Climate response to drastically modified PDO, PNA and NAM in the superinterglacial MIS 31

The Pacific Decadal Oscillation (PDO), the Pacific‐North American Pattern (PNA) and the Northern Annular Mode (NAM) influence the Northern Hemisphere climate over all sorts of time scales, from days to decades. This study evaluates these climate modes under drastically modified conditions. It is fou...

Full description

Saved in:
Bibliographic Details
Published inBoreas Vol. 51; no. 1; pp. 238 - 254
Main Authors Justino, Flávio, Gurjão, Carlos, Lindemann, Douglas
Format Journal Article
LanguageEnglish
Published Aarhus John Wiley & Sons, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Pacific Decadal Oscillation (PDO), the Pacific‐North American Pattern (PNA) and the Northern Annular Mode (NAM) influence the Northern Hemisphere climate over all sorts of time scales, from days to decades. This study evaluates these climate modes under drastically modified conditions. It is found that in Marine Isotope Stage 31 (MIS 31), an interglacial with enhanced seasonal amplitude, the PDO, PNA and NAM are completely different in their temporal and spatial patterns with respect to current conditions. Moreover, the MIS 31 boundary conditions induce an amplification of the interannual variability, but a suppression of the decadal peak. It is found that changes in the air–sea interaction in the NH, in particular due to a weaker Aleutian low, are responsible for the absence of the decadal periodicity. However, no large changes are verified in terms of explained variance of those modes with respect to CTR. However, the amplitude of response related to the PDO, NAM and PNA is weaker in the MIS 31 experiment, very likely due to a reduced meridional thermal gradient. The results presented here are useful for palaeoreconstruction interpretation because proxies may reproduce dominant characteristics of temperature and precipitation related to the persistence of those modes of variability. Thus, their ability to reproduce long‐term environmental conditions in some situations can be related to a preferential phase of the PDO, PNA and NAM.
AbstractList The Pacific Decadal Oscillation (PDO), the Pacific‐North American Pattern (PNA) and the Northern Annular Mode (NAM) influence the Northern Hemisphere climate over all sorts of time scales, from days to decades. This study evaluates these climate modes under drastically modified conditions. It is found that in Marine Isotope Stage 31 (MIS 31), an interglacial with enhanced seasonal amplitude, the PDO, PNA and NAM are completely different in their temporal and spatial patterns with respect to current conditions. Moreover, the MIS 31 boundary conditions induce an amplification of the interannual variability, but a suppression of the decadal peak. It is found that changes in the air–sea interaction in the NH, in particular due to a weaker Aleutian low, are responsible for the absence of the decadal periodicity. However, no large changes are verified in terms of explained variance of those modes with respect to CTR. However, the amplitude of response related to the PDO, NAM and PNA is weaker in the MIS 31 experiment, very likely due to a reduced meridional thermal gradient. The results presented here are useful for palaeoreconstruction interpretation because proxies may reproduce dominant characteristics of temperature and precipitation related to the persistence of those modes of variability. Thus, their ability to reproduce long‐term environmental conditions in some situations can be related to a preferential phase of the PDO, PNA and NAM.
Author Gurjão, Carlos
Lindemann, Douglas
Justino, Flávio
Author_xml – sequence: 1
  givenname: Flávio
  orcidid: 0000-0003-0929-1388
  surname: Justino
  fullname: Justino, Flávio
  email: fjustino@ufv.br
  organization: Universidade Federal de Viçosa
– sequence: 2
  givenname: Carlos
  surname: Gurjão
  fullname: Gurjão, Carlos
  organization: Universidade Federal de Viçosa
– sequence: 3
  givenname: Douglas
  surname: Lindemann
  fullname: Lindemann, Douglas
  organization: Universidade Federal de Pelotas
BookMark eNp9kElPwzAQhS1UJNrCgX9giRMSab3EiXMsZavUTSwHTpHjOODKtYvtCvXfk1JOSDCXuXzvzbzXAx3rrALgHKMBbmdYOT_AhLHsCHQxQyShnLMO6CKKUFKknJ6AXggrhFBKUdoFr2Oj1yIq6FXYOBsUjA7WXoSopTBmB9eu1o1WNVzeLK7gcj6CwtZwPppBbWF8VzBsN8prG5V_M0JqYeBs8gQpPgXHjTBBnf3sPni5u30ePyTTxf1kPJomgrZvJrgQmFImGlzlTSYkIgylCrGUS4QzhVROOCZFkWd1UzU4kwXHPG9InVacYSxpH1wcfDfefWxViOXKbb1tT5YkIzQtsn3WPrg8UNK7ELxqyo1vg_tdiVG5b65smyu_m2vZ4S9W6iiidjZ6oc1_ik9t1O5v6_J68XhQfAEht36M
CitedBy_id crossref_primary_10_1007_s00382_023_06660_7
crossref_primary_10_1038_s41612_022_00274_2
Cites_doi 10.1175/JCLI3327.1
10.1038/nclimate3011
10.1002/2017GL076327
10.1175/JCLI-D-12-00609.1
10.1007/s11434-004-0221-3
10.1038/s41467‐020‐17983‐y
10.1038/nature07809
10.1016/0377-8398(95)00048-8
10.1007/s00382-015-2705-z
10.5194/cpd-10-3127-2014
10.1029/2004PA001071
10.5194/acp-20-5249-2020
10.1029/2008PA001669
10.1002/2015PA002903
10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
10.1007/3-540-27250-X_7
10.1029/2008GL035205
10.1029/97JC01444
10.1126/science.1222135
10.1038/nclimate2100
10.1007/s00382-013-1906-6
10.1007/s00382-010-0904-1
10.1007/s00382-005-0085-5
10.1073/pnas.1407229111
10.1007/s00382-017-3881-9
10.1175/2008JCLI2639.1
10.1006/qres.2001.2316
10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
10.1126/sciadv.aax8203
10.1175/JCLI3253.1
10.1175/JCLI-D-15-0789.1
10.1126/science.1058958
10.1002/grl.50643
10.1002/(SICI)1097-0088(199908)19:10<1119::AID-JOC414>3.0.CO;2-7
10.1029/2005GL023822
10.1175/2007JCLI1703.1
10.5194/cp-13-1081-2017
10.1029/2006JD007878
10.5194/gmd-3-227-2010
10.1175/JCLI-D-11-00573.1
10.1007/s00382-011-1013-5
10.1175/JCLI-D-15-0508.1
10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2
10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
10.1029/2007GL031584
10.1007/s00382-012-1445-6
10.1175/1520-0442(2000)013<2356:IIZMFV>2.0.CO;2
10.1175/JCLI3617.1
10.5194/cp-15-735-2019
10.1073/pnas.1618201114
10.1002/wcc.441
10.1038/s41467‐021‐21830‐z
10.1016/S0065-2687(08)60005-9
10.1073/pnas.1318371111
10.1038/s41558-019-0663-x
10.1175/JCLI-D-19-0033.1
10.1146/annurev-marine-120408-151453
10.5194/gmd-6-373-2013
ContentType Journal Article
Copyright 2021 Collegium Boreas. Published by John Wiley & Sons Ltd
2022. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 Collegium Boreas. Published by John Wiley & Sons Ltd
– notice: 2022. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SN
7SS
7TG
C1K
F1W
H95
H96
KL.
L.G
DOI 10.1111/bor.12556
DatabaseName CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Meteorological & Geoastrophysical Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Sciences and Pollution Management
DatabaseTitleList
Entomology Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1502-3885
EndPage 254
ExternalDocumentID 10_1111_bor_12556
BOR12556
Genre article
GrantInformation_xml – fundername: Brazilian National Research Council
  funderid: 232718/2014‐8; 407681/2013‐2
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
23N
24P
31~
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCMX
ACGEJ
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADXPE
ADZMN
AEFGJ
AEIMD
AENEX
AFBPY
AFFNX
AFGKR
AFRAH
AFZJQ
AGQPQ
AGXDD
AHEFC
AIDQK
AIDYY
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
ZCA
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7SN
7SS
7TG
C1K
F1W
GROUPED_DOAJ
H95
H96
KL.
L.G
WIN
ID FETCH-LOGICAL-a3556-19a1335af1b7f6ac02504e0548c016e0e728129976dfbf16c98187f2d4b8511c3
IEDL.DBID DR2
ISSN 0300-9483
IngestDate Sat Aug 23 12:50:50 EDT 2025
Sun Jul 06 05:07:02 EDT 2025
Thu Apr 24 23:00:23 EDT 2025
Sun Jul 06 04:45:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3556-19a1335af1b7f6ac02504e0548c016e0e728129976dfbf16c98187f2d4b8511c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0929-1388
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdf/10.1111/bor.12556
PQID 2623496004
PQPubID 976342
PageCount 254
ParticipantIDs proquest_journals_2623496004
crossref_primary_10_1111_bor_12556
crossref_citationtrail_10_1111_bor_12556
wiley_primary_10_1111_bor_12556_BOR12556
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Aarhus
PublicationPlace_xml – name: Aarhus
PublicationTitle Boreas
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2002; 58
2017; 8
2013; 26
2020; 20
2019; 15
2016; 31
1981; 109
2005; 20
2008; 35
2020; 11
2020; 10
2018; 45
2017; 114
2007; 34
2013; 6
2017; 30
2014; 4
2001; 293
1999; 19
2000; 13
2006; 26
2005; 32
2008; 21
2010; 3
2012; 25
2010; 2
1996; 27
2012; 337
2016; 46
2014; 10
2009; 22
2009; 24
2019; 5
2006; 51
2019; 32
2013; 40
2008
2006; 19
2005
2011; 37
2012; 38
2014; 111
2014; 42
2009; 458
2016; 6
2007; 112
2021; 12
2017; 13
1997; 78
1964; 10
2016
1998; 103
2018; 50
2016; 29
2005; 18
1998; 79
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 79
  start-page: 2715
  year: 1998
  end-page: 2726
  article-title: Interdecadal modulation of ENSO teleconnections
  publication-title: Bulletin of the American Meteorological Society
– volume: 26
  start-page: 79
  year: 2006
  end-page: 91
  article-title: Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation
  publication-title: Climate Dynamics
– volume: 114
  start-page: 3340
  year: 2017
  end-page: 3345
  article-title: Pacific North American circulation pattern links external forcing and North American hydroclimatic change over the past millennium
  publication-title: Proceedings of the National Academy of Sciences
– volume: 78
  start-page: 1069
  year: 1997
  end-page: 1079
  article-title: A Pacific interdecadal climate oscillation with impacts on salmon production
  publication-title: Bulletin of the American Meteorological Society
– volume: 13
  start-page: 1081
  year: 2017
  end-page: 1095
  article-title: Oceanic response to changes in the WAIS and astronomical forcing during the MIS 31 superinterglacial
  publication-title: Climate of the Past
– volume: 10
  start-page: 30
  year: 2020
  end-page: 34
  article-title: The Pacific Decadal Oscillation less predictable under greenhouse warming
  publication-title: Nature Climate Change
– volume: 26
  start-page: 9090
  year: 2013
  end-page: 9091
  article-title: PNA predictability at various time scales
  publication-title: Journal of Climate
– volume: 458
  start-page: 329
  year: 2009
  end-page: 332
  article-title: Modelling West Antarctic ice sheet growth and collapse through the past five million years
  publication-title: Nature
– volume: 50
  start-page: 4379
  year: 2018
  end-page: 4403
  article-title: Pacific‐North American teleconnection and North Pacific Oscillation: historical simulation and future projection in CMIP5 models
  publication-title: Climate Dynamics
– volume: 13
  start-page: 1000
  year: 2000
  end-page: 1016
  article-title: Annular modes in the extratropical circulation. Part I: Month‐to‐month variability
  publication-title: Journal of Climate
– volume: 40
  start-page: 1291
  year: 2013
  end-page: 1299
  article-title: Maintenance of PDO variability during the mid‐Holocene in PMIP2
  publication-title: Climate Dynamics
– volume: 25
  start-page: 6136
  year: 2012
  end-page: 6151
  article-title: Influence of ENSO on Pacific decadal variability: an analysis based on the NCEP climate forecast system
  publication-title: Journal of Climate
– volume: 45
  start-page: 2487
  year: 2018
  end-page: 2496
  article-title: Disentangling global warming, multidecadal variability, and El Niño in Pacific temperatures
  publication-title: Geophysical Research Letters
– start-page: 223
  year: 2005
  end-page: 246
– volume: 3
  start-page: 227
  year: 2010
  end-page: 242
  article-title: Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1)
  publication-title: Geoscientific Model Development
– volume: 18
  start-page: 1315
  year: 2005
  end-page: 1325
  article-title: The importance of atmospheric dynamics in the northern hemisphere wintertime climate response to changes in the earth’s orbit
  publication-title: Journal of Climate
– volume: 21
  start-page: 459
  year: 2008
  end-page: 475
  article-title: Climate anomalies induced by the Arctic and Antarctic oscillations: glacial maximum and present‐day perspectives
  publication-title: Journal of Climate
– volume: 30
  start-page: 3907
  year: 2017
  end-page: 3925
  article-title: On the response of the Aleutian low to greenhouse warming
  publication-title: Journal of Climate
– volume: 46
  start-page: 2337
  year: 2016
  end-page: 2351
  article-title: Atlantic forcing of Pacific decadal variability
  publication-title: Climate Dynamics
– volume: 4
  start-page: 111
  year: 2014
  end-page: 116
  article-title: Increasing frequency of extreme El Niño events due to greenhouse warming
  publication-title: Nature Climate Change
– volume: 37
  start-page: 775
  year: 2011
  end-page: 802
  article-title: Pollen‐based continental climate reconstructions at 6 and 21 ka: a global synthesis
  publication-title: Climate Dynamics
– year: 2008
– volume: 13
  start-page: 2356
  year: 2000
  end-page: 2362
  article-title: Is interannual zonal mean flow variability simply climate noise?
  publication-title: Journal of Climate
– volume: 111
  start-page: 360
  year: 2014
  end-page: 498
  article-title: Atmospheric controls on Northeast Pacific temperature variability and change, 1900–2012
  publication-title: Proceedings of the National Academy of Sciences
– volume: 20
  start-page: PA1003
  year: 2005
  article-title: A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ O records
  publication-title: Paleoceanography
– volume: 6
  start-page: 373
  year: 2013
  end-page: 388
  article-title: The OASIS3 coupler: a European climate modelling community software
  publication-title: Geoscientific Model Development
– volume: 112
  start-page: D12102
  year: 2007
  article-title: Toward understanding the double Intertropical Convergence Zone pathology in coupled ocean‐atmosphere general circulation models
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 27
  start-page: 313
  year: 1996
  end-page: 326
  article-title: Mid‐Pliocene warmth: stronger greenhouse and stronger conveyor
  publication-title: Marine Micropaleontology
– volume: 22
  start-page: 1255
  year: 2009
  end-page: 1276
  article-title: Forcing of low‐frequency ocean variability in the northeast Pacific
  publication-title: Journal of Climate
– volume: 111
  start-page: E3501
  year: 2014
  end-page: E3505
  article-title: The Holocene temperature conundrum
  publication-title: Proceedings of the National Academy of Sciences
– volume: 337
  start-page: 315
  year: 2012
  end-page: 320
  article-title: 2.8 million years of arctic climate change from lake El‐gygytgyn. NE Russia
  publication-title: Science
– volume: 42
  start-page: 3337
  year: 2014
  end-page: 3355
  article-title: Pacific interdecadal variability driven by tropical‐extratropical interactions
  publication-title: Climate Dynamics
– volume: 15
  start-page: 735
  year: 2019
  end-page: 749
  article-title: A modified seasonal cycle during MIS 31 super‐interglacial favors stronger interannual ENSO and monsoon variability
  publication-title: Climate of the Past
– volume: 20
  start-page: 5249
  year: 2020
  end-page: 5268
  article-title: Hadley cell expansion in CMIP6 models
  publication-title: Atmospheric Chemistry and Physics
– volume: 32
  start-page: 6271
  year: 2019
  end-page: 6284
  article-title: Contrastive influence of ENSO and PNA on variability and predictability of North American winter precipitation
  publication-title: Journal of Climate
– volume: 12
  start-page: 1519
  year: 2021
  article-title: Acceleration of Western Arctic sea ice loss linked to the Pacific North American pattern
  publication-title: Nature Communications
– volume: 18
  start-page: 160
  year: 2005
  end-page: 177
  article-title: The Aleutian low and winter climatic conditions in the Bering sea. Part I: classification
  publication-title: Journal of Climate
– volume: 6
  start-page: 856
  year: 2016
  end-page: 860
  article-title: Contribution of sea‐ice loss to arctic amplification is regulated by Pacific ocean decadal variability
  publication-title: Nature Climate Change
– volume: 58
  start-page: 2
  year: 2002
  end-page: 13
  article-title: Last interglacial climates
  publication-title: Quaternary Research
– volume: 103
  start-page: 14291
  year: 1998
  end-page: 14324
  article-title: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures
  publication-title: Journal of Geophysical Research: Oceans
– volume: 40
  start-page: 3682
  year: 2013
  end-page: 3687
  article-title: Opposite CMIP3/CMIP5 trends in the wintertime northern annular mode explained by combined local sea ice and remote tropical influences
  publication-title: Geophysical Research Letters
– volume: 10
  start-page: 3127
  year: 2014
  end-page: 3161
  article-title: A GCM comparison of Plio‐Pleistocene interglacial‐glacial periods in relation to Lake El’gygytgyn, NE Arctic Russia
  publication-title: Climate of the Past Discussions
– year: 2016
– volume: 5
  year: 2019
  article-title: Mid‐Holocene Northern Hemisphere warming driven by Arctic amplification
  publication-title: Science Advances
– volume: 24
  start-page: PA2218
  year: 2009
  article-title: High‐amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period
  publication-title: Paleoceanography
– volume: 32
  start-page: L21803
  year: 2005
  article-title: The glacial North Atlantic Oscillation
  publication-title: Geophysical Research Letters
– volume: 293
  start-page: 85
  year: 2001
  end-page: 89
  article-title: Regional climate impacts of the Northern Hemisphere annular mode
  publication-title: Science
– volume: 19
  start-page: 276
  year: 2006
  end-page: 287
  article-title: Observed relationships between the El Niño southern oscillation and the extratropical zonal‐mean circulation
  publication-title: Journal of Climate
– volume: 38
  start-page: 709
  year: 2012
  end-page: 724
  article-title: Individual contribution of insolation and CO to the interglacial climates of the past 800,000 years
  publication-title: Climate Dynamics
– volume: 2
  start-page: 115
  year: 2010
  end-page: 143
  article-title: Sea surface temperature variability: patterns and mechanisms
  publication-title: Annual Review of Marine Science
– volume: 8
  start-page: e441
  year: 2017
  article-title: Modelling interdecadal climate variability and the role of the ocean
  publication-title: WIREs Climate Change
– volume: 109
  start-page: 784
  year: 1981
  end-page: 812
  article-title: Teleconnections in the geopotential height field during the northern hemisphere winter
  publication-title: Monthly Weather Review
– volume: 51
  start-page: 75
  year: 2006
  end-page: 79
  article-title: Relationship between Arctic oscillation and Pacific decadal oscillation on decadal timescale
  publication-title: Chinese Science Bulletin
– volume: 19
  start-page: 1119
  year: 1999
  end-page: 1129
  article-title: A wavelet characterization of the North Atlantic oscillation variation and its relationship to the North Atlantic sea surface temperature
  publication-title: International Journal of Climatology: A Journal of the Royal Meteorological Society
– volume: 10
  start-page: 1
  year: 1964
  end-page: 82
  article-title: Atlantic air‐sea interaction
  publication-title: Advances in Geophysics
– volume: 35
  start-page: L20701
  year: 2008
  article-title: Role of the Pacific‐North American (PNA) pattern in the 2007 Arctic sea ice decline
  publication-title: Geophysical Research Letters
– volume: 29
  start-page: 4399
  year: 2016
  end-page: 4427
  article-title: The Pacific decadal oscillation, revisited
  publication-title: Journal of Climate
– volume: 11
  start-page: 4230
  year: 2020
  article-title: Dynamics for El Niño‐La Niña asymmetry constrain equatorial‐Pacific warming pattern
  publication-title: Nature Communications
– volume: 31
  start-page: 1206
  year: 2016
  end-page: 1224
  article-title: The warm Marine Isotope Stage 31 in the Labrador Sea: low surface salinities and cold subsurface waters prevented winter convection
  publication-title: Paleoceanography
– volume: 34
  start-page: L23705
  year: 2007
  article-title: On the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation: might they be related?
  publication-title: Geophysical Research Letters
– ident: e_1_2_11_18_1
  doi: 10.1175/JCLI3327.1
– ident: e_1_2_11_41_1
– ident: e_1_2_11_50_1
  doi: 10.1038/nclimate3011
– ident: e_1_2_11_58_1
  doi: 10.1002/2017GL076327
– ident: e_1_2_11_60_1
  doi: 10.1175/JCLI-D-12-00609.1
– ident: e_1_2_11_51_1
  doi: 10.1007/s11434-004-0221-3
– ident: e_1_2_11_19_1
  doi: 10.1038/s41467‐020‐17983‐y
– ident: e_1_2_11_47_1
  doi: 10.1038/nature07809
– ident: e_1_2_11_48_1
  doi: 10.1016/0377-8398(95)00048-8
– ident: e_1_2_11_29_1
  doi: 10.1007/s00382-015-2705-z
– ident: e_1_2_11_10_1
  doi: 10.5194/cpd-10-3127-2014
– ident: e_1_2_11_37_1
  doi: 10.1029/2004PA001071
– ident: e_1_2_11_17_1
  doi: 10.5194/acp-20-5249-2020
– ident: e_1_2_11_34_1
  doi: 10.1029/2008PA001669
– ident: e_1_2_11_3_1
  doi: 10.1002/2015PA002903
– ident: e_1_2_11_56_1
  doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
– ident: e_1_2_11_21_1
  doi: 10.1007/3-540-27250-X_7
– ident: e_1_2_11_33_1
  doi: 10.1029/2008GL035205
– ident: e_1_2_11_54_1
  doi: 10.1029/97JC01444
– ident: e_1_2_11_22_1
– ident: e_1_2_11_43_1
  doi: 10.1126/science.1222135
– ident: e_1_2_11_6_1
  doi: 10.1038/nclimate2100
– ident: e_1_2_11_13_1
  doi: 10.1007/s00382-013-1906-6
– ident: e_1_2_11_4_1
  doi: 10.1007/s00382-010-0904-1
– ident: e_1_2_11_30_1
  doi: 10.1007/s00382-005-0085-5
– ident: e_1_2_11_40_1
  doi: 10.1073/pnas.1407229111
– ident: e_1_2_11_8_1
  doi: 10.1007/s00382-017-3881-9
– ident: e_1_2_11_9_1
  doi: 10.1175/2008JCLI2639.1
– ident: e_1_2_11_31_1
  doi: 10.1006/qres.2001.2316
– ident: e_1_2_11_42_1
  doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
– ident: e_1_2_11_46_1
  doi: 10.1126/sciadv.aax8203
– ident: e_1_2_11_49_1
  doi: 10.1175/JCLI3253.1
– ident: e_1_2_11_15_1
  doi: 10.1175/JCLI-D-15-0789.1
– ident: e_1_2_11_53_1
  doi: 10.1126/science.1058958
– ident: e_1_2_11_7_1
  doi: 10.1002/grl.50643
– ident: e_1_2_11_23_1
  doi: 10.1002/(SICI)1097-0088(199908)19:10<1119::AID-JOC414>3.0.CO;2-7
– ident: e_1_2_11_25_1
  doi: 10.1029/2005GL023822
– ident: e_1_2_11_26_1
  doi: 10.1175/2007JCLI1703.1
– ident: e_1_2_11_28_1
  doi: 10.5194/cp-13-1081-2017
– ident: e_1_2_11_61_1
  doi: 10.1029/2006JD007878
– ident: e_1_2_11_20_1
  doi: 10.5194/gmd-3-227-2010
– ident: e_1_2_11_57_1
  doi: 10.1175/JCLI-D-11-00573.1
– ident: e_1_2_11_59_1
  doi: 10.1007/s00382-011-1013-5
– ident: e_1_2_11_44_1
  doi: 10.1175/JCLI-D-15-0508.1
– ident: e_1_2_11_16_1
  doi: 10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2
– ident: e_1_2_11_52_1
  doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
– ident: e_1_2_11_45_1
  doi: 10.1029/2007GL031584
– ident: e_1_2_11_2_1
  doi: 10.1007/s00382-012-1445-6
– ident: e_1_2_11_14_1
  doi: 10.1175/1520-0442(2000)013<2356:IIZMFV>2.0.CO;2
– ident: e_1_2_11_32_1
  doi: 10.1175/JCLI3617.1
– ident: e_1_2_11_27_1
  doi: 10.5194/cp-15-735-2019
– ident: e_1_2_11_39_1
  doi: 10.1073/pnas.1618201114
– ident: e_1_2_11_12_1
  doi: 10.1002/wcc.441
– ident: e_1_2_11_38_1
  doi: 10.1038/s41467‐021‐21830‐z
– ident: e_1_2_11_5_1
  doi: 10.1016/S0065-2687(08)60005-9
– ident: e_1_2_11_24_1
  doi: 10.1073/pnas.1318371111
– ident: e_1_2_11_35_1
  doi: 10.1038/s41558-019-0663-x
– ident: e_1_2_11_36_1
  doi: 10.1175/JCLI-D-19-0033.1
– ident: e_1_2_11_11_1
  doi: 10.1146/annurev-marine-120408-151453
– ident: e_1_2_11_55_1
  doi: 10.5194/gmd-6-373-2013
SSID ssj0004304
Score 2.3103878
Snippet The Pacific Decadal Oscillation (PDO), the Pacific‐North American Pattern (PNA) and the Northern Annular Mode (NAM) influence the Northern Hemisphere climate...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 238
SubjectTerms Air-sea interaction
Aleutian low
Amplitude
Amplitudes
Arctic Oscillation
Boundary conditions
Climate
Environmental conditions
Interannual variability
Interglacial periods
Isotopes
Modes
Northern Hemisphere
Pacific Decadal Oscillation
Periodicity
Temperature gradients
Variability
Title Climate response to drastically modified PDO, PNA and NAM in the superinterglacial MIS 31
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbor.12556
https://www.proquest.com/docview/2623496004
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JS8QwFMeDCoIXd3FchiAePNghbdIleBp3hVkYHVAQSpomMDh2ZJaDfnpf0nZGRUG89ZBueXl5vxde_kHokMKMR7hQTuonxGGaM4dz5TuUiIDolGoqzebkRjO47rLbB_9hDp2Ue2FyfYjpgpvxDDtfGwcXyeiTk0MX1VwjoAXzr6nVMkDUmUlHMUpy6ShCHM4iWqgKmSqe6Z1fY9EMMD9jqo0zlyvoqfzCvLzkuTYZJzX5_k288Z-_sIqWC_7E9XzArKE5la2jxSt7vu_bBno86_eAYRUe5rWzCo8HOB2KkV3y7r_hl0Ha04CtuH3eOsbtZh2LLMXNegP3MgwwiUcTo51szAVgbtbjcePmDlN3E3UvL-7Prp3i9AVHAIMEjssF5K--0G4S6kBIK3amgPAiCZioiAo9gAMOOJPqRLuB5BD7Q-2lLDEUJ-kWWsgGmdpGGFIcLWQoFeSGTIUQHjxJo0jCnZEKfV5BR6UdYllIk5sTMvpxmaJAT8W2pyroYNr0Ndfj-KnRXmnMuHDJUewB6DHI1wiD11mr_P6A-LTVsRc7f2-6i5Y8szXCLs_soYXxcKL2AVjGSRXNe6xdtel-1Y7SD8or5Zc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LT9wwEIdHPITohVKg6gItFuLAgayc2HlY4rKlpUvLLoiHBAcUOY4trbpk0T4O8NczdpIFKpBQbzk4L4_H_mZk_wZgh-GMR4XUXh5m1ONGcE8IHXqMyoianBmm7OHkTjdqX_LfV-HVDOzXZ2FKfYhpws16hpuvrYPbhPQzL8c-avpWQWsW5m1FbxdQnT2JR3FGS_EoSj3BE1bpCtl9PNNbX65GT4j5HFTdSnP4EW7qbyw3mPxtTsZZUz38I9_4vz-xDEsVgpJWOWY-wYwuVmDhlyvxe78K1wf9HmKsJsNy-6wm4wHJh3Lkst79e3I7yHsGyZWc_jjZI6fdFpFFTrqtDukVBHmSjCZWPtlaDNncpuRJ5-icMH8NLg9_Xhy0vaoAgycRQyLPFxJD2FAaP4tNJJXTO9MIeYlCUtRUxwHygUCiyU1m_EgJXP5jE-Q8syCn2GeYKwaF_gIEoxwjVaw0hodcx7hCBIolicI7Ex2HogG7tSFSVamT2yIZ_bSOUrCnUtdTDdieNr0rJTlea7RZWzOtvHKUBsh6HEM2yvF1zixvPyD9fnLmLtbf33QLFtsXneP0-Kj7ZwM-BPakhMvWbMLceDjRX5Ffxtk3N0wfAVyX5-Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LbxMxEIdHJQjUS6E8RNsAVsWBAxt5196HxSk0pM88VKhUJKSV12tLUdNNlMch_PWMvbtJqUBCve3B-_J4PN-M7J8BPjCc8aiQ2svDjHrcCO4JoUOPURlRkzPDlN2c3OtHJ1f87Dq83oLP9V6YUh9iXXCznuHma-vg09zccXLsopZvBbQewWMe0cQO6c7lRjuKM1pqR1HqCZ6wSlbILuNZ3_pnMNoQ5l1OdYGm-wx-1p9Yri-5aS0XWUv9uqfe-MB_eA47FYCSdjlidmFLFy_gybE74Hf1En4cjUcIsZrMysWzmiwmJJ_Juat5j1fkdpKPDHIrGXYGn8iw3yayyEm_3SOjgiBNkvnSiidbeyGZ24I86Z1-I8x_BVfdr9-PTrzq-AVPIoREni8kJrChNH4Wm0gqp3amEfEShZyoqY4DpAOBPJObzPiREhj8YxPkPLMYp9hraBSTQr8BgjmOkSpWGpNDrmOMD4FiSaLwzkTHodiDj7UdUlVpk9sjMsZpnaNgT6Wup_bgcN10Wgpy_K1RszZmWvnkPA2Q9DgmbJTj65xV_v2A9Mvg0l3s_3_T9_B02OmmF6f98wPYDuw2CVeqaUJjMVvqtwgvi-ydG6S_Ac4d5p4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+response+to+drastically+modified+PDO%2C+PNA+and+NAM+in+the+superinterglacial+MIS+31&rft.jtitle=Boreas&rft.au=Justino%2C+Fl%C3%A1vio&rft.au=Gurj%C3%A3o%2C+Carlos&rft.au=Lindemann%2C+Douglas&rft.date=2022-01-01&rft.issn=0300-9483&rft.eissn=1502-3885&rft.volume=51&rft.issue=1&rft.spage=238&rft.epage=254&rft_id=info:doi/10.1111%2Fbor.12556&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_bor_12556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-9483&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-9483&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-9483&client=summon