Accelerated RAPID Model Using Heterogeneous Porous Objects
To enhance the capability of three-dimensional (3D) radiative transfer models at the kilometer scale (km-scale), the radiosity applicable to porous individual objects (RAPID) model has been upgraded to RAPID3. The major innovation is that the homogeneous porous object concept (HOMOBJ) used for a tre...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 10; no. 8; p. 1264 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To enhance the capability of three-dimensional (3D) radiative transfer models at the kilometer scale (km-scale), the radiosity applicable to porous individual objects (RAPID) model has been upgraded to RAPID3. The major innovation is that the homogeneous porous object concept (HOMOBJ) used for a tree crown scale is extended to a heterogeneous porous object (HETOBJ) for a forest plot scale. Correspondingly, the radiosity-graphics-combined method has been extended from HOMOBJ to HETOBJ, including the random dynamic projection algorithm, the updated modules of view factors, the single scattering estimation, the multiple scattering solutions, and the bidirectional reflectance factor (BRF) calculations. Five cases of the third radiation transfer model intercomparison (RAMI-3) have been used to verify RAPID3 by the RAMI-3 online checker. Seven scenes with different degrees of topography (valleys and hills) at 500 m size have also been simulated. Using a personal computer (CPU 2.5 GHz, memory 4 GB), the computation time of BRF at 500 m is only approximately 13 min per scene. The mean root mean square error is 0.015. RAPID3 simulated the enhanced contrast of BRF between backward and forward directions due to topography. RAPID3 has been integrated into the free RAPID platform, which should be very useful for the remote sensing community. In addition, the HETOBJ concept may also be useful for the speedup of ray tracing models. |
---|---|
AbstractList | To enhance the capability of three-dimensional (3D) radiative transfer models at the kilometer scale (km-scale), the radiosity applicable to porous individual objects (RAPID) model has been upgraded to RAPID3. The major innovation is that the homogeneous porous object concept (HOMOBJ) used for a tree crown scale is extended to a heterogeneous porous object (HETOBJ) for a forest plot scale. Correspondingly, the radiosity-graphics-combined method has been extended from HOMOBJ to HETOBJ, including the random dynamic projection algorithm, the updated modules of view factors, the single scattering estimation, the multiple scattering solutions, and the bidirectional reflectance factor (BRF) calculations. Five cases of the third radiation transfer model intercomparison (RAMI-3) have been used to verify RAPID3 by the RAMI-3 online checker. Seven scenes with different degrees of topography (valleys and hills) at 500 m size have also been simulated. Using a personal computer (CPU 2.5 GHz, memory 4 GB), the computation time of BRF at 500 m is only approximately 13 min per scene. The mean root mean square error is 0.015. RAPID3 simulated the enhanced contrast of BRF between backward and forward directions due to topography. RAPID3 has been integrated into the free RAPID platform, which should be very useful for the remote sensing community. In addition, the HETOBJ concept may also be useful for the speedup of ray tracing models. |
Author | Huang, Huaguo |
Author_xml | – sequence: 1 givenname: Huaguo orcidid: 0000-0001-9355-2338 surname: Huang fullname: Huang, Huaguo |
BookMark | eNptkEtLAzEUhYNUsNZu_AWzFkbzmiTjrtRHC0qL2HXIJDdlyjiRJC78906tqIh3cy6Xcz8O5xSN-tADQucEXzJW46uYCMaKUMGP0JhiSUtOazr6tZ-gaUo7PAxjpMZ8jK5n1kIH0WRwxdNsvbwpHoODrtiktt8WC8gQwxZ6CG-pWIe4l1WzA5vTGTr2pksw_dIJ2tzdPs8X5cPqfjmfPZSGVSKXlZRUWmEVMHC1xAJb5tQQxnkiGy48x47W3BOiqFe-abAklFgvlJXeVIpN0PLAdcHs9GtsX0x818G0-vMQ4labmFvbgSa-Al9VslLGcMFqw7iTNcNWSOKJEgPr4sCyMaQUwX_zCNb7EvVPiYMZ_zHbNpvchj5H03b_vXwAq3Rzgg |
CitedBy_id | crossref_primary_10_1109_TGRS_2019_2917923 crossref_primary_10_1134_S1024856024701604 crossref_primary_10_1016_j_rse_2020_111902 crossref_primary_10_1016_j_rse_2020_112082 crossref_primary_10_1109_TGRS_2019_2956705 crossref_primary_10_3390_rs16122066 crossref_primary_10_34133_remotesensing_0039 |
Cites_doi | 10.3390/rs10020278 10.1364/AO.21.004119 10.1007/s003710050100 10.1080/01431160903130903 10.1186/s40663-015-0044-5 10.1016/j.rse.2018.02.001 10.1890/0012-9658(2003)084[1879:TLSSCA]2.0.CO;2 10.1109/TGRS.1985.289389 10.1016/S0034-4257(00)00129-2 10.5589/m13-035 10.1109/LGRS.2017.2687702 10.1109/IGARSS.2015.7326100 10.1109/LGRS.2014.2333874 10.1007/3-540-28519-9 10.1109/36.662732 10.1016/S0034-4257(01)00282-6 10.1016/j.rse.2006.02.028 10.1109/TGRS.2005.852480 10.1016/j.cag.2008.01.007 10.1109/LGRS.2015.2440438 10.1109/36.921424 10.1016/j.rse.2015.08.016 10.1109/TGRS.2007.902272 10.1016/0168-1923(91)90069-3 10.1016/j.rse.2018.03.030 10.1016/j.rse.2013.01.013 10.1016/j.rse.2016.01.023 10.1007/s00468-011-0566-6 10.1016/S0034-4257(02)00091-3 10.1016/j.rse.2007.07.016 10.1109/JSTARS.2017.2685528 10.1016/j.rse.2009.01.017 10.1016/j.rse.2008.05.014 10.1109/TGRS.2013.2289852 10.1016/j.rse.2013.03.030 10.1080/01431160701311291 10.1016/j.rse.2012.11.021 10.1109/IGARSS.2013.6723397 10.1109/IGARSS.2016.7729942 10.3390/rs70201667 10.1109/JSTARS.2017.2714423 10.1080/01431160903130911 10.1109/JSTARS.2015.2416254 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/rs10081264 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_1f5ef55758aa4639a34d7930c671f186 10_3390_rs10081264 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO IPNFZ ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS RIG TR2 TUS PQGLB PUEGO |
ID | FETCH-LOGICAL-a356t-57727c6c8e3ed97060c3d8292df17b46f40d294f1182f8fbb07121cf68c7fa583 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:01:09 EDT 2025 Tue Jul 01 04:14:34 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a356t-57727c6c8e3ed97060c3d8292df17b46f40d294f1182f8fbb07121cf68c7fa583 |
ORCID | 0000-0001-9355-2338 |
OpenAccessLink | https://doaj.org/article/1f5ef55758aa4639a34d7930c671f186 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1f5ef55758aa4639a34d7930c671f186 crossref_primary_10_3390_rs10081264 crossref_citationtrail_10_3390_rs10081264 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2018 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Fan (ref_7) 2014; 52 Shirley (ref_42) 2008; 32 Govaerts (ref_15) 1998; 36 ref_36 ref_35 Malenovsky (ref_20) 2008; 112 ref_33 ref_10 Dong (ref_39) 2018; 210 Widlowski (ref_19) 2015; 169 ref_31 Wang (ref_8) 2018; 207 Okin (ref_3) 2013; 130 Li (ref_17) 2007; GE-23 Yin (ref_18) 2015; 7 Widlowski (ref_43) 2008; 112 Soenen (ref_28) 2008; 29 Myneni (ref_12) 1991; 55 Qin (ref_25) 2000; 74 Lauret (ref_14) 2017; 10 Huang (ref_16) 2013; 132 Simioni (ref_4) 2003; 84 Braquelaire (ref_45) 1997; 13 Cao (ref_38) 2015; 12 Wen (ref_9) 2015; 8 Pisek (ref_41) 2011; 25 Kallel (ref_44) 2008; 112 Kimes (ref_6) 2002; 79 Kimes (ref_13) 1982; 21 Wen (ref_30) 2009; 30 ref_23 Huang (ref_37) 2013; 39 Liu (ref_32) 2007; 45 Chen (ref_11) 2001; 39 Huang (ref_34) 2017; 14 Schaaf (ref_2) 2002; 83 Qi (ref_24) 2017; 10 Huang (ref_26) 2009; 30 Cao (ref_40) 2014; 12 Roy (ref_1) 2016; 176 Yin (ref_22) 2013; 135 Huang (ref_27) 2015; 2 Soenen (ref_29) 2005; 43 ref_5 Cote (ref_21) 2009; 113 |
References_xml | – ident: ref_10 doi: 10.3390/rs10020278 – volume: 21 start-page: 4119 year: 1982 ident: ref_13 article-title: Radiative transfer model for heterogeneous 3-D scenes publication-title: Appl. Opt. doi: 10.1364/AO.21.004119 – volume: 13 start-page: 218 year: 1997 ident: ref_45 article-title: A new antialiasing approach for image compositing publication-title: Vis. Comput. doi: 10.1007/s003710050100 – volume: 30 start-page: 5397 year: 2009 ident: ref_30 article-title: Scale effect and scale correction of land-surface albedo in rugged terrain publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903130903 – volume: 2 start-page: 20 year: 2015 ident: ref_27 article-title: A 3D approach to reconstruct continuous optical images using Lidar and MODIS publication-title: For. Ecosyst. doi: 10.1186/s40663-015-0044-5 – volume: 207 start-page: 50 year: 2018 ident: ref_8 article-title: Capturing rapid land surface dynamics with collection V006 modis BRDF/NBAR/Albedo (MCD43) products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.001 – volume: 84 start-page: 1879 year: 2003 ident: ref_4 article-title: Tree layer spatial structure can affect savanna production and water budget: Results of a 3-d model publication-title: Ecology doi: 10.1890/0012-9658(2003)084[1879:TLSSCA]2.0.CO;2 – volume: GE-23 start-page: 705 year: 2007 ident: ref_17 article-title: Geometric-optical modeling of a conifer forest canopy publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.1985.289389 – volume: 74 start-page: 145 year: 2000 ident: ref_25 article-title: 3-D scene modeling of semidesert vegetation cover and its radiation regime publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00129-2 – volume: 39 start-page: S126 year: 2013 ident: ref_37 article-title: Simulation of lidar waveforms with a time-dependent radiosity algorithm publication-title: Can. J. Remote Sens. doi: 10.5589/m13-035 – volume: 14 start-page: 916 year: 2017 ident: ref_34 article-title: Evaluation of atmospheric effects on land-surface directional reflectance with the coupled rapid and vlidort models publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2687702 – ident: ref_35 doi: 10.1109/IGARSS.2015.7326100 – volume: 12 start-page: 234 year: 2014 ident: ref_40 article-title: Modeling directional brightness temperature over mixed scenes of continuous crop and road: A case study of the heihe river basin publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2333874 – ident: ref_5 doi: 10.1007/3-540-28519-9 – volume: 36 start-page: 493 year: 1998 ident: ref_15 article-title: Raytran: A monte carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.662732 – volume: 79 start-page: 320 year: 2002 ident: ref_6 article-title: Recovery of forest canopy characteristics through inversion of a complex 3D model publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00282-6 – volume: 112 start-page: 1 year: 2008 ident: ref_20 article-title: Influence of woody elements of a norway spruce canopy on nadir reflectance simulated by the dart model at very high spatial resolution publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.02.028 – ident: ref_23 – volume: 43 start-page: 2148 year: 2005 ident: ref_29 article-title: SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.852480 – volume: 32 start-page: 260 year: 2008 ident: ref_42 article-title: Fast ray tracing and the potential effects on graphics and gaming courses publication-title: Comput. Graph. doi: 10.1016/j.cag.2008.01.007 – volume: 12 start-page: 1958 year: 2015 ident: ref_38 article-title: Comparison of five slope correction methods for leaf area index estimation from hemispherical photography publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2440438 – volume: 39 start-page: 1061 year: 2001 ident: ref_11 article-title: Multiple-scattering scheme useful for geometric optical modeling publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.921424 – volume: 169 start-page: 418 year: 2015 ident: ref_19 article-title: The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.016 – volume: 45 start-page: 2900 year: 2007 ident: ref_32 article-title: An extended 3-D radiosity–graphics combined model for studying thermal-emission directionality of crop canopy publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.902272 – volume: 55 start-page: 323 year: 1991 ident: ref_12 article-title: Modeling radiative transfer and photosynthesis in three-dimensional vegetation canopies publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(91)90069-3 – volume: 210 start-page: 325 year: 2018 ident: ref_39 article-title: A modified version of the kernel-driven model for correcting the diffuse light of ground multi-angular measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.03.030 – volume: 132 start-page: 221 year: 2013 ident: ref_16 article-title: Rapid: A radiosity applicable to porous individual objects for directional reflectance over complex vegetated scenes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.013 – volume: 176 start-page: 255 year: 2016 ident: ref_1 article-title: A general method to normalize landsat reflectance data to nadir brdf adjusted reflectance publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.01.023 – volume: 25 start-page: 919 year: 2011 ident: ref_41 article-title: Estimating leaf inclination and G-function from leveled digital camera photography in broadleaf canopies publication-title: Trees-Struct. Funct. doi: 10.1007/s00468-011-0566-6 – volume: 83 start-page: 135 year: 2002 ident: ref_2 article-title: First operational brdf, albedo nadir reflectance products from modis publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00091-3 – volume: 112 start-page: 1144 year: 2008 ident: ref_43 article-title: The rami on-line model checker (ROMC): A web-based benchmarking facility for canopy reflectance models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.016 – volume: 10 start-page: 2640 year: 2017 ident: ref_14 article-title: Dart: Recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2685528 – volume: 113 start-page: 1067 year: 2009 ident: ref_21 article-title: The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.01.017 – volume: 112 start-page: 3639 year: 2008 ident: ref_44 article-title: Canopy bidirectional reflectance calculation based on adding method and sail formalism: Addings/addingsd publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.05.014 – volume: 52 start-page: 5469 year: 2014 ident: ref_7 article-title: Gost: A geometric-optical model for sloping terrains publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2289852 – volume: 135 start-page: 213 year: 2013 ident: ref_22 article-title: A new approach of direction discretization and oversampling for 3D anisotropic radiative transfer modeling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.03.030 – volume: 29 start-page: 1007 year: 2008 ident: ref_28 article-title: Improved topographic correction of forest image data using a 3-D canopy reflectance model in multiple forward mode publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701311291 – volume: 130 start-page: 266 year: 2013 ident: ref_3 article-title: Comparison of methods for estimation of absolute vegetation and soil fractional cover using modis normalized brdf-adjusted reflectance data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.11.021 – ident: ref_31 doi: 10.1109/IGARSS.2013.6723397 – ident: ref_33 doi: 10.1109/IGARSS.2016.7729942 – volume: 7 start-page: 1667 year: 2015 ident: ref_18 article-title: Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes publication-title: Remote Sens. doi: 10.3390/rs70201667 – volume: 10 start-page: 4834 year: 2017 ident: ref_24 article-title: A large-scale emulation system for realistic three-dimensional (3-D) forest simulation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2714423 – ident: ref_36 – volume: 30 start-page: 5421 year: 2009 ident: ref_26 article-title: A realistic structure model for large-scale surface leaving radiance simulation of forest canopy and accuracy assessment publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903130911 – volume: 8 start-page: 1506 year: 2015 ident: ref_9 article-title: Modeling land surface reflectance coupled BRDF for HJ-1/CCD data of rugged terrain in Heihe river basin, China publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2416254 |
SSID | ssj0000331904 |
Score | 2.2164114 |
Snippet | To enhance the capability of three-dimensional (3D) radiative transfer models at the kilometer scale (km-scale), the radiosity applicable to porous individual... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 1264 |
SubjectTerms | BRDF forest canopy heterogeneous porous object (HETOBJ) landscape scale radiosity |
Title | Accelerated RAPID Model Using Heterogeneous Porous Objects |
URI | https://doaj.org/article/1f5ef55758aa4639a34d7930c671f186 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kHvQiPrE-SkAvHkKz2Uc23qK1VLFa1EJvYZ94KK209eC_d3YTawXBi6eEMNkkM0Pm-zabbxA6V0RzYMdJrLBIYupSHEvsWEw1oSajQvPwe3T_gfeG9G7ERiutvvyasEoeuHJcG060jgGoEFJSKKfSj5GTBC6BHRZBbBtq3gqZCu9gAqmV0EqPlACvb8_mXsYGp5z-qEArQv2honS30VYNBaOiuoUdtGYnu2ij7kr--rGHLgutoSp4MQcTPRWD207kW5eNo_CdP-r5lSxTSAAL7D0aTGd-86j8xMp8Hw27Ny_XvbjudRBLwvgiZoByM821sMSa3EvaaGJEmqfG4UxR7mhi0pw6zweccEoBNEixdlzozEkmyAFqTKYTe4giZpwGlMakAniUGKyYZTIzBgP0gh3WRBdfz1_qWgjc96MYl0AIvK_Kb1810dnS9q2Sv_jV6sq7cWnhJavDAQhkWQey_CuQR_8xyDHaBEQjqhV6J6ixmL3bU0ANC9VC60Wnf__cConyCdaJvX8 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+RAPID+Model+Using+Heterogeneous+Porous+Objects&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Huang%2C+Huaguo&rft.date=2018-08-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=10&rft.issue=8&rft.spage=1264&rft_id=info:doi/10.3390%2Frs10081264&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs10081264 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |