Cr(OH)3(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation
We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)3(s) (1.0 g/L) at pH 7.0–9.0...
Saved in:
Published in | Environmental science & technology Vol. 48; no. 18; pp. 10760 - 10768 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.09.2014
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)3(s) (1.0 g/L) at pH 7.0–9.0 under oxic or anoxic conditions. Homogeneous Mn(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 days and precipitated as hausmannite. When Cr(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr(VI) was attributed to Cr(OH)3(s) oxidation by a newly formed Mn oxide via Mn(II) oxidation catalyzed on Cr(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn(II) oxidation produced a mixed valence Mn(III/IV) solid phase. Our results suggest that toxic Cr(VI) can be naturally produced via Cr(OH)3(s) oxidation coupled with the oxidation of dissolved Mn(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr(OH)3(s), which has been considered the most common and a stable remediation product of Cr(VI) contamination. |
---|---|
AbstractList | We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)3(s) (1.0 g/L) at pH 7.0-9.0 under oxic or anoxic conditions. Homogeneous Mn(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 days and precipitated as hausmannite. When Cr(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr(VI) was attributed to Cr(OH)3(s) oxidation by a newly formed Mn oxide via Mn(II) oxidation catalyzed on Cr(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn(II) oxidation produced a mixed valence Mn(III/IV) solid phase. Our results suggest that toxic Cr(VI) can be naturally produced via Cr(OH)3(s) oxidation coupled with the oxidation of dissolved Mn(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr(OH)3(s), which has been considered the most common and a stable remediation product of Cr(VI) contamination.We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)3(s) (1.0 g/L) at pH 7.0-9.0 under oxic or anoxic conditions. Homogeneous Mn(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 days and precipitated as hausmannite. When Cr(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr(VI) was attributed to Cr(OH)3(s) oxidation by a newly formed Mn oxide via Mn(II) oxidation catalyzed on Cr(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn(II) oxidation produced a mixed valence Mn(III/IV) solid phase. Our results suggest that toxic Cr(VI) can be naturally produced via Cr(OH)3(s) oxidation coupled with the oxidation of dissolved Mn(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr(OH)3(s), which has been considered the most common and a stable remediation product of Cr(VI) contamination. We examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)₃(s) (1.0 g/L) at pH 7.0–9.0 under oxic or anoxic conditions. Homogeneous Mn(II) oxidation by dissolved O₂ was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 days and precipitated as hausmannite. When Cr(OH)₃(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr(VI) was attributed to Cr(OH)₃(s) oxidation by a newly formed Mn oxide via Mn(II) oxidation catalyzed on Cr(OH)₃(s) surface. XANES results indicated that this surface-catalyzed Mn(II) oxidation produced a mixed valence Mn(III/IV) solid phase. Our results suggest that toxic Cr(VI) can be naturally produced via Cr(OH)₃(s) oxidation coupled with the oxidation of dissolved Mn(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr(OH)₃(s), which has been considered the most common and a stable remediation product of Cr(VI) contamination. This study examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)₃(s) (1.0 g/L) at pH 7 – 9 under oxic or anoxic conditions. In the absence of Cr(OH)₃(s), homogeneous Mn(II) oxidation by dissolved O₂ was not observed at pH ≤ 8.0 for 50 d. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 d and precipitated as hausmannite. When Cr(OH)₃(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Our results suggest that Cr(OH)₃(s) was readily oxidized by a newly formed Mn oxide as a result of Mn(II) oxidation catalyzed on Cr(OH)₃(s) surface. XANES analysis of the residual solids after the reaction between 1.0 g/L Cr(OH)₃(s) and 204 μM Mn(II) at pH 9.0 for 22 d revealed that the product of surface catalyzed Mn(II) oxidation resembled birnessite. The rate and extent of Cr(OH)₃(s) oxidation was likely controlled by those of surface catalyzed Mn(II) oxidation as the production of Cr(VI) increased with increasing pH and initial Mn(II) concentrations. This study evokes the potential environmental hazard of sparingly soluble Cr(OH)₃(s) that can be a source of Cr(VI) in the presence of dissolved Mn(II). We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)3(s) (1.0 g/L) at pH 7.0-9.0 under oxic or anoxic conditions. Homogeneous Mn(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 days and precipitated as hausmannite. When Cr(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr(VI) was attributed to Cr(OH)3(s) oxidation by a newly formed Mn oxide via Mn(II) oxidation catalyzed on Cr(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn(II) oxidation produced a mixed valence Mn(III/IV) solid phase. Our results suggest that toxic Cr(VI) can be naturally produced via Cr(OH)3(s) oxidation coupled with the oxidation of dissolved Mn(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr(OH)3(s), which has been considered the most common and a stable remediation product of Cr(VI) contamination. We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)3(s) (1.0 g/L) at pH 7.0–9.0 under oxic or anoxic conditions. Homogeneous Mn(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 days and precipitated as hausmannite. When Cr(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr(VI) was attributed to Cr(OH)3(s) oxidation by a newly formed Mn oxide via Mn(II) oxidation catalyzed on Cr(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn(II) oxidation produced a mixed valence Mn(III/IV) solid phase. Our results suggest that toxic Cr(VI) can be naturally produced via Cr(OH)3(s) oxidation coupled with the oxidation of dissolved Mn(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr(OH)3(s), which has been considered the most common and a stable remediation product of Cr(VI) contamination. |
Author | Qafoku, Nikolla P Lee, Giehyeon Namgung, Seonyi Kwon, Man Jae |
AuthorAffiliation | Department of Earth System Sciences Yonsei University Korea Institute of Science and Technology |
AuthorAffiliation_xml | – name: Department of Earth System Sciences – name: Korea Institute of Science and Technology – name: Yonsei University |
Author_xml | – sequence: 1 givenname: Seonyi surname: Namgung fullname: Namgung, Seonyi organization: Yonsei University – sequence: 2 givenname: Man Jae surname: Kwon fullname: Kwon, Man Jae organization: Korea Institute of Science and Technology – sequence: 3 givenname: Nikolla P surname: Qafoku fullname: Qafoku, Nikolla P – sequence: 4 givenname: Giehyeon surname: Lee fullname: Lee, Giehyeon email: ghlee@yonsei.ac.kr organization: Yonsei University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25144300$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1166857$$D View this record in Osti.gov |
BookMark | eNqF0VFr2zAQB3BROpa020O_QDGDQfLg9k6yZOexC-0aSMlDN9ibkKUzdXDkTrKh2aefs7SjlEBfdCB-dxz_O2HHvvXE2BnCBQLHS4oSBGDRH7ExSg6pLCQeszEAinQm1K8RO4lxDQBcQPGRjbjELBMAY_ZtHiar26mYxGmyeqqd6erWJwvveksuKbfJfR8qYymZm8402z_D552fLBav9Cf2oTJNpM_P9ZT9vLn-Mb9Nl6vvi_nVMjVCqi7FwlKOrnAzLkuqQDhXVnZWceuMRMd5Xua5Va7MK6dyQ6RsVkhSGWa714lT9mU_t41draOtO7IPtvWebKcRlSpkPqDJHj2G9ndPsdObOlpqGuOp7aPmuxC4kkq9S1EqrhTCDAZ6_kz7ckNOP4Z6Y8JWv-Q4gMs9sKGNMVClh_X-pdMFUzcaQe8upf9fauiYvul4GXrIft1bY6Net33wQ84H3F-twZu_ |
CitedBy_id | crossref_primary_10_1007_s40726_016_0044_2 crossref_primary_10_1016_j_watres_2022_118323 crossref_primary_10_1021_acs_est_6b03484 crossref_primary_10_1021_acsearthspacechem_0c00142 crossref_primary_10_1021_acs_analchem_5b03464 crossref_primary_10_1007_s11368_022_03259_z crossref_primary_10_1016_j_gca_2019_07_044 crossref_primary_10_1016_j_scitotenv_2022_160149 crossref_primary_10_1021_acs_est_5b05739 crossref_primary_10_1139_er_2016_0012 crossref_primary_10_1016_j_jhazmat_2022_128739 crossref_primary_10_1016_j_jes_2016_01_012 crossref_primary_10_1016_j_gca_2020_03_036 crossref_primary_10_1016_j_chemosphere_2019_01_070 crossref_primary_10_1016_j_watres_2022_118403 crossref_primary_10_1016_j_chemgeo_2017_10_004 crossref_primary_10_1016_j_chemosphere_2022_136398 crossref_primary_10_1016_j_scitotenv_2023_166450 crossref_primary_10_1016_j_watres_2022_118077 crossref_primary_10_1016_j_jhazmat_2020_122166 crossref_primary_10_1016_j_chemgeo_2016_01_021 crossref_primary_10_1016_j_scitotenv_2021_145762 crossref_primary_10_1016_j_envpol_2024_125436 crossref_primary_10_1021_acs_est_3c04151 crossref_primary_10_1186_s12932_015_0031_3 crossref_primary_10_1016_j_gca_2019_02_039 crossref_primary_10_1016_j_watres_2017_09_021 crossref_primary_10_1021_acs_est_7b04097 crossref_primary_10_1021_acs_est_6b06044 crossref_primary_10_1021_acs_est_8b02213 crossref_primary_10_1080_09593330_2022_2050820 crossref_primary_10_1021_acs_est_3c05487 crossref_primary_10_1016_j_colsurfa_2024_135448 crossref_primary_10_1021_acsearthspacechem_8b00129 crossref_primary_10_1007_s11783_020_1260_y crossref_primary_10_1016_j_jhazmat_2021_127233 crossref_primary_10_1016_j_jenvman_2017_01_031 crossref_primary_10_1021_acs_est_2c05775 crossref_primary_10_1039_C9EM00389D crossref_primary_10_1016_j_chemgeo_2022_121166 crossref_primary_10_1016_j_jenvman_2023_119475 crossref_primary_10_1021_acs_est_6b04039 crossref_primary_10_1080_09593330_2016_1167249 crossref_primary_10_1016_j_apgeochem_2015_05_010 crossref_primary_10_1016_j_watres_2023_120545 crossref_primary_10_1021_acs_est_1c02285 crossref_primary_10_1021_acs_est_0c02357 crossref_primary_10_1021_acs_est_0c04851 crossref_primary_10_1021_acsami_6b04292 crossref_primary_10_1021_acs_est_6b05408 crossref_primary_10_1016_j_watres_2023_120309 crossref_primary_10_1016_j_apgeochem_2022_105426 crossref_primary_10_1016_j_jhazmat_2023_133112 crossref_primary_10_1016_j_scitotenv_2019_134622 crossref_primary_10_1016_j_jhazmat_2023_131698 crossref_primary_10_5004_dwt_2021_27314 crossref_primary_10_1016_j_envint_2023_107939 crossref_primary_10_1039_D2EM00395C crossref_primary_10_1116_1_4934628 crossref_primary_10_1016_j_molliq_2020_114052 crossref_primary_10_1021_acs_est_3c00087 crossref_primary_10_1016_j_scitotenv_2023_164890 crossref_primary_10_1016_j_jhydrol_2017_10_016 crossref_primary_10_1016_j_jes_2023_05_015 crossref_primary_10_1515_htmp_2022_0252 crossref_primary_10_1016_j_chemgeo_2020_119670 crossref_primary_10_1021_acsearthspacechem_2c00113 crossref_primary_10_3390_soilsystems3040074 crossref_primary_10_1016_j_jhazmat_2022_128805 crossref_primary_10_1016_j_jes_2022_09_015 crossref_primary_10_1016_j_jhazmat_2023_132073 crossref_primary_10_1016_j_jhazmat_2022_130150 crossref_primary_10_1016_j_jhydrol_2024_131480 crossref_primary_10_1016_j_seppur_2024_127422 crossref_primary_10_1021_acs_est_0c01855 crossref_primary_10_1016_j_chemosphere_2021_131991 |
Cites_doi | 10.1016/0016-7037(95)00298-E 10.1016/j.tim.2005.07.009 10.1007/978-94-011-2148-4 10.1021/es100902y 10.1016/j.gca.2004.06.013 10.1128/AEM.68.2.874-880.2002 10.1016/0016-7037(83)90219-3 10.2475/ajs.304.1.67 10.1016/S0016-7037(01)00808-0 10.1016/0016-7037(91)90451-A 10.1107/S0909049505012719 10.1016/j.gca.2008.04.010 10.1016/0016-7037(94)90226-7 10.1073/pnas.0409119102 10.1016/j.gca.2004.06.035 10.1038/333134a0 10.1016/j.gca.2006.06.1548 10.1016/0043-1354(91)90160-R 10.1016/S0048-9697(02)00298-X 10.1021/es402108d 10.1046/j.1365-2427.1999.00379.x 10.1016/S0003-2670(01)93556-1 10.1016/S0016-7037(00)00368-9 10.1016/j.gca.2011.07.026 10.1016/j.apgeochem.2004.01.011 10.2138/am.2005.1557 10.1016/S0269-7491(99)00168-2 10.1016/S0016-7037(03)00217-5 10.1016/S0016-7037(00)00400-2 10.1016/0048-9697(89)90189-7 10.1346/CCMN.2004.0520210 10.1016/0016-7037(85)90038-9 10.1021/ic990456l 10.1016/j.gca.2011.02.022 10.1016/S0016-7037(02)01001-3 10.1021/es00025a006 10.1016/S0016-7037(97)00239-1 10.2138/am.2005.1669 10.1007/BF00280721 10.1007/s00254-002-0605-0 10.1080/15320389709383589 10.1021/es048073w 10.1016/S0016-7037(97)00355-4 10.1016/0016-7037(80)90091-5 10.1006/abio.1997.2349 10.1016/0021-9797(89)90416-5 10.1021/es0615167 10.1080/01490450590945997 10.1021/es900498r 10.1016/0016-7037(81)90091-0 10.1021/es00165a005 10.1016/0016-7037(84)90413-7 10.1021/es2013038 10.1021/ja062097g 10.1021/es1009955 10.1021/es60100a008 10.1016/j.scitotenv.2004.02.022 |
ContentType | Journal Article |
CorporateAuthor | Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 OTOTI |
DOI | 10.1021/es503018u |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 10768 |
ExternalDocumentID | 1166857 25144300 10_1021_es503018u a478507252 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 ABFRP OTOTI |
ID | FETCH-LOGICAL-a356t-18ce71d8d925bef03ddbfc9f2cda51d227b77c6db7fd67aee6c485e64145e64d3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri May 19 01:40:57 EDT 2023 Fri Jul 11 02:25:28 EDT 2025 Thu Jul 10 23:28:15 EDT 2025 Mon Jul 21 06:00:28 EDT 2025 Tue Jul 01 04:28:49 EDT 2025 Thu Apr 24 23:00:22 EDT 2025 Thu Aug 27 13:42:38 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a356t-18ce71d8d925bef03ddbfc9f2cda51d227b77c6db7fd67aee6c485e64145e64d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC05-76RL01830 PNNL-SA-101626 |
PMID | 25144300 |
PQID | 1562661090 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1166857 proquest_miscellaneous_2000226566 proquest_miscellaneous_1562661090 pubmed_primary_25144300 crossref_citationtrail_10_1021_es503018u crossref_primary_10_1021_es503018u acs_journals_10_1021_es503018u |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-16 |
PublicationDateYYYYMMDD | 2014-09-16 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2014 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | Luo J. (ref42/cit42) 2000; 39 Eary L. E. (ref13/cit13) 1987; 21 Learman D. R. (ref36/cit36) 2011; 75 Murray K. J. (ref23/cit23) 2007; 41 Junta J. L. (ref31/cit31) 1994; 58 Francis C. A. (ref33/cit33) 2002; 68 Oze C. (ref16/cit16) 2007; 104 Santelli C. M. (ref50/cit50) 2011; 75 Tebo B. M. (ref64/cit64) 2005; 13 Gough L. P. (ref2/cit2) 1989; 1901 Webb S. M. (ref35/cit35) 2005; 102 Murray J. W. (ref65/cit65) 1995 U.S. EPA (ref58/cit58) 2004 Davies S. H. R. (ref30/cit30) 1989; 129 Ndung’u K. (ref21/cit21) 2010; 25 U.S. EPA (ref40/cit40) 1992 Zhang J. (ref34/cit34) 2002; 66 Feng X. H. (ref56/cit56) 2004; 52 Dai R. (ref17/cit17) 2010; 44 Datry T. (ref62/cit62) 2004; 329 Von Langen P. J. (ref26/cit26) 1997; 61 Bargar J. R. (ref48/cit48) 2000; 64 Murray J. W. (ref53/cit53) 1985; 49 Rai D. (ref10/cit10) 1989; 86 Madden A. S. (ref32/cit32) 2005; 69 Saratovsky I. (ref49/cit49) 2006; 128 Wilson D. E. (ref28/cit28) 1980; 44 Luther G. W. (ref66/cit66) 1997; 61 Fendorf S. E. (ref14/cit14) 1992; 26 Yu Q. (ref37/cit37) 1997; 253 Bargar J. R. (ref51/cit51) 2005; 90 ref46/cit46 Francis C. A. (ref63/cit63) 2002; 68 Schroeder D. C. (ref12/cit12) 1975; 4 Ball J. W. (ref6/cit6) 2004; 19 Lefkowitz J. P. (ref60/cit60) 2013; 47 Ravel B. (ref43/cit43) 2005; 12 Anschutz P. (ref67/cit67) 2000; 64 Alloway B. J. (ref7/cit7) 1993 Hem J. D. (ref52/cit52) 1983; 47 Lee G. (ref39/cit39) 2005; 39 Nriagu J. O. (ref1/cit1) 1988; 333 Fendeur D. (ref20/cit20) 2009; 43 ref25/cit25 Morgan J. J. (ref27/cit27) 2005; 69 Carbonaro R. F. (ref38/cit38) 2008; 72 Morgan J. J. (ref44/cit44) 1967 Wang Y. (ref41/cit41) 2006; 70 Barnhart J. (ref9/cit9) 1997; 6 Nakayama E. (ref18/cit18) 1981; 131 Kotas J. (ref11/cit11) 2000; 107 Wu Y. (ref22/cit22) 2005; 22 Elzinga E. J. (ref59/cit59) 2011; 45 Becquer T. (ref3/cit3) 2003; 301 Kessic M. A. (ref45/cit45) 1975; 9 Katz S. A. (ref8/cit8) 1994 Malard F. (ref61/cit61) 1999; 41 Webb S. M. (ref68/cit68) 2005; 90 Zhu M. (ref55/cit55) 2010; 44 Oze C. (ref4/cit4) 2004; 304 Mandernack K. W. (ref54/cit54) 1995; 59 Nico P. S. (ref15/cit15) 2002; 66 Villalobos M. (ref47/cit47) 2003; 67 Sung W. (ref29/cit29) 1981; 45 Fantoni D. (ref5/cit5) 2002; 42 Richard F. C. (ref57/cit57) 1991; 25 Johnson C. A. (ref19/cit19) 1991; 55 Diem D. (ref24/cit24) 1984; 48 |
References_xml | – volume: 59 start-page: 4393 year: 1995 ident: ref54/cit54 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(95)00298-E – ident: ref25/cit25 – volume: 13 start-page: 421 year: 2005 ident: ref64/cit64 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2005.07.009 – volume-title: Chemical Principles of Environmental Pollution year: 1993 ident: ref7/cit7 doi: 10.1007/978-94-011-2148-4 – volume: 1901 start-page: 1 year: 1989 ident: ref2/cit2 publication-title: Geol. Surv. Bull. – volume: 44 start-page: 6959 year: 2010 ident: ref17/cit17 publication-title: Environ. Sci. Technol. doi: 10.1021/es100902y – volume: 69 start-page: 35 year: 2005 ident: ref27/cit27 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2004.06.013 – volume: 68 start-page: 874 year: 2002 ident: ref33/cit33 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.2.874-880.2002 – volume: 47 start-page: 2037 year: 1983 ident: ref52/cit52 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(83)90219-3 – volume: 304 start-page: 67 year: 2004 ident: ref4/cit4 publication-title: Am. J. Sci. doi: 10.2475/ajs.304.1.67 – volume: 66 start-page: 773 year: 2002 ident: ref34/cit34 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(01)00808-0 – volume: 55 start-page: 2861 year: 1991 ident: ref19/cit19 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(91)90451-A – volume: 12 start-page: 537 year: 2005 ident: ref43/cit43 publication-title: J. Synchrotron Rad. doi: 10.1107/S0909049505012719 – volume: 72 start-page: 3241 year: 2008 ident: ref38/cit38 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.04.010 – volume: 58 start-page: 4985 year: 1994 ident: ref31/cit31 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)90226-7 – volume: 102 start-page: 5558 year: 2005 ident: ref35/cit35 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0409119102 – volume-title: Principles and Applications of Water Chemistry year: 1967 ident: ref44/cit44 – volume: 69 start-page: 389 year: 2005 ident: ref32/cit32 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2004.06.035 – volume-title: The Biological and Environmental Chemistry of Chromium year: 1994 ident: ref8/cit8 – volume: 333 start-page: 134 year: 1988 ident: ref1/cit1 publication-title: Nature. doi: 10.1038/333134a0 – volume: 70 start-page: 4477 year: 2006 ident: ref41/cit41 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2006.06.1548 – volume: 25 start-page: 807 year: 1991 ident: ref57/cit57 publication-title: Water Res. doi: 10.1016/0043-1354(91)90160-R – volume: 301 start-page: 251 year: 2003 ident: ref3/cit3 publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(02)00298-X – volume: 47 start-page: 10364 year: 2013 ident: ref60/cit60 publication-title: Environ. Sci. Technol. doi: 10.1021/es402108d – volume: 41 start-page: 1 year: 1999 ident: ref61/cit61 publication-title: Freshwater Biol. doi: 10.1046/j.1365-2427.1999.00379.x – volume: 131 start-page: 247 year: 1981 ident: ref18/cit18 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(01)93556-1 – volume: 64 start-page: 2775 year: 2000 ident: ref48/cit48 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(00)00368-9 – volume: 75 start-page: 6048 year: 2011 ident: ref36/cit36 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.07.026 – volume: 19 start-page: 1123 year: 2004 ident: ref6/cit6 publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2004.01.011 – volume: 90 start-page: 143 year: 2005 ident: ref51/cit51 publication-title: Am. Mineral. doi: 10.2138/am.2005.1557 – volume: 107 start-page: 263 year: 2000 ident: ref11/cit11 publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(99)00168-2 – volume: 67 start-page: 2649 year: 2003 ident: ref47/cit47 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(03)00217-5 – volume: 64 start-page: 2751 year: 2000 ident: ref67/cit67 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(00)00400-2 – volume: 86 start-page: 15 year: 1989 ident: ref10/cit10 publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(89)90189-7 – volume: 104 start-page: 6544 volume-title: Proc. Natl. Acad. Sci. year: 2007 ident: ref16/cit16 – volume: 52 start-page: 240 year: 2004 ident: ref56/cit56 publication-title: Clays. Clay. Miner. doi: 10.1346/CCMN.2004.0520210 – volume: 49 start-page: 463 year: 1985 ident: ref53/cit53 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(85)90038-9 – volume: 39 start-page: 741 year: 2000 ident: ref42/cit42 publication-title: Inorg. Chem. doi: 10.1021/ic990456l – volume-title: Drinking Water Health Advisory for Manganese year: 2004 ident: ref58/cit58 – volume: 75 start-page: 2762 year: 2011 ident: ref50/cit50 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.02.022 – volume: 68 start-page: 874 year: 2002 ident: ref63/cit63 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.2.874-880.2002 – volume: 66 start-page: 4047 year: 2002 ident: ref15/cit15 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(02)01001-3 – volume-title: Aquatic Chemistry: Interfacial and interspecies processes year: 1995 ident: ref65/cit65 – volume: 26 start-page: 79 year: 1992 ident: ref14/cit14 publication-title: Environ. Sci. Technol. doi: 10.1021/es00025a006 – volume: 61 start-page: 4043 year: 1997 ident: ref66/cit66 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(97)00239-1 – volume-title: Colorimetric Method for the Determination of Chromium(Vi) In Water, ‘Soil’ Extracts and Digests year: 1992 ident: ref40/cit40 – ident: ref46/cit46 – volume: 90 start-page: 1342 year: 2005 ident: ref68/cit68 publication-title: Am. Mineral. doi: 10.2138/am.2005.1669 – volume: 4 start-page: 355 year: 1975 ident: ref12/cit12 publication-title: Water, Air, Soil Pollut. doi: 10.1007/BF00280721 – volume: 42 start-page: 871 year: 2002 ident: ref5/cit5 publication-title: Environ. Geol. doi: 10.1007/s00254-002-0605-0 – volume: 6 start-page: 561 year: 1997 ident: ref9/cit9 publication-title: J. Soil. Contam. doi: 10.1080/15320389709383589 – volume: 39 start-page: 4921 year: 2005 ident: ref39/cit39 publication-title: Environ. Sci. Technol. doi: 10.1021/es048073w – volume: 61 start-page: 4945 year: 1997 ident: ref26/cit26 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(97)00355-4 – volume: 44 start-page: 1311 year: 1980 ident: ref28/cit28 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(80)90091-5 – volume: 253 start-page: 50 year: 1997 ident: ref37/cit37 publication-title: Anal. Biochem. doi: 10.1006/abio.1997.2349 – volume: 129 start-page: 63 year: 1989 ident: ref30/cit30 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(89)90416-5 – volume: 41 start-page: 528 year: 2007 ident: ref23/cit23 publication-title: Environ. Sci. Technol. doi: 10.1021/es0615167 – volume: 22 start-page: 161 year: 2005 ident: ref22/cit22 publication-title: Geomicrobiol. J. doi: 10.1080/01490450590945997 – volume: 43 start-page: 7384 year: 2009 ident: ref20/cit20 publication-title: Environ. Sci. Technol. doi: 10.1021/es900498r – volume: 45 start-page: 2377 year: 1981 ident: ref29/cit29 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(81)90091-0 – volume: 25 start-page: 377 year: 2010 ident: ref21/cit21 publication-title: Anal. Geochem. – volume: 21 start-page: 1187 year: 1987 ident: ref13/cit13 publication-title: Environ. Sci. Technol. doi: 10.1021/es00165a005 – volume: 48 start-page: 1571 year: 1984 ident: ref24/cit24 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(84)90413-7 – volume: 45 start-page: 6366 year: 2011 ident: ref59/cit59 publication-title: Environ. Sci. Technol. doi: 10.1021/es2013038 – volume: 128 start-page: 11188 year: 2006 ident: ref49/cit49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja062097g – volume: 44 start-page: 4465 year: 2010 ident: ref55/cit55 publication-title: Environ. Sci. Technol. doi: 10.1021/es1009955 – volume: 9 start-page: 157 year: 1975 ident: ref45/cit45 publication-title: Environ. Sci. Technol. doi: 10.1021/es60100a008 – volume: 329 start-page: 215 year: 2004 ident: ref62/cit62 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2004.02.022 |
SSID | ssj0002308 |
Score | 2.4375331 |
Snippet | We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential... We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential... We examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential... This study examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10760 |
SubjectTerms | anaerobic conditions Catalysis Chemical Precipitation chromium Chromium - chemistry Cr(III) Cr(III) oxidation Cr(VI) contamination dissolved oxygen Environment environmental hazards ENVIRONMENTAL SCIENCES groundwater manganese Manganese - chemistry manganese oxides Mn(II) oxidation oxidation Oxidation-Reduction remediation Solutions surface sorbed Mn Suspensions Time Factors toxicity X-Ray Absorption Spectroscopy X-Ray Diffraction |
Title | Cr(OH)3(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation |
URI | http://dx.doi.org/10.1021/es503018u https://www.ncbi.nlm.nih.gov/pubmed/25144300 https://www.proquest.com/docview/1562661090 https://www.proquest.com/docview/2000226566 https://www.osti.gov/biblio/1166857 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6VcIEDj0JLKFTmcUgPLva-c2xDqxSp9FAq5WZ5H5ZQkYNiW6L99czEdhpEAxcfrM_S2jOz-4139huAj5znxqd5iH2QNhbeuDhXmseFHCuHjM4VBSWK51_V9Ep8mcnZFnzYsIPP0k-hkkTbTfMAHjJlNGVYR5PL1XSLHNr0bQrGXM16-aD1R2npcdUfS89gjiG0mVYul5fTp_C5P6TTVpVcHza1PXS3f2s2_mvkz-BJRy-jo9YfnsNWKLfh8Zro4DbsnNydbUNoF9zVCzieLEYX0wM-qg6ii1_f22ZLEfX2cMFH9ia6bBZF7kI0oV8-N7d487wcnZ2toV_C1enJt8k07losxDmXqo5T44JOvfFjJm0oEu69Ldy4YM7nMvWMaau1U97qwiudh6CcMDIokQq6er4Dg3JehlcQMbKroPOHwgkWkHiSlpdKjMUsGCfRIeyjDbIuRKpsufvN0mz1lYYw6s2TuU6gnPpk_LgP-n4F_dmqctwH2iMbZ0glSA_XUeGQqzHlUcpIPYR3vekzjCjaJsnLMG9wYEgJFanQJ5sxbCkcRFx4CLut36wGgoxRCJ4kr__3wnvwCOmXoOqTVL2BQb1owlukOLXdX7r4b0Em8pQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BOACHUgqFUFoM4pAeXOx9eXMsUasEmvbQVsrN8j4sVSAHxbZE--s7YztpQK3g4oM1tmZ3Z3a_2Z39BuAz55l2ceZD56UJhdM2zFTCw1wOlUVEZ_OcAsXpqRpfim8zOetocuguDCpR4p_K5hD_jl0g_uJLSehd14_hCYIQRoHW4eh8NesilNbLagVDrmZLFqH1T2kFsuUfK1Bvjp70MLpsVpnjF225oka_Jrnkx0FdmQN78xd14_81YBM2OrAZHLbW8RIe-WILnq9REG7B9tHdTTcU7Vy9fAVfR4vB2XifD8r94Oz3VVt6KaBKH9a7wFwH5_Uiz6wPRrQBdH2DL6fFYDJZk34Nl8dHF6Nx2BVcCDMuVRXG2vokdtoNmTQ-j7hzJrfDnFmXydgxlpgkscqZJHcqybxXVmjplYgFPR3fhl4xL_xbCBiNsqDbiMIK5hGGErOXirTBmBin1D7sYSelncOUaXMWzuJ01Ut9GCxHKbUdXTlVzfh5n-inleivlqPjPqEdGuoUgQWx41pKI7IVBkBKaZn04ePSAlL0Lzo0yQo_r1ExBIiKOOmjh2VYQyNEyLgPb1rzWSmC-FEIHkXv_tXgD_B0fDE9SU8mp9934BkCM0F5KbF6D71qUftdBD-V2Wus_hYEcfr1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BkBA98CgUQqEYxCE9uLW9D2-OJTRKgDZIpVJulvcloSKnim2J9tcz4zgmoFZw8cEaW7O7M7vf7Ox-A_CesVzZOHehdUKH3CoT5jJloRdDaRDRGe8pUDw5lZNz_mku5m2gSHdhUIkS_1Q2SXzy6kvrW4aB-NCVghC8qu_CPUrXUbB1NDrrZl6E02pdsWDI5HzNJLT5Ka1CpvxjFeot0JtuR5jNSjN-BLNOx-aAycVBXekDc_0XfeP_N-IxPGxBZ3C0spIncMcV27C1QUW4DTvHv2-8oWjr8uVT-DBaDmaTfTYo94PZz--rEkwBVfwwzgb6Kjirlz43LhjRRtDVNb48KQbT6Yb0MzgfH38bTcK28EKYMyGrMFbGpbFVdpgI7XzErNXeDH1ibC5imySpTlMjrU69lWnunDRcCSd5zOlp2Q70ikXhXkCQ0GhzupXIDU8cwlFi-JKR0hgb49Tahz3sqKx1nDJrcuJJnHW91IfBeqQy09KWU_WMHzeJvutEL1dcHTcJ7dJwZwgwiCXX0HEiU2EgJKUSaR_erq0gQz-j5EleuEWNiiFQlMRNH90ukzR0QoSQ-_B8ZUKdIogjOWdR9PJfDX4D979-HGdfpqefd-EB4jNOx1Ni-Qp61bJ2rxEDVXqvMfxfT3H9eA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cr%28OH%293%28s%29+oxidation+induced+by+surface+catalyzed+Mn%28II%29+oxidation&rft.jtitle=Environmental+science+%26+technology&rft.au=Namgung%2C+Seonyi&rft.au=Kwon%2C+Man+Jae&rft.au=Qafoku%2C+Nikolla+P&rft.au=Lee%2C+Giehyeon&rft.date=2014-09-16&rft.eissn=1520-5851&rft.volume=48&rft.issue=18&rft.spage=10760&rft_id=info:doi/10.1021%2Fes503018u&rft_id=info%3Apmid%2F25144300&rft.externalDocID=25144300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |