title: Soil Science Society of America Journal – volume: 143 start-page: 95 year: 2014 end-page: 105 article-title: Multiple on‐line soil sensors and data fusion approach for delineation of water holding capacity zones for site specific irrigation publication-title: Soil & Tillage Research – year: 2007 – start-page: 1085 year: 1996 end-page: 1121 – year: 2003 – year: 2000 – start-page: 789 year: 2006 end-page: 864 – volume: 279 start-page: 31 year: 2016 end-page: 44 article-title: An assessment of model averaging to improve predictive power of portable vis‐NIR and XRF for the determination of agronomic soil properties publication-title: Geoderma – volume: 139 start-page: 220 year: 2016 end-page: 231 article-title: Utilizing portable X‐ray fluorescence spectrometry for in‐field investigation of pedogenesis publication-title: Catena – volume: 243–244 start-page: 157 year: 2015 end-page: 167 article-title: Synthesized use of VisNIR DRS and PXRF for soil characterization: Total carbon and total nitrogen publication-title: Geoderma – volume: 128 start-page: 1 year: 2014 end-page: 45 article-title: Advances in portable X‐ray fluorescence (PXRF) for environmental, pedological, and agronomic applications publication-title: Advances in Agronomy – year: 2016 – volume: 67 start-page: 173 year: 2016 end-page: 183 article-title: Simultaneous assessment of key properties of arid soil by combined PXRF and Vis–NIR data publication-title: European Journal of Soil Science – year: 1992 – volume: 146 start-page: 403 year: 2008 end-page: 411 article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis‐NIR spectroscopy: An Australian case study publication-title: Geoderma – volume: 341 start-page: 111 year: 2019 end-page: 128 article-title: Simultaneous measurement of multiple soil properties through proximal sensor data fusion: A case study publication-title: Geoderma – volume: 94 start-page: 72 year: 2008 end-page: 79 article-title: Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 338 start-page: 375 year: 2019 end-page: 382 article-title: Determination of base saturation percentage in agricultural soils via portable X‐ray fluorescence spectrometer publication-title: Geoderma – volume: 36 start-page: 1627 year: 1964 end-page: 1639 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Analytical Chemistry – volume: 70 start-page: 162 year: 2019 end-page: 173 article-title: Multi‐sensor fusion for the determination of several soil properties in the Yangtze River Delta, China publication-title: European Journal of Soil Science – volume: 59 start-page: 364 year: 1995 end-page: 372 article-title: Near‐infrared analysis as a rapid method to simultaneously evaluate several soil properties publication-title: Soil Science Society of America Journal – volume: 167–168 start-page: 167 year: 2011 end-page: 177 article-title: Characterizing soils using a portable X‐ray fluorescence spectrometer: 1. Soil texture publication-title: Geoderma – volume: 232–234 start-page: 141 year: 2014 end-page: 147 article-title: Characterizing soils via portable X‐ray fluorescence spectrometer: 3. Soil reaction (pH) publication-title: Geoderma – volume: 34 start-page: 396 year: 1988 end-page: 402 article-title: SNIP, a statistics‐sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications publication-title: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms – year: 2017 – volume: 29 start-page: 1073 year: 2010 end-page: 1081 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: Trac‐Trends in Analytical Chemistry – year: 2013 – volume: 335 start-page: 35 year: 2019 end-page: 46 article-title: Spectral fusion by Outer Product Analysis (OPA) to improve predictions of soil organic C publication-title: Geoderma – ident: e_1_2_8_22_1 doi: 10.1016/S0016-7061(03)00223-4 – ident: e_1_2_8_31_1 – ident: e_1_2_8_23_1 doi: 10.2136/sssaj2011.0354 – ident: e_1_2_8_56_1 doi: 10.1111/ejss.12729 – ident: e_1_2_8_7_1 doi: 10.1016/j.scitotenv.2015.01.087 – ident: e_1_2_8_6_1 doi: 10.1016/j.geoderma.2016.10.036 – ident: e_1_2_8_25_1 doi: 10.1016/j.chemolab.2008.06.003 – ident: e_1_2_8_40_1 doi: 10.1016/B978-012656446-4/50001-3 – volume-title: Chemometrics in analytical spectroscopy year: 2007 ident: e_1_2_8_2_1 – ident: e_1_2_8_37_1 doi: 10.1016/j.geoderma.2014.05.005 – ident: e_1_2_8_53_1 doi: 10.1016/j.geoderma.2012.06.034 – ident: e_1_2_8_32_1 – ident: e_1_2_8_27_1 doi: 10.1016/j.still.2014.06.003 – ident: e_1_2_8_9_1 doi: 10.1016/j.geoderma.2017.03.017 – ident: e_1_2_8_10_1 – ident: e_1_2_8_28_1 doi: 10.2136/sssabookser5.3.c34 – ident: e_1_2_8_47_1 doi: 10.1016/B978-0-12-386473-4.00005-1 – ident: e_1_2_8_55_1 doi: 10.1016/j.geoderma.2019.05.036 – volume: 12 year: 2017 ident: e_1_2_8_16_1 article-title: Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution publication-title: PLoS ONE – ident: e_1_2_8_18_1 – ident: e_1_2_8_15_1 – ident: e_1_2_8_51_1 doi: 10.1016/B978-0-12-802139-2.00001-9 – ident: e_1_2_8_41_1 doi: 10.1016/S0065-2113(10)07005-7 – ident: e_1_2_8_43_1 doi: 10.1016/j.catena.2016.01.007 – ident: e_1_2_8_4_1 doi: 10.2136/sssaj1995.03615995005900020014x – ident: e_1_2_8_42_1 – ident: e_1_2_8_29_1 doi: 10.2136/sssaj2015.10.0361 – ident: e_1_2_8_36_1 doi: 10.1021/ac60214a047 – ident: e_1_2_8_49_1 doi: 10.1016/j.geoderma.2014.12.011 – ident: e_1_2_8_50_1 – ident: e_1_2_8_26_1 – ident: e_1_2_8_34_1 – ident: e_1_2_8_3_1 doi: 10.1016/j.trac.2010.05.006 – ident: e_1_2_8_44_1 doi: 10.1590/1413-70542018425017518 – ident: e_1_2_8_5_1 doi: 10.2136/sssabookser5.3.c37 – ident: e_1_2_8_13_1 doi: 10.1016/j.geoderma.2008.06.011 – ident: e_1_2_8_17_1 – ident: e_1_2_8_39_1 – ident: e_1_2_8_46_1 doi: 10.1016/j.geoderma.2019.02.011 – ident: e_1_2_8_35_1 doi: 10.1016/0168-583X(88)90063-8 – ident: e_1_2_8_12_1 doi: 10.2136/sssaj1979.03615995004300050038x – ident: e_1_2_8_8_1 doi: 10.2136/sssaj2001.652480x – start-page: 789 volume-title: Developments in clay science year: 2006 ident: e_1_2_8_11_1 – ident: e_1_2_8_19_1 doi: 10.1016/j.geoderma.2019.01.006 – ident: e_1_2_8_20_1 doi: 10.18637/jss.v028.i05 – volume-title: Handbook of X‐ray spectrometry: Methods and techniques year: 1993 ident: e_1_2_8_24_1 – ident: e_1_2_8_38_1 doi: 10.1016/j.geoderma.2014.10.001 – ident: e_1_2_8_33_1 doi: 10.1016/j.geoderma.2018.12.032 – ident: e_1_2_8_54_1 doi: 10.1111/ejss.12228 – ident: e_1_2_8_57_1 doi: 10.1016/j.geoderma.2011.08.010 – ident: e_1_2_8_30_1 doi: 10.1016/j.geoderma.2016.05.005 – ident: e_1_2_8_45_1 doi: 10.1016/j.geoderma.2018.08.005 – ident: e_1_2_8_52_1 doi: 10.1111/ejss.12320 – ident: e_1_2_8_48_1 doi: 10.1016/j.geoderma.2005.03.007 – volume-title: Study of algorithms for analysis of XRF spectra to automate inspection of carpets year: 2008 ident: e_1_2_8_21_1 – volume-title: A calibration methodology for energy dispersive X‐ray fluorescence measurements based upon synthetically generated reference spectra year: 2011 ident: e_1_2_8_14_1 |
SSID | ssj0013199 |
Score | 2.5203993 |
Snippet | We tested one front‐end data fusion method to combine visible near‐infrared (vis–NIR) and portable X‐ray fluorescence (PXRF) spectra for predicting different... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 316 |
SubjectTerms | air drying Alfisols Algorithms carbon Chemical properties Chemicophysical properties Clay cubist model Data data collection data fusion Data integration Fluorescence Methods Mollisols pH effects prediction Prediction models Preprocessing principal component analysis Principal components analysis PXRF spectra Regression analysis sand silt fraction Smoothing Soil analysis Soil chemistry soil elements Soil investigations Soil pH Soil properties Soil texture Soils Spectra Spectrometers Texture total nitrogen vis–NIR spectra Wisconsin X-radiation |
Title | Data fusion of vis–NIR and PXRF spectra to predict soil physical and chemical properties |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejss.12875 https://www.proquest.com/docview/2398969242 https://www.proquest.com/docview/2551927763 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5CTu2hvyndNg0q7SUFL2tZsrXQS0izpIGGsklgKRQjyaOSNtjL2ptDTn2HvmGfpBrZ3k1KCLQ3g8fY1mhGnzQz3wC8TR1qN3I6MpK7SFijIsNFFhXENicSo1JLhcKfjtPDM3E0k7MNeN_XwrT8EKsDN7KM4K_JwLWprxk5fq_rofeuGVWYU7IWIaIpX4cQ2uaR1IEu8uui6LhJKY1n_ejN1WgNMa8D1bDSTB7C1_4b2wSTH8NlY4b26i_6xv_9iUfwoIOgbK-dM49hA8sncH_v26Kj4cCn8OWDbjRzSzpKY5Vjl-f175-_jj9OmS4L9nk2nbBQornQrKnYfEHRnobV1fkFm3eKD5K2oyPwItWcMrix3oKzycHp_mHUdWGIdOKxXBTLolCoPBAZScmt1IIbkSYGR8qjkcwjSoWpRh1LVGJcZFqoJE6UiDmidYVNnsFmWZX4HFiKMhE6wRilFcoZrTzcsU5T7494LO0Adntt5LajKKdOGRd5v1Wh8crDeA3gzUp23hJz3Cq13Ss174yzzonycJz6jScfwOvVbW9WFCvRJVZLL-OR5Jhn3vsO4F3Q4B1vyQ-OTk7C1Yt_EX4J9zjt3kP65DZsNoslvvIQpzE7YSr_AaCq-J0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGdgAO4-dE2QBPcAEpVePYiXucYFU3tmrqNqniEtnO87QxJVWT7sCJ_2H_IX8Jfo7bDoSQ4BYpz4ri52d_z37-PkLepRaU7VkVacFsxI2WkWY8iwpkm-OJlqnBi8LHo3R4zg8nYhJqc_AuTMsPsdxww8jw8zUGOG5I34lyuKrrrpteM3GPbKCkt8-oxmx1iNDKR6IGXeRWRh7YSbGQZ9X21_VoBTLvQlW_1gwetYKqtacoxBKTr915o7vm228Ejv_9G4_JZkChdK8dNk_IGpRPycO9i1lg4oBn5Msn1Shq57ibRitLby7rH99vRwdjqsqCnkzGA-pvac4UbSo6neGBT0Pr6vKaToPvvaUJjATOpJpiETfUz8n5YP_s4zAKQgyRShyci2JRFBKkwyI9IZgRijPN00RDTzpAkjlQKSFVoGIBkveLTHGZxInkMQMwtjDJFlkvqxJeEJqCSLhKIAZhuLRaSYd4jFUo_xH3hemQ9wt35CawlKNYxnW-yFawv3LfXx3ydmk7bbk5_mi1s_BqHuKzzpH1sJ-63JN1yO7ytYssPC5RJVRzZ-PAZJ9lbgLukA_ehX_5Sr5_eHrqn17-i_Ebcn94dnyUHx2MPm-TBwyTeV9NuUPWm9kcXjnE0-jXflz_BCHM_Lg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEB9qC6IP2qqlp7Wu6ItCjstmN9kDX4rXo3_0KFcLhyBhdzNbqiUJl5wPPvkd_IZ-Enc3yV0tIuhbIBOS7OzM_HZn9jcAL2OD0gyMDBSnJmBaiUBRlgSZY5tjkRKxdgeF30_iw3N2POOzNXjTnYVp-CGWG27OMry_dgZeZuaakePnqupb75rwW7DB4oFwc3o0pascQtM90rWgC2xgZC05qavjWT37ezhaYczrSNWHmvF9-NR9ZFNh8qW_qFVff7vB3_i_f7EJ91oMSvabSbMFa5g_gLv7F_OWhwMfwseRrCUxC7eXRgpDvl5WP7__mBxNicwzcjqbjok_ozmXpC5IOXfpnppUxeUVKVvNe0nd8hFYkaJ0JdxYPYLz8cGHt4dB24YhkJEFc0HIs0ygsEhkwDnVXDKqWBwpHAgLRxILKQXGEmXIUbBhlkgmojASLKSI2mQ62ob1vMhxB0iMPGIywhC5ZsIoKSze0Ua65h_hkOsevOq0keqWo9y1yrhKu7WKG6_Uj1cPXixly4aZ449Su51S09Y6q9RxHg5ju_KkPXi-vG3tyiVLZI7FwspYKDmkiXW_PXjtNfiXt6QHx2dn_urxvwg_g9uno3H67mhy8gTuULeS96WUu7Bezxf41MKdWu35Wf0LT1P7cA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+fusion+of+vis%E2%80%93NIR+and+PXRF+spectra+to+predict+soil+physical+and+chemical+properties&rft.jtitle=European+journal+of+soil+science&rft.au=Zhang%2C+Yakun&rft.au=Hartemink%2C+Alfred+E&rft.date=2020-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1351-0754&rft.eissn=1365-2389&rft.volume=71&rft.issue=3&rft.spage=316&rft.epage=333&rft_id=info:doi/10.1111%2Fejss.12875&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon |