Cr(OH)3(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation

We examined the feasibility of Cr­(OH)3(s) oxidation mediated by surface catalyzed Mn­(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr­(VI) contaminations. Dissolved Mn­(II) (50 μM) was reacted with or without synthesized Cr­(OH)3(s) (1.0 g/L) at pH 7.0–9.0...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 48; no. 18; pp. 10760 - 10768
Main Authors Namgung, Seonyi, Kwon, Man Jae, Qafoku, Nikolla P, Lee, Giehyeon
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.09.2014
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We examined the feasibility of Cr­(OH)3(s) oxidation mediated by surface catalyzed Mn­(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr­(VI) contaminations. Dissolved Mn­(II) (50 μM) was reacted with or without synthesized Cr­(OH)3(s) (1.0 g/L) at pH 7.0–9.0 under oxic or anoxic conditions. Homogeneous Mn­(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn­(II) was completely removed within 8 days and precipitated as hausmannite. When Cr­(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr­(VI) as dissolved Mn­(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr­(VI) was attributed to Cr­(OH)3(s) oxidation by a newly formed Mn oxide via Mn­(II) oxidation catalyzed on Cr­(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn­(II) oxidation produced a mixed valence Mn­(III/IV) solid phase. Our results suggest that toxic Cr­(VI) can be naturally produced via Cr­(OH)3(s) oxidation coupled with the oxidation of dissolved Mn­(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr­(OH)3(s), which has been considered the most common and a stable remediation product of Cr­(VI) contamination.
AbstractList We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)3(s) (1.0 g/L) at pH 7.0-9.0 under oxic or anoxic conditions. Homogeneous Mn(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 days and precipitated as hausmannite. When Cr(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr(VI) was attributed to Cr(OH)3(s) oxidation by a newly formed Mn oxide via Mn(II) oxidation catalyzed on Cr(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn(II) oxidation produced a mixed valence Mn(III/IV) solid phase. Our results suggest that toxic Cr(VI) can be naturally produced via Cr(OH)3(s) oxidation coupled with the oxidation of dissolved Mn(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr(OH)3(s), which has been considered the most common and a stable remediation product of Cr(VI) contamination.We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)3(s) (1.0 g/L) at pH 7.0-9.0 under oxic or anoxic conditions. Homogeneous Mn(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 days and precipitated as hausmannite. When Cr(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr(VI) was attributed to Cr(OH)3(s) oxidation by a newly formed Mn oxide via Mn(II) oxidation catalyzed on Cr(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn(II) oxidation produced a mixed valence Mn(III/IV) solid phase. Our results suggest that toxic Cr(VI) can be naturally produced via Cr(OH)3(s) oxidation coupled with the oxidation of dissolved Mn(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr(OH)3(s), which has been considered the most common and a stable remediation product of Cr(VI) contamination.
We examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)₃(s) (1.0 g/L) at pH 7.0–9.0 under oxic or anoxic conditions. Homogeneous Mn(II) oxidation by dissolved O₂ was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 days and precipitated as hausmannite. When Cr(OH)₃(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr(VI) was attributed to Cr(OH)₃(s) oxidation by a newly formed Mn oxide via Mn(II) oxidation catalyzed on Cr(OH)₃(s) surface. XANES results indicated that this surface-catalyzed Mn(II) oxidation produced a mixed valence Mn(III/IV) solid phase. Our results suggest that toxic Cr(VI) can be naturally produced via Cr(OH)₃(s) oxidation coupled with the oxidation of dissolved Mn(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr(OH)₃(s), which has been considered the most common and a stable remediation product of Cr(VI) contamination.
This study examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)₃(s) (1.0 g/L) at pH 7 – 9 under oxic or anoxic conditions. In the absence of Cr(OH)₃(s), homogeneous Mn(II) oxidation by dissolved O₂ was not observed at pH ≤ 8.0 for 50 d. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 d and precipitated as hausmannite. When Cr(OH)₃(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Our results suggest that Cr(OH)₃(s) was readily oxidized by a newly formed Mn oxide as a result of Mn(II) oxidation catalyzed on Cr(OH)₃(s) surface. XANES analysis of the residual solids after the reaction between 1.0 g/L Cr(OH)₃(s) and 204 μM Mn(II) at pH 9.0 for 22 d revealed that the product of surface catalyzed Mn(II) oxidation resembled birnessite. The rate and extent of Cr(OH)₃(s) oxidation was likely controlled by those of surface catalyzed Mn(II) oxidation as the production of Cr(VI) increased with increasing pH and initial Mn(II) concentrations. This study evokes the potential environmental hazard of sparingly soluble Cr(OH)₃(s) that can be a source of Cr(VI) in the presence of dissolved Mn(II).
We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)3(s) (1.0 g/L) at pH 7.0-9.0 under oxic or anoxic conditions. Homogeneous Mn(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 days and precipitated as hausmannite. When Cr(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr(VI) was attributed to Cr(OH)3(s) oxidation by a newly formed Mn oxide via Mn(II) oxidation catalyzed on Cr(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn(II) oxidation produced a mixed valence Mn(III/IV) solid phase. Our results suggest that toxic Cr(VI) can be naturally produced via Cr(OH)3(s) oxidation coupled with the oxidation of dissolved Mn(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr(OH)3(s), which has been considered the most common and a stable remediation product of Cr(VI) contamination.
We examined the feasibility of Cr­(OH)3(s) oxidation mediated by surface catalyzed Mn­(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr­(VI) contaminations. Dissolved Mn­(II) (50 μM) was reacted with or without synthesized Cr­(OH)3(s) (1.0 g/L) at pH 7.0–9.0 under oxic or anoxic conditions. Homogeneous Mn­(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn­(II) was completely removed within 8 days and precipitated as hausmannite. When Cr­(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr­(VI) as dissolved Mn­(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr­(VI) was attributed to Cr­(OH)3(s) oxidation by a newly formed Mn oxide via Mn­(II) oxidation catalyzed on Cr­(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn­(II) oxidation produced a mixed valence Mn­(III/IV) solid phase. Our results suggest that toxic Cr­(VI) can be naturally produced via Cr­(OH)3(s) oxidation coupled with the oxidation of dissolved Mn­(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr­(OH)3(s), which has been considered the most common and a stable remediation product of Cr­(VI) contamination.
Author Qafoku, Nikolla P
Lee, Giehyeon
Namgung, Seonyi
Kwon, Man Jae
AuthorAffiliation Department of Earth System Sciences
Yonsei University
Korea Institute of Science and Technology
AuthorAffiliation_xml – name: Department of Earth System Sciences
– name: Korea Institute of Science and Technology
– name: Yonsei University
Author_xml – sequence: 1
  givenname: Seonyi
  surname: Namgung
  fullname: Namgung, Seonyi
  organization: Yonsei University
– sequence: 2
  givenname: Man Jae
  surname: Kwon
  fullname: Kwon, Man Jae
  organization: Korea Institute of Science and Technology
– sequence: 3
  givenname: Nikolla P
  surname: Qafoku
  fullname: Qafoku, Nikolla P
– sequence: 4
  givenname: Giehyeon
  surname: Lee
  fullname: Lee, Giehyeon
  email: ghlee@yonsei.ac.kr
  organization: Yonsei University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25144300$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1166857$$D View this record in Osti.gov
BookMark eNqF0VFr2zAQB3BROpa020O_QDGDQfLg9k6yZOexC-0aSMlDN9ibkKUzdXDkTrKh2aefs7SjlEBfdCB-dxz_O2HHvvXE2BnCBQLHS4oSBGDRH7ExSg6pLCQeszEAinQm1K8RO4lxDQBcQPGRjbjELBMAY_ZtHiar26mYxGmyeqqd6erWJwvveksuKbfJfR8qYymZm8402z_D552fLBav9Cf2oTJNpM_P9ZT9vLn-Mb9Nl6vvi_nVMjVCqi7FwlKOrnAzLkuqQDhXVnZWceuMRMd5Xua5Va7MK6dyQ6RsVkhSGWa714lT9mU_t41draOtO7IPtvWebKcRlSpkPqDJHj2G9ndPsdObOlpqGuOp7aPmuxC4kkq9S1EqrhTCDAZ6_kz7ckNOP4Z6Y8JWv-Q4gMs9sKGNMVClh_X-pdMFUzcaQe8upf9fauiYvul4GXrIft1bY6Net33wQ84H3F-twZu_
CitedBy_id crossref_primary_10_1007_s40726_016_0044_2
crossref_primary_10_1016_j_watres_2022_118323
crossref_primary_10_1021_acs_est_6b03484
crossref_primary_10_1021_acsearthspacechem_0c00142
crossref_primary_10_1021_acs_analchem_5b03464
crossref_primary_10_1007_s11368_022_03259_z
crossref_primary_10_1016_j_gca_2019_07_044
crossref_primary_10_1016_j_scitotenv_2022_160149
crossref_primary_10_1021_acs_est_5b05739
crossref_primary_10_1139_er_2016_0012
crossref_primary_10_1016_j_jhazmat_2022_128739
crossref_primary_10_1016_j_jes_2016_01_012
crossref_primary_10_1016_j_gca_2020_03_036
crossref_primary_10_1016_j_chemosphere_2019_01_070
crossref_primary_10_1016_j_watres_2022_118403
crossref_primary_10_1016_j_chemgeo_2017_10_004
crossref_primary_10_1016_j_chemosphere_2022_136398
crossref_primary_10_1016_j_scitotenv_2023_166450
crossref_primary_10_1016_j_watres_2022_118077
crossref_primary_10_1016_j_jhazmat_2020_122166
crossref_primary_10_1016_j_chemgeo_2016_01_021
crossref_primary_10_1016_j_scitotenv_2021_145762
crossref_primary_10_1016_j_envpol_2024_125436
crossref_primary_10_1021_acs_est_3c04151
crossref_primary_10_1186_s12932_015_0031_3
crossref_primary_10_1016_j_gca_2019_02_039
crossref_primary_10_1016_j_watres_2017_09_021
crossref_primary_10_1021_acs_est_7b04097
crossref_primary_10_1021_acs_est_6b06044
crossref_primary_10_1021_acs_est_8b02213
crossref_primary_10_1080_09593330_2022_2050820
crossref_primary_10_1021_acs_est_3c05487
crossref_primary_10_1016_j_colsurfa_2024_135448
crossref_primary_10_1021_acsearthspacechem_8b00129
crossref_primary_10_1007_s11783_020_1260_y
crossref_primary_10_1016_j_jhazmat_2021_127233
crossref_primary_10_1016_j_jenvman_2017_01_031
crossref_primary_10_1021_acs_est_2c05775
crossref_primary_10_1039_C9EM00389D
crossref_primary_10_1016_j_chemgeo_2022_121166
crossref_primary_10_1016_j_jenvman_2023_119475
crossref_primary_10_1021_acs_est_6b04039
crossref_primary_10_1080_09593330_2016_1167249
crossref_primary_10_1016_j_apgeochem_2015_05_010
crossref_primary_10_1016_j_watres_2023_120545
crossref_primary_10_1021_acs_est_1c02285
crossref_primary_10_1021_acs_est_0c02357
crossref_primary_10_1021_acs_est_0c04851
crossref_primary_10_1021_acsami_6b04292
crossref_primary_10_1021_acs_est_6b05408
crossref_primary_10_1016_j_watres_2023_120309
crossref_primary_10_1016_j_apgeochem_2022_105426
crossref_primary_10_1016_j_jhazmat_2023_133112
crossref_primary_10_1016_j_scitotenv_2019_134622
crossref_primary_10_1016_j_jhazmat_2023_131698
crossref_primary_10_5004_dwt_2021_27314
crossref_primary_10_1016_j_envint_2023_107939
crossref_primary_10_1039_D2EM00395C
crossref_primary_10_1116_1_4934628
crossref_primary_10_1016_j_molliq_2020_114052
crossref_primary_10_1021_acs_est_3c00087
crossref_primary_10_1016_j_scitotenv_2023_164890
crossref_primary_10_1016_j_jhydrol_2017_10_016
crossref_primary_10_1016_j_jes_2023_05_015
crossref_primary_10_1515_htmp_2022_0252
crossref_primary_10_1016_j_chemgeo_2020_119670
crossref_primary_10_1021_acsearthspacechem_2c00113
crossref_primary_10_3390_soilsystems3040074
crossref_primary_10_1016_j_jhazmat_2022_128805
crossref_primary_10_1016_j_jes_2022_09_015
crossref_primary_10_1016_j_jhazmat_2023_132073
crossref_primary_10_1016_j_jhazmat_2022_130150
crossref_primary_10_1016_j_jhydrol_2024_131480
crossref_primary_10_1016_j_seppur_2024_127422
crossref_primary_10_1021_acs_est_0c01855
crossref_primary_10_1016_j_chemosphere_2021_131991
Cites_doi 10.1016/0016-7037(95)00298-E
10.1016/j.tim.2005.07.009
10.1007/978-94-011-2148-4
10.1021/es100902y
10.1016/j.gca.2004.06.013
10.1128/AEM.68.2.874-880.2002
10.1016/0016-7037(83)90219-3
10.2475/ajs.304.1.67
10.1016/S0016-7037(01)00808-0
10.1016/0016-7037(91)90451-A
10.1107/S0909049505012719
10.1016/j.gca.2008.04.010
10.1016/0016-7037(94)90226-7
10.1073/pnas.0409119102
10.1016/j.gca.2004.06.035
10.1038/333134a0
10.1016/j.gca.2006.06.1548
10.1016/0043-1354(91)90160-R
10.1016/S0048-9697(02)00298-X
10.1021/es402108d
10.1046/j.1365-2427.1999.00379.x
10.1016/S0003-2670(01)93556-1
10.1016/S0016-7037(00)00368-9
10.1016/j.gca.2011.07.026
10.1016/j.apgeochem.2004.01.011
10.2138/am.2005.1557
10.1016/S0269-7491(99)00168-2
10.1016/S0016-7037(03)00217-5
10.1016/S0016-7037(00)00400-2
10.1016/0048-9697(89)90189-7
10.1346/CCMN.2004.0520210
10.1016/0016-7037(85)90038-9
10.1021/ic990456l
10.1016/j.gca.2011.02.022
10.1016/S0016-7037(02)01001-3
10.1021/es00025a006
10.1016/S0016-7037(97)00239-1
10.2138/am.2005.1669
10.1007/BF00280721
10.1007/s00254-002-0605-0
10.1080/15320389709383589
10.1021/es048073w
10.1016/S0016-7037(97)00355-4
10.1016/0016-7037(80)90091-5
10.1006/abio.1997.2349
10.1016/0021-9797(89)90416-5
10.1021/es0615167
10.1080/01490450590945997
10.1021/es900498r
10.1016/0016-7037(81)90091-0
10.1021/es00165a005
10.1016/0016-7037(84)90413-7
10.1021/es2013038
10.1021/ja062097g
10.1021/es1009955
10.1021/es60100a008
10.1016/j.scitotenv.2004.02.022
ContentType Journal Article
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
OTOTI
DOI 10.1021/es503018u
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 10768
ExternalDocumentID 1166857
25144300
10_1021_es503018u
a478507252
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ABFRP
OTOTI
ID FETCH-LOGICAL-a356t-18ce71d8d925bef03ddbfc9f2cda51d227b77c6db7fd67aee6c485e64145e64d3
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri May 19 01:40:57 EDT 2023
Fri Jul 11 02:25:28 EDT 2025
Thu Jul 10 23:28:15 EDT 2025
Mon Jul 21 06:00:28 EDT 2025
Tue Jul 01 04:28:49 EDT 2025
Thu Apr 24 23:00:22 EDT 2025
Thu Aug 27 13:42:38 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a356t-18ce71d8d925bef03ddbfc9f2cda51d227b77c6db7fd67aee6c485e64145e64d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC05-76RL01830
PNNL-SA-101626
PMID 25144300
PQID 1562661090
PQPubID 23479
PageCount 9
ParticipantIDs osti_scitechconnect_1166857
proquest_miscellaneous_2000226566
proquest_miscellaneous_1562661090
pubmed_primary_25144300
crossref_citationtrail_10_1021_es503018u
crossref_primary_10_1021_es503018u
acs_journals_10_1021_es503018u
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-16
PublicationDateYYYYMMDD 2014-09-16
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2014
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References Luo J. (ref42/cit42) 2000; 39
Eary L. E. (ref13/cit13) 1987; 21
Learman D. R. (ref36/cit36) 2011; 75
Murray K. J. (ref23/cit23) 2007; 41
Junta J. L. (ref31/cit31) 1994; 58
Francis C. A. (ref33/cit33) 2002; 68
Oze C. (ref16/cit16) 2007; 104
Santelli C. M. (ref50/cit50) 2011; 75
Tebo B. M. (ref64/cit64) 2005; 13
Gough L. P. (ref2/cit2) 1989; 1901
Webb S. M. (ref35/cit35) 2005; 102
Murray J. W. (ref65/cit65) 1995
U.S. EPA (ref58/cit58) 2004
Davies S. H. R. (ref30/cit30) 1989; 129
Ndung’u K. (ref21/cit21) 2010; 25
U.S. EPA (ref40/cit40) 1992
Zhang J. (ref34/cit34) 2002; 66
Feng X. H. (ref56/cit56) 2004; 52
Dai R. (ref17/cit17) 2010; 44
Datry T. (ref62/cit62) 2004; 329
Von Langen P. J. (ref26/cit26) 1997; 61
Bargar J. R. (ref48/cit48) 2000; 64
Murray J. W. (ref53/cit53) 1985; 49
Rai D. (ref10/cit10) 1989; 86
Madden A. S. (ref32/cit32) 2005; 69
Saratovsky I. (ref49/cit49) 2006; 128
Wilson D. E. (ref28/cit28) 1980; 44
Luther G. W. (ref66/cit66) 1997; 61
Fendorf S. E. (ref14/cit14) 1992; 26
Yu Q. (ref37/cit37) 1997; 253
Bargar J. R. (ref51/cit51) 2005; 90
ref46/cit46
Francis C. A. (ref63/cit63) 2002; 68
Schroeder D. C. (ref12/cit12) 1975; 4
Ball J. W. (ref6/cit6) 2004; 19
Lefkowitz J. P. (ref60/cit60) 2013; 47
Ravel B. (ref43/cit43) 2005; 12
Anschutz P. (ref67/cit67) 2000; 64
Alloway B. J. (ref7/cit7) 1993
Hem J. D. (ref52/cit52) 1983; 47
Lee G. (ref39/cit39) 2005; 39
Nriagu J. O. (ref1/cit1) 1988; 333
Fendeur D. (ref20/cit20) 2009; 43
ref25/cit25
Morgan J. J. (ref27/cit27) 2005; 69
Carbonaro R. F. (ref38/cit38) 2008; 72
Morgan J. J. (ref44/cit44) 1967
Wang Y. (ref41/cit41) 2006; 70
Barnhart J. (ref9/cit9) 1997; 6
Nakayama E. (ref18/cit18) 1981; 131
Kotas J. (ref11/cit11) 2000; 107
Wu Y. (ref22/cit22) 2005; 22
Elzinga E. J. (ref59/cit59) 2011; 45
Becquer T. (ref3/cit3) 2003; 301
Kessic M. A. (ref45/cit45) 1975; 9
Katz S. A. (ref8/cit8) 1994
Malard F. (ref61/cit61) 1999; 41
Webb S. M. (ref68/cit68) 2005; 90
Zhu M. (ref55/cit55) 2010; 44
Oze C. (ref4/cit4) 2004; 304
Mandernack K. W. (ref54/cit54) 1995; 59
Nico P. S. (ref15/cit15) 2002; 66
Villalobos M. (ref47/cit47) 2003; 67
Sung W. (ref29/cit29) 1981; 45
Fantoni D. (ref5/cit5) 2002; 42
Richard F. C. (ref57/cit57) 1991; 25
Johnson C. A. (ref19/cit19) 1991; 55
Diem D. (ref24/cit24) 1984; 48
References_xml – volume: 59
  start-page: 4393
  year: 1995
  ident: ref54/cit54
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(95)00298-E
– ident: ref25/cit25
– volume: 13
  start-page: 421
  year: 2005
  ident: ref64/cit64
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2005.07.009
– volume-title: Chemical Principles of Environmental Pollution
  year: 1993
  ident: ref7/cit7
  doi: 10.1007/978-94-011-2148-4
– volume: 1901
  start-page: 1
  year: 1989
  ident: ref2/cit2
  publication-title: Geol. Surv. Bull.
– volume: 44
  start-page: 6959
  year: 2010
  ident: ref17/cit17
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es100902y
– volume: 69
  start-page: 35
  year: 2005
  ident: ref27/cit27
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2004.06.013
– volume: 68
  start-page: 874
  year: 2002
  ident: ref33/cit33
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.68.2.874-880.2002
– volume: 47
  start-page: 2037
  year: 1983
  ident: ref52/cit52
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(83)90219-3
– volume: 304
  start-page: 67
  year: 2004
  ident: ref4/cit4
  publication-title: Am. J. Sci.
  doi: 10.2475/ajs.304.1.67
– volume: 66
  start-page: 773
  year: 2002
  ident: ref34/cit34
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(01)00808-0
– volume: 55
  start-page: 2861
  year: 1991
  ident: ref19/cit19
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(91)90451-A
– volume: 12
  start-page: 537
  year: 2005
  ident: ref43/cit43
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049505012719
– volume: 72
  start-page: 3241
  year: 2008
  ident: ref38/cit38
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2008.04.010
– volume: 58
  start-page: 4985
  year: 1994
  ident: ref31/cit31
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90226-7
– volume: 102
  start-page: 5558
  year: 2005
  ident: ref35/cit35
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0409119102
– volume-title: Principles and Applications of Water Chemistry
  year: 1967
  ident: ref44/cit44
– volume: 69
  start-page: 389
  year: 2005
  ident: ref32/cit32
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2004.06.035
– volume-title: The Biological and Environmental Chemistry of Chromium
  year: 1994
  ident: ref8/cit8
– volume: 333
  start-page: 134
  year: 1988
  ident: ref1/cit1
  publication-title: Nature.
  doi: 10.1038/333134a0
– volume: 70
  start-page: 4477
  year: 2006
  ident: ref41/cit41
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.06.1548
– volume: 25
  start-page: 807
  year: 1991
  ident: ref57/cit57
  publication-title: Water Res.
  doi: 10.1016/0043-1354(91)90160-R
– volume: 301
  start-page: 251
  year: 2003
  ident: ref3/cit3
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(02)00298-X
– volume: 47
  start-page: 10364
  year: 2013
  ident: ref60/cit60
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es402108d
– volume: 41
  start-page: 1
  year: 1999
  ident: ref61/cit61
  publication-title: Freshwater Biol.
  doi: 10.1046/j.1365-2427.1999.00379.x
– volume: 131
  start-page: 247
  year: 1981
  ident: ref18/cit18
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)93556-1
– volume: 64
  start-page: 2775
  year: 2000
  ident: ref48/cit48
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(00)00368-9
– volume: 75
  start-page: 6048
  year: 2011
  ident: ref36/cit36
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.07.026
– volume: 19
  start-page: 1123
  year: 2004
  ident: ref6/cit6
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2004.01.011
– volume: 90
  start-page: 143
  year: 2005
  ident: ref51/cit51
  publication-title: Am. Mineral.
  doi: 10.2138/am.2005.1557
– volume: 107
  start-page: 263
  year: 2000
  ident: ref11/cit11
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(99)00168-2
– volume: 67
  start-page: 2649
  year: 2003
  ident: ref47/cit47
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(03)00217-5
– volume: 64
  start-page: 2751
  year: 2000
  ident: ref67/cit67
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(00)00400-2
– volume: 86
  start-page: 15
  year: 1989
  ident: ref10/cit10
  publication-title: Sci. Total Environ.
  doi: 10.1016/0048-9697(89)90189-7
– volume: 104
  start-page: 6544
  volume-title: Proc. Natl. Acad. Sci.
  year: 2007
  ident: ref16/cit16
– volume: 52
  start-page: 240
  year: 2004
  ident: ref56/cit56
  publication-title: Clays. Clay. Miner.
  doi: 10.1346/CCMN.2004.0520210
– volume: 49
  start-page: 463
  year: 1985
  ident: ref53/cit53
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(85)90038-9
– volume: 39
  start-page: 741
  year: 2000
  ident: ref42/cit42
  publication-title: Inorg. Chem.
  doi: 10.1021/ic990456l
– volume-title: Drinking Water Health Advisory for Manganese
  year: 2004
  ident: ref58/cit58
– volume: 75
  start-page: 2762
  year: 2011
  ident: ref50/cit50
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.02.022
– volume: 68
  start-page: 874
  year: 2002
  ident: ref63/cit63
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.68.2.874-880.2002
– volume: 66
  start-page: 4047
  year: 2002
  ident: ref15/cit15
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(02)01001-3
– volume-title: Aquatic Chemistry: Interfacial and interspecies processes
  year: 1995
  ident: ref65/cit65
– volume: 26
  start-page: 79
  year: 1992
  ident: ref14/cit14
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00025a006
– volume: 61
  start-page: 4043
  year: 1997
  ident: ref66/cit66
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(97)00239-1
– volume-title: Colorimetric Method for the Determination of Chromium(Vi) In Water, ‘Soil’ Extracts and Digests
  year: 1992
  ident: ref40/cit40
– ident: ref46/cit46
– volume: 90
  start-page: 1342
  year: 2005
  ident: ref68/cit68
  publication-title: Am. Mineral.
  doi: 10.2138/am.2005.1669
– volume: 4
  start-page: 355
  year: 1975
  ident: ref12/cit12
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1007/BF00280721
– volume: 42
  start-page: 871
  year: 2002
  ident: ref5/cit5
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-002-0605-0
– volume: 6
  start-page: 561
  year: 1997
  ident: ref9/cit9
  publication-title: J. Soil. Contam.
  doi: 10.1080/15320389709383589
– volume: 39
  start-page: 4921
  year: 2005
  ident: ref39/cit39
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048073w
– volume: 61
  start-page: 4945
  year: 1997
  ident: ref26/cit26
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(97)00355-4
– volume: 44
  start-page: 1311
  year: 1980
  ident: ref28/cit28
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(80)90091-5
– volume: 253
  start-page: 50
  year: 1997
  ident: ref37/cit37
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1997.2349
– volume: 129
  start-page: 63
  year: 1989
  ident: ref30/cit30
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(89)90416-5
– volume: 41
  start-page: 528
  year: 2007
  ident: ref23/cit23
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0615167
– volume: 22
  start-page: 161
  year: 2005
  ident: ref22/cit22
  publication-title: Geomicrobiol. J.
  doi: 10.1080/01490450590945997
– volume: 43
  start-page: 7384
  year: 2009
  ident: ref20/cit20
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900498r
– volume: 45
  start-page: 2377
  year: 1981
  ident: ref29/cit29
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(81)90091-0
– volume: 25
  start-page: 377
  year: 2010
  ident: ref21/cit21
  publication-title: Anal. Geochem.
– volume: 21
  start-page: 1187
  year: 1987
  ident: ref13/cit13
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00165a005
– volume: 48
  start-page: 1571
  year: 1984
  ident: ref24/cit24
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(84)90413-7
– volume: 45
  start-page: 6366
  year: 2011
  ident: ref59/cit59
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2013038
– volume: 128
  start-page: 11188
  year: 2006
  ident: ref49/cit49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja062097g
– volume: 44
  start-page: 4465
  year: 2010
  ident: ref55/cit55
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1009955
– volume: 9
  start-page: 157
  year: 1975
  ident: ref45/cit45
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es60100a008
– volume: 329
  start-page: 215
  year: 2004
  ident: ref62/cit62
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2004.02.022
SSID ssj0002308
Score 2.4375331
Snippet We examined the feasibility of Cr­(OH)3(s) oxidation mediated by surface catalyzed Mn­(II) oxidation under common groundwater pH conditions as a potential...
We examined the feasibility of Cr(OH)3(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential...
We examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential...
This study examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10760
SubjectTerms anaerobic conditions
Catalysis
Chemical Precipitation
chromium
Chromium - chemistry
Cr(III)
Cr(III) oxidation
Cr(VI) contamination
dissolved oxygen
Environment
environmental hazards
ENVIRONMENTAL SCIENCES
groundwater
manganese
Manganese - chemistry
manganese oxides
Mn(II) oxidation
oxidation
Oxidation-Reduction
remediation
Solutions
surface sorbed Mn
Suspensions
Time Factors
toxicity
X-Ray Absorption Spectroscopy
X-Ray Diffraction
Title Cr(OH)3(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation
URI http://dx.doi.org/10.1021/es503018u
https://www.ncbi.nlm.nih.gov/pubmed/25144300
https://www.proquest.com/docview/1562661090
https://www.proquest.com/docview/2000226566
https://www.osti.gov/biblio/1166857
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6VcIEDj0JLKFTmcUgPLva-c2xDqxSp9FAq5WZ5H5ZQkYNiW6L99czEdhpEAxcfrM_S2jOz-4139huAj5znxqd5iH2QNhbeuDhXmseFHCuHjM4VBSWK51_V9Ep8mcnZFnzYsIPP0k-hkkTbTfMAHjJlNGVYR5PL1XSLHNr0bQrGXM16-aD1R2npcdUfS89gjiG0mVYul5fTp_C5P6TTVpVcHza1PXS3f2s2_mvkz-BJRy-jo9YfnsNWKLfh8Zro4DbsnNydbUNoF9zVCzieLEYX0wM-qg6ii1_f22ZLEfX2cMFH9ia6bBZF7kI0oV8-N7d487wcnZ2toV_C1enJt8k07losxDmXqo5T44JOvfFjJm0oEu69Ldy4YM7nMvWMaau1U97qwiudh6CcMDIokQq6er4Dg3JehlcQMbKroPOHwgkWkHiSlpdKjMUsGCfRIeyjDbIuRKpsufvN0mz1lYYw6s2TuU6gnPpk_LgP-n4F_dmqctwH2iMbZ0glSA_XUeGQqzHlUcpIPYR3vekzjCjaJsnLMG9wYEgJFanQJ5sxbCkcRFx4CLut36wGgoxRCJ4kr__3wnvwCOmXoOqTVL2BQb1owlukOLXdX7r4b0Em8pQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BOACHUgqFUFoM4pAeXOx9eXMsUasEmvbQVsrN8j4sVSAHxbZE--s7YztpQK3g4oM1tmZ3Z3a_2Z39BuAz55l2ceZD56UJhdM2zFTCw1wOlUVEZ_OcAsXpqRpfim8zOetocuguDCpR4p_K5hD_jl0g_uJLSehd14_hCYIQRoHW4eh8NesilNbLagVDrmZLFqH1T2kFsuUfK1Bvjp70MLpsVpnjF225oka_Jrnkx0FdmQN78xd14_81YBM2OrAZHLbW8RIe-WILnq9REG7B9tHdTTcU7Vy9fAVfR4vB2XifD8r94Oz3VVt6KaBKH9a7wFwH5_Uiz6wPRrQBdH2DL6fFYDJZk34Nl8dHF6Nx2BVcCDMuVRXG2vokdtoNmTQ-j7hzJrfDnFmXydgxlpgkscqZJHcqybxXVmjplYgFPR3fhl4xL_xbCBiNsqDbiMIK5hGGErOXirTBmBin1D7sYSelncOUaXMWzuJ01Ut9GCxHKbUdXTlVzfh5n-inleivlqPjPqEdGuoUgQWx41pKI7IVBkBKaZn04ePSAlL0Lzo0yQo_r1ExBIiKOOmjh2VYQyNEyLgPb1rzWSmC-FEIHkXv_tXgD_B0fDE9SU8mp9934BkCM0F5KbF6D71qUftdBD-V2Wus_hYEcfr1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BkBA98CgUQqEYxCE9uLW9D2-OJTRKgDZIpVJulvcloSKnim2J9tcz4zgmoFZw8cEaW7O7M7vf7Ox-A_CesVzZOHehdUKH3CoT5jJloRdDaRDRGe8pUDw5lZNz_mku5m2gSHdhUIkS_1Q2SXzy6kvrW4aB-NCVghC8qu_CPUrXUbB1NDrrZl6E02pdsWDI5HzNJLT5Ka1CpvxjFeot0JtuR5jNSjN-BLNOx-aAycVBXekDc_0XfeP_N-IxPGxBZ3C0spIncMcV27C1QUW4DTvHv2-8oWjr8uVT-DBaDmaTfTYo94PZz--rEkwBVfwwzgb6Kjirlz43LhjRRtDVNb48KQbT6Yb0MzgfH38bTcK28EKYMyGrMFbGpbFVdpgI7XzErNXeDH1ibC5imySpTlMjrU69lWnunDRcCSd5zOlp2Q70ikXhXkCQ0GhzupXIDU8cwlFi-JKR0hgb49Tahz3sqKx1nDJrcuJJnHW91IfBeqQy09KWU_WMHzeJvutEL1dcHTcJ7dJwZwgwiCXX0HEiU2EgJKUSaR_erq0gQz-j5EleuEWNiiFQlMRNH90ukzR0QoSQ-_B8ZUKdIogjOWdR9PJfDX4D979-HGdfpqefd-EB4jNOx1Ni-Qp61bJ2rxEDVXqvMfxfT3H9eA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cr%28OH%293%28s%29+oxidation+induced+by+surface+catalyzed+Mn%28II%29+oxidation&rft.jtitle=Environmental+science+%26+technology&rft.au=Namgung%2C+Seonyi&rft.au=Kwon%2C+Man+Jae&rft.au=Qafoku%2C+Nikolla+P&rft.au=Lee%2C+Giehyeon&rft.date=2014-09-16&rft.eissn=1520-5851&rft.volume=48&rft.issue=18&rft.spage=10760&rft_id=info:doi/10.1021%2Fes503018u&rft_id=info%3Apmid%2F25144300&rft.externalDocID=25144300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon