Accelerated RAPID Model Using Heterogeneous Porous Objects

To enhance the capability of three-dimensional (3D) radiative transfer models at the kilometer scale (km-scale), the radiosity applicable to porous individual objects (RAPID) model has been upgraded to RAPID3. The major innovation is that the homogeneous porous object concept (HOMOBJ) used for a tre...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 10; no. 8; p. 1264
Main Author Huang, Huaguo
Format Journal Article
LanguageEnglish
Published MDPI AG 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To enhance the capability of three-dimensional (3D) radiative transfer models at the kilometer scale (km-scale), the radiosity applicable to porous individual objects (RAPID) model has been upgraded to RAPID3. The major innovation is that the homogeneous porous object concept (HOMOBJ) used for a tree crown scale is extended to a heterogeneous porous object (HETOBJ) for a forest plot scale. Correspondingly, the radiosity-graphics-combined method has been extended from HOMOBJ to HETOBJ, including the random dynamic projection algorithm, the updated modules of view factors, the single scattering estimation, the multiple scattering solutions, and the bidirectional reflectance factor (BRF) calculations. Five cases of the third radiation transfer model intercomparison (RAMI-3) have been used to verify RAPID3 by the RAMI-3 online checker. Seven scenes with different degrees of topography (valleys and hills) at 500 m size have also been simulated. Using a personal computer (CPU 2.5 GHz, memory 4 GB), the computation time of BRF at 500 m is only approximately 13 min per scene. The mean root mean square error is 0.015. RAPID3 simulated the enhanced contrast of BRF between backward and forward directions due to topography. RAPID3 has been integrated into the free RAPID platform, which should be very useful for the remote sensing community. In addition, the HETOBJ concept may also be useful for the speedup of ray tracing models.
AbstractList To enhance the capability of three-dimensional (3D) radiative transfer models at the kilometer scale (km-scale), the radiosity applicable to porous individual objects (RAPID) model has been upgraded to RAPID3. The major innovation is that the homogeneous porous object concept (HOMOBJ) used for a tree crown scale is extended to a heterogeneous porous object (HETOBJ) for a forest plot scale. Correspondingly, the radiosity-graphics-combined method has been extended from HOMOBJ to HETOBJ, including the random dynamic projection algorithm, the updated modules of view factors, the single scattering estimation, the multiple scattering solutions, and the bidirectional reflectance factor (BRF) calculations. Five cases of the third radiation transfer model intercomparison (RAMI-3) have been used to verify RAPID3 by the RAMI-3 online checker. Seven scenes with different degrees of topography (valleys and hills) at 500 m size have also been simulated. Using a personal computer (CPU 2.5 GHz, memory 4 GB), the computation time of BRF at 500 m is only approximately 13 min per scene. The mean root mean square error is 0.015. RAPID3 simulated the enhanced contrast of BRF between backward and forward directions due to topography. RAPID3 has been integrated into the free RAPID platform, which should be very useful for the remote sensing community. In addition, the HETOBJ concept may also be useful for the speedup of ray tracing models.
Author Huang, Huaguo
Author_xml – sequence: 1
  givenname: Huaguo
  orcidid: 0000-0001-9355-2338
  surname: Huang
  fullname: Huang, Huaguo
BookMark eNptkEtLAzEUhYNUsNZu_AWzFkbzmiTjrtRHC0qL2HXIJDdlyjiRJC78906tqIh3cy6Xcz8O5xSN-tADQucEXzJW46uYCMaKUMGP0JhiSUtOazr6tZ-gaUo7PAxjpMZ8jK5n1kIH0WRwxdNsvbwpHoODrtiktt8WC8gQwxZ6CG-pWIe4l1WzA5vTGTr2pksw_dIJ2tzdPs8X5cPqfjmfPZSGVSKXlZRUWmEVMHC1xAJb5tQQxnkiGy48x47W3BOiqFe-abAklFgvlJXeVIpN0PLAdcHs9GtsX0x818G0-vMQ4labmFvbgSa-Al9VslLGcMFqw7iTNcNWSOKJEgPr4sCyMaQUwX_zCNb7EvVPiYMZ_zHbNpvchj5H03b_vXwAq3Rzgg
CitedBy_id crossref_primary_10_1109_TGRS_2019_2917923
crossref_primary_10_1134_S1024856024701604
crossref_primary_10_1016_j_rse_2020_111902
crossref_primary_10_1016_j_rse_2020_112082
crossref_primary_10_1109_TGRS_2019_2956705
crossref_primary_10_3390_rs16122066
crossref_primary_10_34133_remotesensing_0039
Cites_doi 10.3390/rs10020278
10.1364/AO.21.004119
10.1007/s003710050100
10.1080/01431160903130903
10.1186/s40663-015-0044-5
10.1016/j.rse.2018.02.001
10.1890/0012-9658(2003)084[1879:TLSSCA]2.0.CO;2
10.1109/TGRS.1985.289389
10.1016/S0034-4257(00)00129-2
10.5589/m13-035
10.1109/LGRS.2017.2687702
10.1109/IGARSS.2015.7326100
10.1109/LGRS.2014.2333874
10.1007/3-540-28519-9
10.1109/36.662732
10.1016/S0034-4257(01)00282-6
10.1016/j.rse.2006.02.028
10.1109/TGRS.2005.852480
10.1016/j.cag.2008.01.007
10.1109/LGRS.2015.2440438
10.1109/36.921424
10.1016/j.rse.2015.08.016
10.1109/TGRS.2007.902272
10.1016/0168-1923(91)90069-3
10.1016/j.rse.2018.03.030
10.1016/j.rse.2013.01.013
10.1016/j.rse.2016.01.023
10.1007/s00468-011-0566-6
10.1016/S0034-4257(02)00091-3
10.1016/j.rse.2007.07.016
10.1109/JSTARS.2017.2685528
10.1016/j.rse.2009.01.017
10.1016/j.rse.2008.05.014
10.1109/TGRS.2013.2289852
10.1016/j.rse.2013.03.030
10.1080/01431160701311291
10.1016/j.rse.2012.11.021
10.1109/IGARSS.2013.6723397
10.1109/IGARSS.2016.7729942
10.3390/rs70201667
10.1109/JSTARS.2017.2714423
10.1080/01431160903130911
10.1109/JSTARS.2015.2416254
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/rs10081264
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_1f5ef55758aa4639a34d7930c671f186
10_3390_rs10081264
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
IPNFZ
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
PQGLB
PUEGO
ID FETCH-LOGICAL-a356t-57727c6c8e3ed97060c3d8292df17b46f40d294f1182f8fbb07121cf68c7fa583
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:01:09 EDT 2025
Tue Jul 01 04:14:34 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a356t-57727c6c8e3ed97060c3d8292df17b46f40d294f1182f8fbb07121cf68c7fa583
ORCID 0000-0001-9355-2338
OpenAccessLink https://doaj.org/article/1f5ef55758aa4639a34d7930c671f186
ParticipantIDs doaj_primary_oai_doaj_org_article_1f5ef55758aa4639a34d7930c671f186
crossref_primary_10_3390_rs10081264
crossref_citationtrail_10_3390_rs10081264
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Fan (ref_7) 2014; 52
Shirley (ref_42) 2008; 32
Govaerts (ref_15) 1998; 36
ref_36
ref_35
Malenovsky (ref_20) 2008; 112
ref_33
ref_10
Dong (ref_39) 2018; 210
Widlowski (ref_19) 2015; 169
ref_31
Wang (ref_8) 2018; 207
Okin (ref_3) 2013; 130
Li (ref_17) 2007; GE-23
Yin (ref_18) 2015; 7
Widlowski (ref_43) 2008; 112
Soenen (ref_28) 2008; 29
Myneni (ref_12) 1991; 55
Qin (ref_25) 2000; 74
Lauret (ref_14) 2017; 10
Huang (ref_16) 2013; 132
Simioni (ref_4) 2003; 84
Braquelaire (ref_45) 1997; 13
Cao (ref_38) 2015; 12
Wen (ref_9) 2015; 8
Pisek (ref_41) 2011; 25
Kallel (ref_44) 2008; 112
Kimes (ref_6) 2002; 79
Kimes (ref_13) 1982; 21
Wen (ref_30) 2009; 30
ref_23
Huang (ref_37) 2013; 39
Liu (ref_32) 2007; 45
Chen (ref_11) 2001; 39
Huang (ref_34) 2017; 14
Schaaf (ref_2) 2002; 83
Qi (ref_24) 2017; 10
Huang (ref_26) 2009; 30
Cao (ref_40) 2014; 12
Roy (ref_1) 2016; 176
Yin (ref_22) 2013; 135
Huang (ref_27) 2015; 2
Soenen (ref_29) 2005; 43
ref_5
Cote (ref_21) 2009; 113
References_xml – ident: ref_10
  doi: 10.3390/rs10020278
– volume: 21
  start-page: 4119
  year: 1982
  ident: ref_13
  article-title: Radiative transfer model for heterogeneous 3-D scenes
  publication-title: Appl. Opt.
  doi: 10.1364/AO.21.004119
– volume: 13
  start-page: 218
  year: 1997
  ident: ref_45
  article-title: A new antialiasing approach for image compositing
  publication-title: Vis. Comput.
  doi: 10.1007/s003710050100
– volume: 30
  start-page: 5397
  year: 2009
  ident: ref_30
  article-title: Scale effect and scale correction of land-surface albedo in rugged terrain
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903130903
– volume: 2
  start-page: 20
  year: 2015
  ident: ref_27
  article-title: A 3D approach to reconstruct continuous optical images using Lidar and MODIS
  publication-title: For. Ecosyst.
  doi: 10.1186/s40663-015-0044-5
– volume: 207
  start-page: 50
  year: 2018
  ident: ref_8
  article-title: Capturing rapid land surface dynamics with collection V006 modis BRDF/NBAR/Albedo (MCD43) products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.001
– volume: 84
  start-page: 1879
  year: 2003
  ident: ref_4
  article-title: Tree layer spatial structure can affect savanna production and water budget: Results of a 3-d model
  publication-title: Ecology
  doi: 10.1890/0012-9658(2003)084[1879:TLSSCA]2.0.CO;2
– volume: GE-23
  start-page: 705
  year: 2007
  ident: ref_17
  article-title: Geometric-optical modeling of a conifer forest canopy
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.1985.289389
– volume: 74
  start-page: 145
  year: 2000
  ident: ref_25
  article-title: 3-D scene modeling of semidesert vegetation cover and its radiation regime
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00129-2
– volume: 39
  start-page: S126
  year: 2013
  ident: ref_37
  article-title: Simulation of lidar waveforms with a time-dependent radiosity algorithm
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m13-035
– volume: 14
  start-page: 916
  year: 2017
  ident: ref_34
  article-title: Evaluation of atmospheric effects on land-surface directional reflectance with the coupled rapid and vlidort models
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2687702
– ident: ref_35
  doi: 10.1109/IGARSS.2015.7326100
– volume: 12
  start-page: 234
  year: 2014
  ident: ref_40
  article-title: Modeling directional brightness temperature over mixed scenes of continuous crop and road: A case study of the heihe river basin
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2333874
– ident: ref_5
  doi: 10.1007/3-540-28519-9
– volume: 36
  start-page: 493
  year: 1998
  ident: ref_15
  article-title: Raytran: A monte carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.662732
– volume: 79
  start-page: 320
  year: 2002
  ident: ref_6
  article-title: Recovery of forest canopy characteristics through inversion of a complex 3D model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00282-6
– volume: 112
  start-page: 1
  year: 2008
  ident: ref_20
  article-title: Influence of woody elements of a norway spruce canopy on nadir reflectance simulated by the dart model at very high spatial resolution
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.02.028
– ident: ref_23
– volume: 43
  start-page: 2148
  year: 2005
  ident: ref_29
  article-title: SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.852480
– volume: 32
  start-page: 260
  year: 2008
  ident: ref_42
  article-title: Fast ray tracing and the potential effects on graphics and gaming courses
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2008.01.007
– volume: 12
  start-page: 1958
  year: 2015
  ident: ref_38
  article-title: Comparison of five slope correction methods for leaf area index estimation from hemispherical photography
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2440438
– volume: 39
  start-page: 1061
  year: 2001
  ident: ref_11
  article-title: Multiple-scattering scheme useful for geometric optical modeling
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.921424
– volume: 169
  start-page: 418
  year: 2015
  ident: ref_19
  article-title: The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.016
– volume: 45
  start-page: 2900
  year: 2007
  ident: ref_32
  article-title: An extended 3-D radiosity–graphics combined model for studying thermal-emission directionality of crop canopy
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.902272
– volume: 55
  start-page: 323
  year: 1991
  ident: ref_12
  article-title: Modeling radiative transfer and photosynthesis in three-dimensional vegetation canopies
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(91)90069-3
– volume: 210
  start-page: 325
  year: 2018
  ident: ref_39
  article-title: A modified version of the kernel-driven model for correcting the diffuse light of ground multi-angular measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.03.030
– volume: 132
  start-page: 221
  year: 2013
  ident: ref_16
  article-title: Rapid: A radiosity applicable to porous individual objects for directional reflectance over complex vegetated scenes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.013
– volume: 176
  start-page: 255
  year: 2016
  ident: ref_1
  article-title: A general method to normalize landsat reflectance data to nadir brdf adjusted reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.01.023
– volume: 25
  start-page: 919
  year: 2011
  ident: ref_41
  article-title: Estimating leaf inclination and G-function from leveled digital camera photography in broadleaf canopies
  publication-title: Trees-Struct. Funct.
  doi: 10.1007/s00468-011-0566-6
– volume: 83
  start-page: 135
  year: 2002
  ident: ref_2
  article-title: First operational brdf, albedo nadir reflectance products from modis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00091-3
– volume: 112
  start-page: 1144
  year: 2008
  ident: ref_43
  article-title: The rami on-line model checker (ROMC): A web-based benchmarking facility for canopy reflectance models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.016
– volume: 10
  start-page: 2640
  year: 2017
  ident: ref_14
  article-title: Dart: Recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2685528
– volume: 113
  start-page: 1067
  year: 2009
  ident: ref_21
  article-title: The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.01.017
– volume: 112
  start-page: 3639
  year: 2008
  ident: ref_44
  article-title: Canopy bidirectional reflectance calculation based on adding method and sail formalism: Addings/addingsd
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.05.014
– volume: 52
  start-page: 5469
  year: 2014
  ident: ref_7
  article-title: Gost: A geometric-optical model for sloping terrains
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2289852
– volume: 135
  start-page: 213
  year: 2013
  ident: ref_22
  article-title: A new approach of direction discretization and oversampling for 3D anisotropic radiative transfer modeling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.03.030
– volume: 29
  start-page: 1007
  year: 2008
  ident: ref_28
  article-title: Improved topographic correction of forest image data using a 3-D canopy reflectance model in multiple forward mode
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701311291
– volume: 130
  start-page: 266
  year: 2013
  ident: ref_3
  article-title: Comparison of methods for estimation of absolute vegetation and soil fractional cover using modis normalized brdf-adjusted reflectance data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.11.021
– ident: ref_31
  doi: 10.1109/IGARSS.2013.6723397
– ident: ref_33
  doi: 10.1109/IGARSS.2016.7729942
– volume: 7
  start-page: 1667
  year: 2015
  ident: ref_18
  article-title: Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes
  publication-title: Remote Sens.
  doi: 10.3390/rs70201667
– volume: 10
  start-page: 4834
  year: 2017
  ident: ref_24
  article-title: A large-scale emulation system for realistic three-dimensional (3-D) forest simulation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2714423
– ident: ref_36
– volume: 30
  start-page: 5421
  year: 2009
  ident: ref_26
  article-title: A realistic structure model for large-scale surface leaving radiance simulation of forest canopy and accuracy assessment
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903130911
– volume: 8
  start-page: 1506
  year: 2015
  ident: ref_9
  article-title: Modeling land surface reflectance coupled BRDF for HJ-1/CCD data of rugged terrain in Heihe river basin, China
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2416254
SSID ssj0000331904
Score 2.2164114
Snippet To enhance the capability of three-dimensional (3D) radiative transfer models at the kilometer scale (km-scale), the radiosity applicable to porous individual...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1264
SubjectTerms BRDF
forest canopy
heterogeneous porous object (HETOBJ)
landscape scale
radiosity
Title Accelerated RAPID Model Using Heterogeneous Porous Objects
URI https://doaj.org/article/1f5ef55758aa4639a34d7930c671f186
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kHvQiPrE-SkAvHkKz2Uc23qK1VLFa1EJvYZ94KK209eC_d3YTawXBi6eEMNkkM0Pm-zabbxA6V0RzYMdJrLBIYupSHEvsWEw1oSajQvPwe3T_gfeG9G7ERiutvvyasEoeuHJcG060jgGoEFJSKKfSj5GTBC6BHRZBbBtq3gqZCu9gAqmV0EqPlACvb8_mXsYGp5z-qEArQv2honS30VYNBaOiuoUdtGYnu2ij7kr--rGHLgutoSp4MQcTPRWD207kW5eNo_CdP-r5lSxTSAAL7D0aTGd-86j8xMp8Hw27Ny_XvbjudRBLwvgiZoByM821sMSa3EvaaGJEmqfG4UxR7mhi0pw6zweccEoBNEixdlzozEkmyAFqTKYTe4giZpwGlMakAniUGKyYZTIzBgP0gh3WRBdfz1_qWgjc96MYl0AIvK_Kb1810dnS9q2Sv_jV6sq7cWnhJavDAQhkWQey_CuQR_8xyDHaBEQjqhV6J6ixmL3bU0ANC9VC60Wnf__cConyCdaJvX8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+RAPID+Model+Using+Heterogeneous+Porous+Objects&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Huang%2C+Huaguo&rft.date=2018-08-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=10&rft.issue=8&rft.spage=1264&rft_id=info:doi/10.3390%2Frs10081264&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs10081264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon