Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs

•DEM is utilized to simulate the process of TBMs indentation.•Clustered model for crystalline rock with PFC is firstly proposed.•Laboratory tests are conducted to calibrate the numerical results.•Fragmentation processes are analyzed on the meso-level.•Effects of wedge angle, confinement stress and p...

Full description

Saved in:
Bibliographic Details
Published inTunnelling and underground space technology Vol. 53; pp. 96 - 108
Main Authors Li, X.F., Li, H.B., Liu, Y.Q., Zhou, Q.C., Xia, X.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •DEM is utilized to simulate the process of TBMs indentation.•Clustered model for crystalline rock with PFC is firstly proposed.•Laboratory tests are conducted to calibrate the numerical results.•Fragmentation processes are analyzed on the meso-level.•Effects of wedge angle, confinement stress and penetration velocity are discussed. The rock fragmentation mechanism and failure process induced by a wedge indenter for TBMs are numerically simulated utilizing the discrete element method (DEM) in the present study. A novel clustered assembly approach with irregular boundaries for grain-based brittle rock is incorporated into the particle flow code (PFC) to calibrate the macro-responses such as the low tensile to compressive strength ratio observed in laboratory tests. The simulation results are compared with laboratory tests which were conducted to reveal the rock indentation process and rock-tool interactions. The numerical analysis can be divided to two main parts. Part one is to investigate the crack propagation and damage evolution at meso-scale associated with the force–indentation curve. The stress field distributions with respect to indentation time are depicted. It is revealed that the tensile cracks are resulted from the chipping process and the shear cracks are induced by the crushing force with the orientation angle ranging from 45° to 55°, which is in good agreement with macro-observations. In Part two, the fragmentation efficiency and penetration rate under different cases are analyzed with several parameters such as the wedge angle, the confinement stress and the penetration velocity. Meanwhile, the blunt indenter is taken as a special case for analysis and comparison of the fragmentation mechanism.
AbstractList The rock fragmentation mechanism and failure process induced by a wedge indenter for TBMs are numerically simulated utilizing the discrete element method (DEM) in the present study. A novel clustered assembly approach with irregular boundaries for grain-based brittle rock is incorporated into the particle flow code (PFC) to calibrate the macro-responses such as the low tensile to compressive strength ratio observed in laboratory tests. The simulation results are compared with laboratory tests which were conducted to reveal the rock indentation process and rock-tool interactions. The numerical analysis can be divided to two main parts. Part one is to investigate the crack propagation and damage evolution at meso-scale associated with the force-indentation curve. The stress field distributions with respect to indentation time are depicted. It is revealed that the tensile cracks are resulted from the chipping process and the shear cracks are induced by the crushing force with the orientation angle ranging from 45 degree to 55 degree , which is in good agreement with macro-observations. In Part two, the fragmentation efficiency and penetration rate under different cases are analyzed with several parameters such as the wedge angle, the confinement stress and the penetration velocity. Meanwhile, the blunt indenter is taken as a special case for analysis and comparison of the fragmentation mechanism.
•DEM is utilized to simulate the process of TBMs indentation.•Clustered model for crystalline rock with PFC is firstly proposed.•Laboratory tests are conducted to calibrate the numerical results.•Fragmentation processes are analyzed on the meso-level.•Effects of wedge angle, confinement stress and penetration velocity are discussed. The rock fragmentation mechanism and failure process induced by a wedge indenter for TBMs are numerically simulated utilizing the discrete element method (DEM) in the present study. A novel clustered assembly approach with irregular boundaries for grain-based brittle rock is incorporated into the particle flow code (PFC) to calibrate the macro-responses such as the low tensile to compressive strength ratio observed in laboratory tests. The simulation results are compared with laboratory tests which were conducted to reveal the rock indentation process and rock-tool interactions. The numerical analysis can be divided to two main parts. Part one is to investigate the crack propagation and damage evolution at meso-scale associated with the force–indentation curve. The stress field distributions with respect to indentation time are depicted. It is revealed that the tensile cracks are resulted from the chipping process and the shear cracks are induced by the crushing force with the orientation angle ranging from 45° to 55°, which is in good agreement with macro-observations. In Part two, the fragmentation efficiency and penetration rate under different cases are analyzed with several parameters such as the wedge angle, the confinement stress and the penetration velocity. Meanwhile, the blunt indenter is taken as a special case for analysis and comparison of the fragmentation mechanism.
Author Liu, Y.Q.
Zhou, Q.C.
Li, H.B.
Xia, X.
Li, X.F.
Author_xml – sequence: 1
  givenname: X.F.
  surname: Li
  fullname: Li, X.F.
– sequence: 2
  givenname: H.B.
  surname: Li
  fullname: Li, H.B.
  email: hbli@whrsm.ac.cn
– sequence: 3
  givenname: Y.Q.
  surname: Liu
  fullname: Liu, Y.Q.
– sequence: 4
  givenname: Q.C.
  surname: Zhou
  fullname: Zhou, Q.C.
– sequence: 5
  givenname: X.
  surname: Xia
  fullname: Xia, X.
BookMark eNp9kLtOxDAQRS20SOwu_ACVS5oEP-LEK9EA4iXxaKCisBxnvHhJ4sV2QPw9WYWKgmqk0T2juWeBZr3vAaFjSnJKaHm6ydMQU84IFTllOaFkD82prGRW8LKYoTmRssyqaiUP0CLGDSFEMLaao9fHoYPgjG5xdN3Q6uR8j73FwZt3bINed9CnaduBedO9i13Ecag3YBJOHn9Bswa8hR5SmHLWB_x88RAP0b7VbYSj37lEL9dXz5e32f3Tzd3l-X2muShTRpuaWF0BqY1hhRGkEUUthK5ooe2KGat5Uxay5sIwSa0WpWxWnIMVjRXAOV-ik-nuNviPAWJSnYsG2lb34IeoqGSikIRINkblFDXBxxjAKuOmduPzrlWUqJ1PtVE7n2rnU1GmRp8jyv6g2-A6Hb7_h84mCMb-nw6CisZBb6BxYfSnGu_-w38AHUSTqQ
CitedBy_id crossref_primary_10_1061__ASCE_GM_1943_5622_0002317
crossref_primary_10_1007_s00603_017_1381_1
crossref_primary_10_1016_j_engfracmech_2025_110845
crossref_primary_10_1016_j_ijrmms_2022_105069
crossref_primary_10_1007_s40948_021_00273_2
crossref_primary_10_1016_j_engfracmech_2024_110607
crossref_primary_10_1007_s12517_019_4926_7
crossref_primary_10_1016_j_tust_2023_105174
crossref_primary_10_1007_s12665_023_10748_y
crossref_primary_10_1016_j_ijmst_2020_03_007
crossref_primary_10_1016_j_tust_2018_12_014
crossref_primary_10_1016_j_ijrmms_2023_105577
crossref_primary_10_1016_j_tust_2024_105861
crossref_primary_10_1080_17480930_2017_1342064
crossref_primary_10_1016_j_tafmec_2018_03_005
crossref_primary_10_1016_j_compgeo_2017_05_023
crossref_primary_10_1016_j_engfracmech_2020_107421
crossref_primary_10_2113_2022_5324148
crossref_primary_10_1061__ASCE_GM_1943_5622_0001737
crossref_primary_10_1016_j_tust_2019_103000
crossref_primary_10_1155_2022_8975797
crossref_primary_10_1155_2022_8351316
crossref_primary_10_1088_1742_2140_aac096
crossref_primary_10_1098_rsos_200091
crossref_primary_10_1016_j_compgeo_2023_105885
crossref_primary_10_1155_2022_1177745
crossref_primary_10_1007_s00603_018_1566_2
crossref_primary_10_1007_s10064_020_01764_4
crossref_primary_10_1007_s43452_025_01161_2
crossref_primary_10_1016_j_ijrmms_2021_104875
crossref_primary_10_1007_s10706_021_01785_0
crossref_primary_10_1063_5_0134750
crossref_primary_10_1088_1742_6596_2736_1_012028
crossref_primary_10_1016_j_geothermics_2019_05_016
crossref_primary_10_1007_s10064_022_02594_2
crossref_primary_10_1007_s11709_023_0947_0
crossref_primary_10_1016_j_engfracmech_2020_107320
crossref_primary_10_1007_s40948_022_00389_z
crossref_primary_10_1016_j_tust_2016_10_004
crossref_primary_10_1007_s00603_021_02594_w
crossref_primary_10_1007_s00603_022_02886_9
crossref_primary_10_1016_j_compgeo_2019_02_018
crossref_primary_10_1016_j_ijmst_2022_02_002
crossref_primary_10_1007_s10706_019_00952_8
crossref_primary_10_1007_s10706_020_01288_4
crossref_primary_10_3390_en10081154
crossref_primary_10_1016_j_ijimpeng_2018_04_006
crossref_primary_10_1007_s44290_025_00211_1
crossref_primary_10_1007_s10706_022_02338_9
crossref_primary_10_1155_2020_4713532
crossref_primary_10_1016_j_enggeo_2024_107645
crossref_primary_10_1016_j_enganabound_2023_12_020
crossref_primary_10_1016_j_ijmecsci_2022_107405
crossref_primary_10_1007_s40571_023_00645_3
crossref_primary_10_1016_j_enggeo_2024_107649
crossref_primary_10_1093_jge_gxac088
crossref_primary_10_1007_s00603_023_03245_y
crossref_primary_10_1016_j_tust_2018_08_051
crossref_primary_10_1016_j_ijrmms_2024_106004
crossref_primary_10_1016_j_energy_2024_130489
crossref_primary_10_1016_j_powtec_2024_120254
crossref_primary_10_1007_s00603_023_03700_w
crossref_primary_10_1016_j_engfracmech_2024_110599
crossref_primary_10_1007_s00603_021_02732_4
crossref_primary_10_1016_j_tust_2019_03_012
crossref_primary_10_1016_j_engfracmech_2024_110479
crossref_primary_10_1016_j_compgeo_2017_10_014
crossref_primary_10_1016_j_ijrmms_2020_104219
crossref_primary_10_1109_ACCESS_2020_3011709
crossref_primary_10_1088_1755_1315_861_3_032082
crossref_primary_10_1155_2020_8841796
crossref_primary_10_3389_feart_2022_1047484
crossref_primary_10_1016_j_compgeo_2023_105723
crossref_primary_10_1007_s11629_021_6914_0
crossref_primary_10_3390_pr11051407
crossref_primary_10_1007_s00603_022_03025_0
crossref_primary_10_1155_2019_7249724
crossref_primary_10_1016_j_tust_2017_09_003
crossref_primary_10_3390_app13106090
crossref_primary_10_1016_j_tust_2018_04_029
crossref_primary_10_1007_s00603_024_04099_8
crossref_primary_10_1016_j_tust_2020_103496
crossref_primary_10_1016_j_enganabound_2024_105924
crossref_primary_10_3390_pr12010074
crossref_primary_10_1007_s43452_020_00172_5
crossref_primary_10_3390_su141811733
crossref_primary_10_1016_j_petrol_2019_106489
crossref_primary_10_1007_s43452_021_00360_x
crossref_primary_10_1016_j_enggeo_2016_06_019
crossref_primary_10_1016_j_tust_2023_105387
crossref_primary_10_3390_buildings12101567
crossref_primary_10_1007_s11440_019_00852_4
crossref_primary_10_1109_ACCESS_2020_3039438
crossref_primary_10_1016_j_enganabound_2024_105775
crossref_primary_10_1007_s00603_018_1644_5
crossref_primary_10_1142_S1758825122500107
crossref_primary_10_1016_j_geoen_2023_211928
crossref_primary_10_3390_su141912909
crossref_primary_10_1002_nag_2858
crossref_primary_10_1016_j_undsp_2024_06_003
crossref_primary_10_1098_rsos_211630
crossref_primary_10_1016_j_energy_2023_129747
crossref_primary_10_1016_j_geothermics_2021_102281
crossref_primary_10_1016_j_petrol_2021_108992
Cites_doi 10.1016/0148-9062(85)93229-2
10.1016/j.ijrmms.2004.09.011
10.1016/j.ijrmms.2004.03.094
10.1007/BF00541038
10.1007/s00603-006-0109-4
10.1016/j.cma.2003.12.056
10.1016/j.ijrmms.2011.11.004
10.1016/0148-9062(84)91177-X
10.1016/j.tust.2004.08.006
10.1007/BF01238179
10.1016/0148-9062(67)90030-7
10.1063/1.1735814
10.1007/BF01042712
10.1007/BF01020422
10.1007/BF01583958
10.1016/0148-9062(68)90043-0
10.1016/j.ijrmms.2010.08.012
10.1016/0148-9062(72)90044-7
10.1016/j.tust.2005.06.004
10.1016/S0148-9062(96)00039-3
10.1016/S0020-7683(01)00117-2
10.1016/j.ijrmms.2004.03.013
10.1002/(SICI)1096-9853(199701)21:1<1::AID-NAG851>3.0.CO;2-5
10.1007/s00603-003-0014-z
10.1016/j.ijrmms.2007.02.002
10.1016/j.ijrmms.2012.07.031
10.1007/BF00823224
10.1016/S0013-7952(97)00059-8
10.1016/0148-9062(69)90038-2
10.1007/s006030050010
10.1680/geot.1979.29.1.47
10.1016/0148-9062(81)90511-8
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1016/j.tust.2015.12.010
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-4364
EndPage 108
ExternalDocumentID 10_1016_j_tust_2015_12_010
S0886779815303631
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-a356t-1db0fa7e0bcc24c50d54b55a714af92cfa3d648b35c281fa568d933ef5df5e333
IEDL.DBID .~1
ISSN 0886-7798
IngestDate Mon Jul 21 10:18:21 EDT 2025
Thu Apr 24 22:57:50 EDT 2025
Tue Jul 01 01:06:21 EDT 2025
Fri Feb 23 02:25:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Grain-based rock
Wedge indenter
TBM indentation
Particle flow code
Fragmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a356t-1db0fa7e0bcc24c50d54b55a714af92cfa3d648b35c281fa568d933ef5df5e333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825480082
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1825480082
crossref_citationtrail_10_1016_j_tust_2015_12_010
crossref_primary_10_1016_j_tust_2015_12_010
elsevier_sciencedirect_doi_10_1016_j_tust_2015_12_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2016
2016-03-00
20160301
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: March 2016
PublicationDecade 2010
PublicationTitle Tunnelling and underground space technology
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gong, Zhao, Jiao (b0045) 2005; 20
Su, Ali Akcin (b0175) 2011; 48
Onate, Rojek (b0120) 2004; 193
Tan, Kou, Lindqvist (b0185) 1998; 49
Rojek (b0145) 2007; 7
Wagner, Schümann (b0195) 1971; 3
Cundall, Strack (b0035) 1979; 29
Sanio, H.P., 1985. Prediction of the performance of disc cutters in anisotropic rock. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 22(3). Pergamon, pp. 153–161.
Yoon, Zang, Stephansson (b0200) 2012; 49
Cho, Martin, Sego (b0025) 2007; 44
Huang, Damjanac, Detournay (b0065) 1998; 31
Pang, Goldsmith (b0130) 1990; 23
Saouma, V.E., Kleinosky, M.J., 1984. Finite element simulation of rock cutting: a fracture mechanics approach. In: The 25th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
Maurer, Rinehart (b0105) 1960; 31
Hill, R., 1950. The Mathematical Theory of Plasticity. The Oxford Engineering Science Series. Oxford, pp. 97–114.
Liu, Kou, Lindqvist, Tang (b0100) 2004; 41
Rostami (b0150) 2013; 57
Lawn, Wilshaw (b0090) 1975; 10
Tan, Lindqvist, Kou (b0180) 1997; 21
Potyondy, Cundall (b0135) 2004; 41
Bieniawski, Z.T., 1967. Mechanism of brittle fracture of rock: part I—theory of the fracture process. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 4(4). Pergamon, pp. 395–406.
Gong, Jiao, Zhao (b0050) 2006; 21
Alehossein, Hood (b0005) 1996
Stacey, T.R., 1981. A simple extension strain criterion for fracture of brittle rock. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 18(6). Pergamon, pp. 469–474.
Benjumea, R., Sikarskie, D.L., 1969. A note on the penetration of a rigid wedge into a nonisotropic brittle material. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 6(4). Pergamon, pp. 343–352.
Pang, Goldsmith, Hood (b0125) 1989; 22
Moon, Oh (b0115) 2012; 45
Sikarskie, D.L., Cheatham, J.B., 1973. Penetration problems in rock mechanics. In: Symposium Proceedings, vol. 3.
Krivtsov, A.M., Pavlovskaia, E.E., Wiercigroch, M., 2004. Impact fracture of rock materials due to percussive drilling action. def. 2, 2.
Chiaia (b0020) 2001; 38
Miller, M.H., Sikarskie, D.L., 1968. On the penetration of rock by three-dimensional indentors. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 5(5). Pergamon, pp. 375–398.
Tang (b0190) 1997; 34
Zhu, Tang (b0205) 2004; 37
Hood (b0060) 1977
Robotnov, Y.N., 1969. Creep Problems in Structural Mechanics. North-Holland, Amsterdam.
Kou, Liu, Lindqvist, Tang (b0075) 2004; 41
Lawn, Swain (b0085) 1975; 10
Innaurato, Oggeri, Oreste, Vinai (b0070) 2007; 40
Dutta, P.K., 1972. A theory of percussive drill bit penetration. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 9(4). Pergamon, pp. 543–544.
Cook, N.G.W., Hood, M., Tsai, F., 1984. Observations of crack growth in hard rock loaded by an indenter. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 21(2). Pergamon, pp. 97–107.
Lindqvist (b0095) 1984; 17
Potyondy (10.1016/j.tust.2015.12.010_b0135) 2004; 41
Lawn (10.1016/j.tust.2015.12.010_b0085) 1975; 10
10.1016/j.tust.2015.12.010_b0170
Liu (10.1016/j.tust.2015.12.010_b0100) 2004; 41
Onate (10.1016/j.tust.2015.12.010_b0120) 2004; 193
Tan (10.1016/j.tust.2015.12.010_b0180) 1997; 21
Gong (10.1016/j.tust.2015.12.010_b0045) 2005; 20
Su (10.1016/j.tust.2015.12.010_b0175) 2011; 48
10.1016/j.tust.2015.12.010_b0165
Tan (10.1016/j.tust.2015.12.010_b0185) 1998; 49
10.1016/j.tust.2015.12.010_b0140
10.1016/j.tust.2015.12.010_b0040
10.1016/j.tust.2015.12.010_b0160
Cho (10.1016/j.tust.2015.12.010_b0025) 2007; 44
Tang (10.1016/j.tust.2015.12.010_b0190) 1997; 34
Innaurato (10.1016/j.tust.2015.12.010_b0070) 2007; 40
Gong (10.1016/j.tust.2015.12.010_b0050) 2006; 21
Zhu (10.1016/j.tust.2015.12.010_b0205) 2004; 37
Rostami (10.1016/j.tust.2015.12.010_b0150) 2013; 57
Cundall (10.1016/j.tust.2015.12.010_b0035) 1979; 29
10.1016/j.tust.2015.12.010_b0080
Pang (10.1016/j.tust.2015.12.010_b0125) 1989; 22
Huang (10.1016/j.tust.2015.12.010_b0065) 1998; 31
Pang (10.1016/j.tust.2015.12.010_b0130) 1990; 23
Lindqvist (10.1016/j.tust.2015.12.010_b0095) 1984; 17
Alehossein (10.1016/j.tust.2015.12.010_b0005) 1996
Maurer (10.1016/j.tust.2015.12.010_b0105) 1960; 31
Rojek (10.1016/j.tust.2015.12.010_b0145) 2007; 7
10.1016/j.tust.2015.12.010_b0155
10.1016/j.tust.2015.12.010_b0055
10.1016/j.tust.2015.12.010_b0110
10.1016/j.tust.2015.12.010_b0010
Hood (10.1016/j.tust.2015.12.010_b0060) 1977
10.1016/j.tust.2015.12.010_b0030
Yoon (10.1016/j.tust.2015.12.010_b0200) 2012; 49
Moon (10.1016/j.tust.2015.12.010_b0115) 2012; 45
Wagner (10.1016/j.tust.2015.12.010_b0195) 1971; 3
Kou (10.1016/j.tust.2015.12.010_b0075) 2004; 41
Chiaia (10.1016/j.tust.2015.12.010_b0020) 2001; 38
Lawn (10.1016/j.tust.2015.12.010_b0090) 1975; 10
10.1016/j.tust.2015.12.010_b0015
References_xml – start-page: 113
  year: 1977
  end-page: 123
  ident: b0060
  article-title: Phenomena relating to the failure of hard rock adjacent to an indenter
  publication-title: J. South Afr. Inst. Mining Metall.
– reference: Dutta, P.K., 1972. A theory of percussive drill bit penetration. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 9(4). Pergamon, pp. 543–544.
– reference: Cook, N.G.W., Hood, M., Tsai, F., 1984. Observations of crack growth in hard rock loaded by an indenter. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 21(2). Pergamon, pp. 97–107.
– reference: Benjumea, R., Sikarskie, D.L., 1969. A note on the penetration of a rigid wedge into a nonisotropic brittle material. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 6(4). Pergamon, pp. 343–352.
– volume: 10
  start-page: 113
  year: 1975
  end-page: 122
  ident: b0085
  article-title: Microfracture beneath point indentations in brittle solids
  publication-title: J. Mater. Sci.
– start-page: 693
  year: 1996
  end-page: 700
  ident: b0005
  article-title: State-of-the-art review of rock models for disc roller cutters
  publication-title: Rock Mechanics
– volume: 31
  start-page: 1247
  year: 1960
  end-page: 1252
  ident: b0105
  article-title: Impact crater formation in rock
  publication-title: J. Appl. Phys.
– volume: 34
  start-page: 249
  year: 1997
  end-page: 261
  ident: b0190
  article-title: Numerical simulation of progressive rock failure and associated seismicity
  publication-title: Int. J. Rock Mech. Mining Sci.
– volume: 49
  start-page: 68
  year: 2012
  end-page: 83
  ident: b0200
  article-title: Simulating fracture and friction of Aue granite under confined asymmetric compressive test using clumped particle model
  publication-title: Int. J. Rock Mech. Mining Sci.
– volume: 17
  start-page: 97
  year: 1984
  end-page: 112
  ident: b0095
  article-title: Stress fields and subsurface crack propagation of single and multiple rock indentation and disc cutting
  publication-title: Rock Mech. Rock Eng.
– volume: 193
  start-page: 3087
  year: 2004
  end-page: 3128
  ident: b0120
  article-title: Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 48
  start-page: 434
  year: 2011
  end-page: 442
  ident: b0175
  article-title: Numerical simulation of rock cutting using the discrete element method
  publication-title: Int. J. Rock Mech. Mining Sci.
– volume: 20
  start-page: 183
  year: 2005
  end-page: 191
  ident: b0045
  article-title: Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters
  publication-title: Tunnel. Underground Space Technol.
– reference: Bieniawski, Z.T., 1967. Mechanism of brittle fracture of rock: part I—theory of the fracture process. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 4(4). Pergamon, pp. 395–406.
– volume: 29
  start-page: 47
  year: 1979
  end-page: 65
  ident: b0035
  article-title: A discrete numerical model for granular assemblies
  publication-title: Geotechnique
– volume: 31
  start-page: 81
  year: 1998
  end-page: 94
  ident: b0065
  article-title: Normal wedge indentation in rocks with lateral confinement
  publication-title: Rock Mech. Rock Eng.
– volume: 57
  start-page: 172
  year: 2013
  end-page: 186
  ident: b0150
  article-title: Study of pressure distribution within the crushed zone in the contact area between rock and disc cutters
  publication-title: Int. J. Rock Mech. Mining Sci.
– reference: Saouma, V.E., Kleinosky, M.J., 1984. Finite element simulation of rock cutting: a fracture mechanics approach. In: The 25th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
– reference: Sikarskie, D.L., Cheatham, J.B., 1973. Penetration problems in rock mechanics. In: Symposium Proceedings, vol. 3.
– volume: 23
  start-page: 53
  year: 1990
  end-page: 63
  ident: b0130
  article-title: Investigation of crack formation during loading of brittle rock
  publication-title: Rock Mech. Rock Eng.
– reference: Hill, R., 1950. The Mathematical Theory of Plasticity. The Oxford Engineering Science Series. Oxford, pp. 97–114.
– volume: 41
  start-page: 1329
  year: 2004
  end-page: 1364
  ident: b0135
  article-title: A bonded-particle model for rock
  publication-title: Int. J. Rock Mech. Mining Sci.
– reference: Stacey, T.R., 1981. A simple extension strain criterion for fracture of brittle rock. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 18(6). Pergamon, pp. 469–474.
– volume: 40
  start-page: 429
  year: 2007
  end-page: 451
  ident: b0070
  article-title: Experimental and numerical studies on rock breaking with TBM tools under high stress confinement
  publication-title: Rock Mech. Rock Eng.
– volume: 10
  start-page: 1049
  year: 1975
  end-page: 1081
  ident: b0090
  article-title: Indentation fracture: principles and applications
  publication-title: J. Mater. Sci.
– volume: 45
  start-page: 837
  year: 2012
  end-page: 849
  ident: b0115
  article-title: A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method
  publication-title: Rock Mech. Rock Eng.
– volume: 7
  start-page: 224
  year: 2007
  end-page: 230
  ident: b0145
  article-title: Discrete element modelling of rock cutting
  publication-title: Comput. Meth. Mater. Sci.
– volume: 3
  start-page: 185
  year: 1971
  end-page: 207
  ident: b0195
  article-title: The stamp-load bearing strength of rock an experimental and theoretical investigation
  publication-title: Rock Mech.
– volume: 41
  start-page: 527
  year: 2004
  end-page: 532
  ident: b0075
  article-title: Rock fragmentation mechanisms induced by a drill bit
  publication-title: Int. J. Rock Mech. Mining Sci.
– reference: Krivtsov, A.M., Pavlovskaia, E.E., Wiercigroch, M., 2004. Impact fracture of rock materials due to percussive drilling action. def. 2, 2.
– reference: Sanio, H.P., 1985. Prediction of the performance of disc cutters in anisotropic rock. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 22(3). Pergamon, pp. 153–161.
– volume: 22
  start-page: 127
  year: 1989
  end-page: 148
  ident: b0125
  article-title: A force–indentation model for brittle rocks
  publication-title: Rock Mech. Rock Eng.
– volume: 41
  start-page: 14
  year: 2004
  end-page: 19
  ident: b0100
  article-title: Numerical simulation of shear fracture (mode II) in heterogeneous brittle rock
  publication-title: Int. J. Rock Mech. Mining Sci.
– volume: 21
  start-page: 46
  year: 2006
  end-page: 55
  ident: b0050
  article-title: Numerical modelling of the effects of joint spacing on rock fragmentation by TBM cutters
  publication-title: Tunnel. Underground Space Technol.
– volume: 21
  start-page: 1
  year: 1997
  end-page: 13
  ident: b0180
  article-title: Application of a splitting fracture model to the simulation of rock indentation subsurface fractures
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– reference: Robotnov, Y.N., 1969. Creep Problems in Structural Mechanics. North-Holland, Amsterdam.
– volume: 37
  start-page: 25
  year: 2004
  end-page: 56
  ident: b0205
  article-title: Micromechanical model for simulating the fracture process of rock
  publication-title: Rock Mech. Rock Eng.
– volume: 49
  start-page: 277
  year: 1998
  end-page: 284
  ident: b0185
  article-title: Application of the DDM and fracture mechanics model on the simulation of rock breakage by mechanical tools
  publication-title: Eng. Geol.
– volume: 38
  start-page: 7747
  year: 2001
  end-page: 7768
  ident: b0020
  article-title: Fracture mechanisms induced in a brittle material by a hard cutting indenter
  publication-title: Int. J. Solids Struct.
– volume: 44
  start-page: 997
  year: 2007
  end-page: 1010
  ident: b0025
  article-title: A clumped particle model for rock
  publication-title: Int. J. Rock Mech. Mining Sci.
– reference: Miller, M.H., Sikarskie, D.L., 1968. On the penetration of rock by three-dimensional indentors. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 5(5). Pergamon, pp. 375–398.
– ident: 10.1016/j.tust.2015.12.010_b0155
  doi: 10.1016/0148-9062(85)93229-2
– volume: 41
  start-page: 1329
  issue: 8
  year: 2004
  ident: 10.1016/j.tust.2015.12.010_b0135
  article-title: A bonded-particle model for rock
  publication-title: Int. J. Rock Mech. Mining Sci.
  doi: 10.1016/j.ijrmms.2004.09.011
– volume: 41
  start-page: 527
  year: 2004
  ident: 10.1016/j.tust.2015.12.010_b0075
  article-title: Rock fragmentation mechanisms induced by a drill bit
  publication-title: Int. J. Rock Mech. Mining Sci.
  doi: 10.1016/j.ijrmms.2004.03.094
– volume: 10
  start-page: 113
  issue: 1
  year: 1975
  ident: 10.1016/j.tust.2015.12.010_b0085
  article-title: Microfracture beneath point indentations in brittle solids
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00541038
– volume: 40
  start-page: 429
  issue: 5
  year: 2007
  ident: 10.1016/j.tust.2015.12.010_b0070
  article-title: Experimental and numerical studies on rock breaking with TBM tools under high stress confinement
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-006-0109-4
– volume: 193
  start-page: 3087
  issue: 27
  year: 2004
  ident: 10.1016/j.tust.2015.12.010_b0120
  article-title: Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2003.12.056
– volume: 49
  start-page: 68
  year: 2012
  ident: 10.1016/j.tust.2015.12.010_b0200
  article-title: Simulating fracture and friction of Aue granite under confined asymmetric compressive test using clumped particle model
  publication-title: Int. J. Rock Mech. Mining Sci.
  doi: 10.1016/j.ijrmms.2011.11.004
– ident: 10.1016/j.tust.2015.12.010_b0030
  doi: 10.1016/0148-9062(84)91177-X
– volume: 20
  start-page: 183
  issue: 2
  year: 2005
  ident: 10.1016/j.tust.2015.12.010_b0045
  article-title: Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters
  publication-title: Tunnel. Underground Space Technol.
  doi: 10.1016/j.tust.2004.08.006
– volume: 45
  start-page: 837
  issue: 5
  year: 2012
  ident: 10.1016/j.tust.2015.12.010_b0115
  article-title: A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method
  publication-title: Rock Mech. Rock Eng.
– volume: 3
  start-page: 185
  issue: 4
  year: 1971
  ident: 10.1016/j.tust.2015.12.010_b0195
  article-title: The stamp-load bearing strength of rock an experimental and theoretical investigation
  publication-title: Rock Mech.
  doi: 10.1007/BF01238179
– ident: 10.1016/j.tust.2015.12.010_b0015
  doi: 10.1016/0148-9062(67)90030-7
– ident: 10.1016/j.tust.2015.12.010_b0055
– volume: 31
  start-page: 1247
  issue: 7
  year: 1960
  ident: 10.1016/j.tust.2015.12.010_b0105
  article-title: Impact crater formation in rock
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1735814
– ident: 10.1016/j.tust.2015.12.010_b0160
– volume: 17
  start-page: 97
  issue: 2
  year: 1984
  ident: 10.1016/j.tust.2015.12.010_b0095
  article-title: Stress fields and subsurface crack propagation of single and multiple rock indentation and disc cutting
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/BF01042712
– volume: 23
  start-page: 53
  issue: 1
  year: 1990
  ident: 10.1016/j.tust.2015.12.010_b0130
  article-title: Investigation of crack formation during loading of brittle rock
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/BF01020422
– volume: 22
  start-page: 127
  issue: 2
  year: 1989
  ident: 10.1016/j.tust.2015.12.010_b0125
  article-title: A force–indentation model for brittle rocks
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/BF01583958
– ident: 10.1016/j.tust.2015.12.010_b0110
  doi: 10.1016/0148-9062(68)90043-0
– volume: 48
  start-page: 434
  issue: 3
  year: 2011
  ident: 10.1016/j.tust.2015.12.010_b0175
  article-title: Numerical simulation of rock cutting using the discrete element method
  publication-title: Int. J. Rock Mech. Mining Sci.
  doi: 10.1016/j.ijrmms.2010.08.012
– ident: 10.1016/j.tust.2015.12.010_b0040
  doi: 10.1016/0148-9062(72)90044-7
– volume: 21
  start-page: 46
  issue: 1
  year: 2006
  ident: 10.1016/j.tust.2015.12.010_b0050
  article-title: Numerical modelling of the effects of joint spacing on rock fragmentation by TBM cutters
  publication-title: Tunnel. Underground Space Technol.
  doi: 10.1016/j.tust.2005.06.004
– volume: 7
  start-page: 224
  year: 2007
  ident: 10.1016/j.tust.2015.12.010_b0145
  article-title: Discrete element modelling of rock cutting
  publication-title: Comput. Meth. Mater. Sci.
– start-page: 693
  year: 1996
  ident: 10.1016/j.tust.2015.12.010_b0005
  article-title: State-of-the-art review of rock models for disc roller cutters
– volume: 34
  start-page: 249
  issue: 2
  year: 1997
  ident: 10.1016/j.tust.2015.12.010_b0190
  article-title: Numerical simulation of progressive rock failure and associated seismicity
  publication-title: Int. J. Rock Mech. Mining Sci.
  doi: 10.1016/S0148-9062(96)00039-3
– volume: 38
  start-page: 7747
  issue: 44
  year: 2001
  ident: 10.1016/j.tust.2015.12.010_b0020
  article-title: Fracture mechanisms induced in a brittle material by a hard cutting indenter
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(01)00117-2
– volume: 41
  start-page: 14
  year: 2004
  ident: 10.1016/j.tust.2015.12.010_b0100
  article-title: Numerical simulation of shear fracture (mode II) in heterogeneous brittle rock
  publication-title: Int. J. Rock Mech. Mining Sci.
  doi: 10.1016/j.ijrmms.2004.03.013
– volume: 21
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.tust.2015.12.010_b0180
  article-title: Application of a splitting fracture model to the simulation of rock indentation subsurface fractures
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/(SICI)1096-9853(199701)21:1<1::AID-NAG851>3.0.CO;2-5
– volume: 37
  start-page: 25
  issue: 1
  year: 2004
  ident: 10.1016/j.tust.2015.12.010_b0205
  article-title: Micromechanical model for simulating the fracture process of rock
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-003-0014-z
– volume: 44
  start-page: 997
  issue: 7
  year: 2007
  ident: 10.1016/j.tust.2015.12.010_b0025
  article-title: A clumped particle model for rock
  publication-title: Int. J. Rock Mech. Mining Sci.
  doi: 10.1016/j.ijrmms.2007.02.002
– volume: 57
  start-page: 172
  year: 2013
  ident: 10.1016/j.tust.2015.12.010_b0150
  article-title: Study of pressure distribution within the crushed zone in the contact area between rock and disc cutters
  publication-title: Int. J. Rock Mech. Mining Sci.
  doi: 10.1016/j.ijrmms.2012.07.031
– start-page: 113
  year: 1977
  ident: 10.1016/j.tust.2015.12.010_b0060
  article-title: Phenomena relating to the failure of hard rock adjacent to an indenter
  publication-title: J. South Afr. Inst. Mining Metall.
– volume: 10
  start-page: 1049
  issue: 6
  year: 1975
  ident: 10.1016/j.tust.2015.12.010_b0090
  article-title: Indentation fracture: principles and applications
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00823224
– volume: 49
  start-page: 277
  issue: 3
  year: 1998
  ident: 10.1016/j.tust.2015.12.010_b0185
  article-title: Application of the DDM and fracture mechanics model on the simulation of rock breakage by mechanical tools
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(97)00059-8
– ident: 10.1016/j.tust.2015.12.010_b0080
– ident: 10.1016/j.tust.2015.12.010_b0165
– ident: 10.1016/j.tust.2015.12.010_b0010
  doi: 10.1016/0148-9062(69)90038-2
– ident: 10.1016/j.tust.2015.12.010_b0140
– volume: 31
  start-page: 81
  issue: 2
  year: 1998
  ident: 10.1016/j.tust.2015.12.010_b0065
  article-title: Normal wedge indentation in rocks with lateral confinement
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s006030050010
– volume: 29
  start-page: 47
  issue: 1
  year: 1979
  ident: 10.1016/j.tust.2015.12.010_b0035
  article-title: A discrete numerical model for granular assemblies
  publication-title: Geotechnique
  doi: 10.1680/geot.1979.29.1.47
– ident: 10.1016/j.tust.2015.12.010_b0170
  doi: 10.1016/0148-9062(81)90511-8
SSID ssj0005229
Score 2.4604902
Snippet •DEM is utilized to simulate the process of TBMs indentation.•Clustered model for crystalline rock with PFC is firstly proposed.•Laboratory tests are conducted...
The rock fragmentation mechanism and failure process induced by a wedge indenter for TBMs are numerically simulated utilizing the discrete element method (DEM)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 96
SubjectTerms Computer simulation
Fracture mechanics
Fragmentation
Grain-based rock
Indenters
Mathematical models
Particle flow code
Penetration
Rock
TBM indentation
Wedge indenter
Wedges
Title Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs
URI https://dx.doi.org/10.1016/j.tust.2015.12.010
https://www.proquest.com/docview/1825480082
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wTwZvUbZOmTY8qyqq4FxUEDyFPWXW7i-3izd9upk1FRTx4bJmUMpPMIzPfDEIHxocIJqck0pJAU21NI164JDLG-BDXpNI0swiuB1n_Lr28Z_cz6LTDwkBZZdD9rU5vtHV40wvc7E2Gw96NPx9Znhfcn1nIRjYI9jSHXX70_rXMo5lUBsQRUAfgTFvjVQOswZtA1lwJAor2d-P0Q003tud8CS0GpxEft_-1jGZsuYIWvrQSXEUPg2mbe3nB1XAUZnLhscPeQD1j9yofRwFlVOKRBbjvsBpVuJoquIjB9Ri_wc0annjdFzrpYu_P4tuT62oN3Z2f3Z72ozA4IZKUZXWUGBU7mdtYaU1SzWLDUsWYzJNUuoJoJ6nJUq4o04QnTrKMm4JS65hxzFJK19FsOS7tBsIqzhUhWnkpah_bWGUKyZwiXPOUxyrfREnHMaFDV3EYbvEiuvKxJwFcFsBlkRDhubyJDj_XTNqeGn9Ss04Q4tvOEF7p_7luv5Oa8EcG8iCytONpJRKIijk4P1v__PY2mvdPWVuLtoNm69ep3fXOSa32mt23h-aOL676gw8XDeY4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5F5VA4VNCC6AIMUntCJvbYY08OHNiqdEkupFIlDsOsVaBxotpRxYU_xR_kPXuM0gr1gNSr7bFG37x5-0LIvgUTwRYpi4xi2FTbpJEY-CSy1oKJazNlm1kEo3E-PMuOz_l5j_zuamEwrTLw_panN9w6POkHNPuL6bT_Be5HXhQDAXcWo5FJyKw8cT-vwW6r3h19gkM-YOzw8-TjMAqjBSKV8ryOEqtjrwoXa2NYZnhseaY5V0WSKT9gxqvU5pnQKTdMJF7xXFgw_Z3n1nOXohcU-P6DDNgFjk14-2s1r6QZjYa7i3B7oVKnTSqrsY4CZC5vfJBYtvtvaXhLLjTC7vAx2QhaKn3fAvGE9Fy5SR6t9C7cIl_HyzbYc0mr6SwMAaNzT0Ei_qD-Sl3MQllTSWcO64un1ayi1VKj54fWc3qNrjy6AGYbWvdSUKDp5MOoekrO7gXOZ2StnJfuOaE6LjRjRgPZGDCmnLYDxb1mwohMxLrYJkmHmDShjTlO07iUXb7ad4koS0RZJkwCytvkzd81i7aJx51f8-4g5A1SlCBl7lz3ujs1CXcUAy-qdPNlJRM0wwVqWzv_-e9XZH04GZ3K06PxyS55CG_yNhFuj6zVV0v3AjSjWr9sKJGSb_dN-n8A8j8jFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+rock+fragmentation+mechanisms+subject+to+wedge+penetration+for+TBMs&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Li%2C+X.F.&rft.au=Li%2C+H.B.&rft.au=Liu%2C+Y.Q.&rft.au=Zhou%2C+Q.C.&rft.date=2016-03-01&rft.pub=Elsevier+Ltd&rft.issn=0886-7798&rft.eissn=1878-4364&rft.volume=53&rft.spage=96&rft.epage=108&rft_id=info:doi/10.1016%2Fj.tust.2015.12.010&rft.externalDocID=S0886779815303631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon