Pressure–Temperature Phase Diagram of Lithium, Predicted by Embedded Atom Model Potentials

In order to study the performance of interatomic potentials and their reliability at higher pressures, the phase diagrams of two different embedded-atom-type potential models (EAMs) and a modified embedded-atom model (MEAM) of lithium are compared. The calculations were performed by using the nested...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 124; no. 28; pp. 6015 - 6023
Main Authors Dorrell, Jordan, Pártay, Livia B
Format Journal Article
LanguageEnglish
Published American Chemical Society 16.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to study the performance of interatomic potentials and their reliability at higher pressures, the phase diagrams of two different embedded-atom-type potential models (EAMs) and a modified embedded-atom model (MEAM) of lithium are compared. The calculations were performed by using the nested sampling technique in the pressure range 0.01–20 GPa, in order to determine the liquid–vapor critical point, the melting curve, and the different stable solid phases of the compared models. The low-pressure stable structure below the melting line is found to be the body-centered-cubic (bcc) structure in all cases, but the higher pressure phases and the ground-state structures show a great variation, being face-centered cubic (fcc), hexagonal close-packed (hcp), a range of different close-packed stacking variants, and highly symmetric open structures are observed as well. A notable behavior of the EAM of Nichol and Ackland (Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 93, 184101) is observed, that the model displays a maximum temperature in the melting line, similarly to experimental results.
AbstractList In order to study the performance of interatomic potentials and their reliability at higher pressures, the phase diagrams of two different embedded-atom-type potential models (EAMs) and a modified embedded-atom model (MEAM) of lithium are compared. The calculations were performed by using the nested sampling technique in the pressure range 0.01–20 GPa, in order to determine the liquid–vapor critical point, the melting curve, and the different stable solid phases of the compared models. The low-pressure stable structure below the melting line is found to be the body-centered-cubic (bcc) structure in all cases, but the higher pressure phases and the ground-state structures show a great variation, being face-centered cubic (fcc), hexagonal close-packed (hcp), a range of different close-packed stacking variants, and highly symmetric open structures are observed as well. A notable behavior of the EAM of Nichol and Ackland (Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 93, 184101) is observed, that the model displays a maximum temperature in the melting line, similarly to experimental results.
Author Dorrell, Jordan
Pártay, Livia B
AuthorAffiliation Department of Chemistry
University of Reading, Whiteknights
AuthorAffiliation_xml – name: University of Reading, Whiteknights
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Jordan
  surname: Dorrell
  fullname: Dorrell, Jordan
– sequence: 2
  givenname: Livia B
  orcidid: 0000-0003-3249-3586
  surname: Pártay
  fullname: Pártay, Livia B
  email: Livia.Bartok-Partay@warwick.ac.uk
BookMark eNp1UD1PwzAQtVCRKIWd0SNDU2zHzsdYlfIhFdGhbEjRJbnQVEkcbGfoxn_gH_JLcGlXhtN7d_feSfcuyajTHRJyw9mMM8HvoLCzXV_kM1awMEnEGRlzJVjgKx6deMRZdEEurd0xJpRIojF5Xxu0djD48_W9wbZHA853dL0Fi_S-hg8DLdUVXdVuWw_tlHpDWRcOS5rv6bLNsSw9nzvd0hddYkPX2mHnamjsFTmvPOD1CSfk7WG5WTwFq9fH58V8FUColAuEVGGhEECKNIcw9dM0DxWEEEtRyjSXEMkyj3kCWJVRzIoURChSHrMqEajCCbk93u2N_hzQuqytbYFNAx3qwWZCcilZpFjspewoLYy21mCV9aZuwewzzrJDkJkPMjsEmZ2C9Jbp0fK30YPp_C__y38BzA15hQ
CitedBy_id crossref_primary_10_1038_s41524_023_01081_w
crossref_primary_10_1039_D4CP00050A
crossref_primary_10_1140_epjb_s10051_021_00172_1
crossref_primary_10_1038_s43586_022_00121_x
crossref_primary_10_1063_1674_0068_cjcp2211173
crossref_primary_10_1039_D2SM00491G
crossref_primary_10_1103_PhysRevB_104_104102
crossref_primary_10_1063_5_0143891
crossref_primary_10_1103_PhysRevMaterials_7_123804
crossref_primary_10_1007_s11005_021_01446_6
Cites_doi 10.1063/1.3295295
10.1134/S0018151X13040019
10.1088/0953-8984/1/32/001
10.1021/jp5077752
10.1088/0953-8984/2/19/007
10.1016/j.commatsci.2016.12.018
10.1103/PhysRevLett.109.185702
10.1006/jcph.1995.1039
10.1016/j.commatsci.2018.03.026
10.1038/nphys1864
10.1016/j.ssc.2009.12.029
10.1103/PhysRevB.13.5188
10.1103/PhysRevLett.102.146401
10.1088/0953-8984/10/49/026
10.1029/JB073i008p02795
10.1103/PhysRevB.93.174108
10.1038/nature05820
10.1103/PhysRevLett.91.167001
10.1134/S0018151X12010014
10.1021/acs.jctc.8b00368
10.1214/06-BA127
10.1038/35041515
10.1524/zkri.220.5.567.65075
10.1088/0029-5515/37/4/I13
10.1103/PhysRevB.65.052102
10.1016/0022-3115(84)90537-3
10.1103/RevModPhys.64.1045
10.1126/science.aal4886
10.1039/C7CP02923C
10.1103/PhysRevE.96.043311
10.1103/PhysRevLett.120.250601
10.1088/0965-0393/20/3/035005
10.1134/S0018151X09020102
10.1103/PhysRevB.46.2727
10.1039/C9CP00474B
10.1103/PhysRevB.28.784
10.1126/science.1078535
10.1088/0029-5515/55/4/043015
10.1088/0965-0393/20/1/015014
10.1007/BF02755816
10.1016/0167-899X(84)90019-3
10.1021/jp1012973
10.1029/JZ067i006p02559
10.1103/PhysRevLett.68.193
10.1103/PhysRevLett.119.205701
10.1103/PhysRevB.93.184101
10.1038/s41598-018-23473-5
10.1103/PhysRevE.89.022302
10.1103/PhysRevLett.101.075703
10.1063/1.1726611
10.1088/0965-0393/11/4/303
10.1073/pnas.1701994114
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.jpcb.0c03882
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 6023
ExternalDocumentID 10_1021_acs_jpcb_0c03882
d132945963
GroupedDBID -
.K2
02
123
29L
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
ZHY
---
-~X
.DC
4.4
AAHBH
AAYXX
ABJNI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
7X8
ID FETCH-LOGICAL-a355t-2453c5eaa429ba39a359b35a3a742d49b4a64db718aefd670c9a2329170f82e53
IEDL.DBID ACS
ISSN 1520-6106
IngestDate Sat Aug 17 00:11:40 EDT 2024
Fri Aug 23 02:47:09 EDT 2024
Thu Aug 27 13:41:53 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a355t-2453c5eaa429ba39a359b35a3a742d49b4a64db718aefd670c9a2329170f82e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3249-3586
OpenAccessLink http://wrap.warwick.ac.uk/138696/1/WRAP-Pressure-temperature-phase-diagram-lithium-Partay-2020.pdf
PQID 2414406507
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2414406507
crossref_primary_10_1021_acs_jpcb_0c03882
acs_journals_10_1021_acs_jpcb_0c03882
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20200716
2020-07-16
PublicationDateYYYYMMDD 2020-07-16
PublicationDate_xml – month: 07
  year: 2020
  text: 20200716
  day: 16
PublicationDecade 2020
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
Nikolaev D. N. (ref41/cit41) 2009; 1195
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – volume: 1195
  start-page: 923
  year: 2009
  ident: ref41/cit41
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.3295295
  contributor:
    fullname: Nikolaev D. N.
– ident: ref20/cit20
  doi: 10.1134/S0018151X13040019
– ident: ref45/cit45
  doi: 10.1088/0953-8984/1/32/001
– ident: ref37/cit37
  doi: 10.1021/jp5077752
– ident: ref53/cit53
  doi: 10.1088/0953-8984/2/19/007
– ident: ref25/cit25
  doi: 10.1016/j.commatsci.2016.12.018
– ident: ref6/cit6
  doi: 10.1103/PhysRevLett.109.185702
– ident: ref36/cit36
  doi: 10.1006/jcph.1995.1039
– ident: ref33/cit33
  doi: 10.1016/j.commatsci.2018.03.026
– ident: ref11/cit11
  doi: 10.1038/nphys1864
– ident: ref8/cit8
  doi: 10.1016/j.ssc.2009.12.029
– ident: ref54/cit54
  doi: 10.1103/PhysRevB.13.5188
– ident: ref15/cit15
  doi: 10.1103/PhysRevLett.102.146401
– ident: ref38/cit38
  doi: 10.1088/0953-8984/10/49/026
– ident: ref7/cit7
  doi: 10.1029/JB073i008p02795
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.93.174108
– ident: ref12/cit12
  doi: 10.1038/nature05820
– ident: ref14/cit14
  doi: 10.1103/PhysRevLett.91.167001
– ident: ref19/cit19
  doi: 10.1134/S0018151X12010014
– ident: ref29/cit29
  doi: 10.1021/acs.jctc.8b00368
– ident: ref26/cit26
  doi: 10.1214/06-BA127
– ident: ref50/cit50
  doi: 10.1038/35041515
– ident: ref51/cit51
  doi: 10.1524/zkri.220.5.567.65075
– ident: ref3/cit3
  doi: 10.1088/0029-5515/37/4/I13
– ident: ref10/cit10
  doi: 10.1103/PhysRevB.65.052102
– ident: ref40/cit40
  doi: 10.1016/0022-3115(84)90537-3
– ident: ref52/cit52
  doi: 10.1103/RevModPhys.64.1045
– ident: ref47/cit47
  doi: 10.1126/science.aal4886
– ident: ref49/cit49
  doi: 10.1039/C7CP02923C
– ident: ref31/cit31
  doi: 10.1103/PhysRevE.96.043311
– ident: ref30/cit30
  doi: 10.1103/PhysRevLett.120.250601
– ident: ref24/cit24
  doi: 10.1088/0965-0393/20/3/035005
– ident: ref17/cit17
  doi: 10.1134/S0018151X09020102
– ident: ref21/cit21
  doi: 10.1103/PhysRevB.46.2727
– ident: ref35/cit35
– ident: ref28/cit28
  doi: 10.1039/C9CP00474B
– ident: ref44/cit44
  doi: 10.1103/PhysRevB.28.784
– ident: ref13/cit13
  doi: 10.1126/science.1078535
– ident: ref1/cit1
– ident: ref4/cit4
  doi: 10.1088/0029-5515/55/4/043015
– ident: ref23/cit23
  doi: 10.1088/0965-0393/20/1/015014
– ident: ref43/cit43
  doi: 10.1007/BF02755816
– ident: ref2/cit2
  doi: 10.1016/0167-899X(84)90019-3
– ident: ref27/cit27
  doi: 10.1021/jp1012973
– ident: ref5/cit5
  doi: 10.1029/JZ067i006p02559
– ident: ref42/cit42
  doi: 10.1103/PhysRevLett.68.193
– ident: ref48/cit48
  doi: 10.1103/PhysRevLett.119.205701
– ident: ref18/cit18
  doi: 10.1103/PhysRevB.93.184101
– ident: ref16/cit16
  doi: 10.1038/s41598-018-23473-5
– ident: ref34/cit34
  doi: 10.1103/PhysRevE.89.022302
– ident: ref9/cit9
  doi: 10.1103/PhysRevLett.101.075703
– ident: ref39/cit39
  doi: 10.1063/1.1726611
– ident: ref22/cit22
  doi: 10.1088/0965-0393/11/4/303
– ident: ref46/cit46
  doi: 10.1073/pnas.1701994114
SSID ssj0025286
Score 2.4967322
Snippet In order to study the performance of interatomic potentials and their reliability at higher pressures, the phase diagrams of two different embedded-atom-type...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Publisher
StartPage 6015
SubjectTerms B: Liquids, Chemical and Dynamical Processes in Solution, Spectroscopy in Solution
Title Pressure–Temperature Phase Diagram of Lithium, Predicted by Embedded Atom Model Potentials
URI http://dx.doi.org/10.1021/acs.jpcb.0c03882
https://search.proquest.com/docview/2414406507
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB2kLnTjW3wzgi4EU9PJJGmWpSpFVARb6EII904mWLWNmHShK__BP_RLvJOH4gPpMkNe3JnMOYd7cy5je07cxACFZwUogQSKKyyUOrYC4WIUOb6PuZfexaXX6cmzvtv_ssn5mcEXjSNQaf3uUWHdVsa5hLbbaWEKCA0Nal9_iitX5F0dCY6MHLKrlORfdzBApNLvQPR9H87B5XS-6FKU5p6Epqbkvj7OsK5efjs2TvDeC2yu5Ji8VSyKRTalR0tspl21dltmN8VPgU_6_fWtq4k4F8bK_OqWMI0fD8CUbPEk5ueD7HYwHh5yuiAaKGKnHJ_5yRA17VcRb2XJkJtuag_8KslM3REt5hXWOz3ptjtW2WbBAiIbmSWk6yhXAxA0ITgBjQbouOAAyeZImkn0ZIQEYqDjyPNtFQDxMNJ5dtwU2nVWWW2UjPQa40jHQIwHZENL9BWgp4EIQWCTKhEK1tk-hSUsP5M0zDPgohHmgxSrsIzVOjuo5iZ8LFw3_jl3t5q8kMJo8h0w0sk4DYmcSGkoqL8x4XM32awwetoYZ3pbrJY9jfU2kY4Md_LV9gFaHdKd
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1DH_TFb3F-RtAHwc4uTdr1cUxl6hxDN9iDUHLTFKdulbV70Cf_g__QX-JNtyqKiD429CPcpDnncJNzCdlzogr4wFzLBy5RoAhmAdeR5TMBYeh4HmReepdNt97h513RLZByfhYGO5Hgm5Isif_pLlA-Mm13jwpKtjIGJrjqTgsP5bhhQ7XrD40lWFbcEVHJqCI7z0z-9AaDRyr5ikdfl-MMY07nydVH77KtJfelUQol9fzNuPFf3V8gcxPGSavjKbJICnqwRGZqeaG3ZXIzPiI41G8vr22NNHpss0xbt4hw9LgnzQYuGke00Utve6P-IcUHwp5CrkrhiZ70QePqFdJqGvepqa32QFtxanYh4dReIZ3Tk3atbk2KLlgSqUdqMS4cJbSUCFQgHR9bfXCEdCSK6JCbIXV5CAhpUkeh69nKl8jKUPXZUYVp4aySqUE80GuEAl5L5D-SlzUHT0lwtUR64NuoUZiSRbKPYQkmP00SZPlwVg6yRoxVMIlVkRzkQxQ8jj04frl3Nx_DAMNosh9yoONREiBV4dwQUm_9j9_dITP19mUjaJw1LzbILDNK21hquptkKh2O9BbSkRS2swn4Dl0H2wg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6ioL54F-c1gj4IdnZp0q6PYxe8M_CCD0LJSVM2detYuwd98j_4D_0lnnStoIjoY0ObJieX7zuc5DuE7DlRFXxgruUDl-igCGYB15HlMwFh6HgeZFp6F5fu8Q0_vRN3E0QUd2GwEQnWlGRBfLOqB2GUKwxUjkz5w0BB2VZGxAR33ilh8ncbRlS_-vSzBMsSPCIyGc_ILqKTP9VgMEklXzHp65ac4Uxrntx-tjA7XvJYHqVQVi_fxBv_3YUFMpczT1obT5VFMqH7S2SmXiR8Wyb346uCQ_3--natkU6P5ZZpu4NIRxtdaQ5y0Tii59200x31Dil-EHYVclYKz7TZA427WEhradyjJsfaE23HqTmNhFN8hdy0mtf1YytPvmBJpCCpxbhwlNBSImCBdHws9cER0pHoTIfcDK3LQ0BokzoKXc9WvkR2ht6fHVWZFs4qmezHfb1GKOCzRB4keUVz8JQEV0ukCb6NvgpTskT20SxBvniSIIuLs0qQFaKtgtxWJXJQDFMwGGtx_PLubjGOAZrRREFkX8ejJEDKwrkhpt76H_-7Q6bbjVZwfnJ5tkFmmXG4jbKmu0km0-FIbyErSWE7m4MfdDLdgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressure-Temperature+Phase+Diagram+of+Lithium%2C+Predicted+by+Embedded+Atom+Model+Potentials&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Dorrell%2C+Jordan&rft.au=P%C3%A1rtay%2C+Livia+B&rft.date=2020-07-16&rft.eissn=1520-5207&rft.volume=124&rft.issue=28&rft.spage=6015&rft.epage=6023&rft_id=info:doi/10.1021%2Facs.jpcb.0c03882&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon