Climate response to drastically modified PDO, PNA and NAM in the superinterglacial MIS 31
The Pacific Decadal Oscillation (PDO), the Pacific‐North American Pattern (PNA) and the Northern Annular Mode (NAM) influence the Northern Hemisphere climate over all sorts of time scales, from days to decades. This study evaluates these climate modes under drastically modified conditions. It is fou...
Saved in:
Published in | Boreas Vol. 51; no. 1; pp. 238 - 254 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Aarhus
John Wiley & Sons, Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Pacific Decadal Oscillation (PDO), the Pacific‐North American Pattern (PNA) and the Northern Annular Mode (NAM) influence the Northern Hemisphere climate over all sorts of time scales, from days to decades. This study evaluates these climate modes under drastically modified conditions. It is found that in Marine Isotope Stage 31 (MIS 31), an interglacial with enhanced seasonal amplitude, the PDO, PNA and NAM are completely different in their temporal and spatial patterns with respect to current conditions. Moreover, the MIS 31 boundary conditions induce an amplification of the interannual variability, but a suppression of the decadal peak. It is found that changes in the air–sea interaction in the NH, in particular due to a weaker Aleutian low, are responsible for the absence of the decadal periodicity. However, no large changes are verified in terms of explained variance of those modes with respect to CTR. However, the amplitude of response related to the PDO, NAM and PNA is weaker in the MIS 31 experiment, very likely due to a reduced meridional thermal gradient. The results presented here are useful for palaeoreconstruction interpretation because proxies may reproduce dominant characteristics of temperature and precipitation related to the persistence of those modes of variability. Thus, their ability to reproduce long‐term environmental conditions in some situations can be related to a preferential phase of the PDO, PNA and NAM. |
---|---|
AbstractList | The Pacific Decadal Oscillation (PDO), the Pacific‐North American Pattern (PNA) and the Northern Annular Mode (NAM) influence the Northern Hemisphere climate over all sorts of time scales, from days to decades. This study evaluates these climate modes under drastically modified conditions. It is found that in Marine Isotope Stage 31 (MIS 31), an interglacial with enhanced seasonal amplitude, the PDO, PNA and NAM are completely different in their temporal and spatial patterns with respect to current conditions. Moreover, the MIS 31 boundary conditions induce an amplification of the interannual variability, but a suppression of the decadal peak. It is found that changes in the air–sea interaction in the NH, in particular due to a weaker Aleutian low, are responsible for the absence of the decadal periodicity. However, no large changes are verified in terms of explained variance of those modes with respect to CTR. However, the amplitude of response related to the PDO, NAM and PNA is weaker in the MIS 31 experiment, very likely due to a reduced meridional thermal gradient. The results presented here are useful for palaeoreconstruction interpretation because proxies may reproduce dominant characteristics of temperature and precipitation related to the persistence of those modes of variability. Thus, their ability to reproduce long‐term environmental conditions in some situations can be related to a preferential phase of the PDO, PNA and NAM. |
Author | Gurjão, Carlos Lindemann, Douglas Justino, Flávio |
Author_xml | – sequence: 1 givenname: Flávio orcidid: 0000-0003-0929-1388 surname: Justino fullname: Justino, Flávio email: fjustino@ufv.br organization: Universidade Federal de Viçosa – sequence: 2 givenname: Carlos surname: Gurjão fullname: Gurjão, Carlos organization: Universidade Federal de Viçosa – sequence: 3 givenname: Douglas surname: Lindemann fullname: Lindemann, Douglas organization: Universidade Federal de Pelotas |
BookMark | eNp9kElPwzAQhS1UJNrCgX9giRMSab3EiXMsZavUTSwHTpHjOODKtYvtCvXfk1JOSDCXuXzvzbzXAx3rrALgHKMBbmdYOT_AhLHsCHQxQyShnLMO6CKKUFKknJ6AXggrhFBKUdoFr2Oj1yIq6FXYOBsUjA7WXoSopTBmB9eu1o1WNVzeLK7gcj6CwtZwPppBbWF8VzBsN8prG5V_M0JqYeBs8gQpPgXHjTBBnf3sPni5u30ePyTTxf1kPJomgrZvJrgQmFImGlzlTSYkIgylCrGUS4QzhVROOCZFkWd1UzU4kwXHPG9InVacYSxpH1wcfDfefWxViOXKbb1tT5YkIzQtsn3WPrg8UNK7ELxqyo1vg_tdiVG5b65smyu_m2vZ4S9W6iiidjZ6oc1_ik9t1O5v6_J68XhQfAEht36M |
CitedBy_id | crossref_primary_10_1007_s00382_023_06660_7 crossref_primary_10_1038_s41612_022_00274_2 |
Cites_doi | 10.1175/JCLI3327.1 10.1038/nclimate3011 10.1002/2017GL076327 10.1175/JCLI-D-12-00609.1 10.1007/s11434-004-0221-3 10.1038/s41467‐020‐17983‐y 10.1038/nature07809 10.1016/0377-8398(95)00048-8 10.1007/s00382-015-2705-z 10.5194/cpd-10-3127-2014 10.1029/2004PA001071 10.5194/acp-20-5249-2020 10.1029/2008PA001669 10.1002/2015PA002903 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2 10.1007/3-540-27250-X_7 10.1029/2008GL035205 10.1029/97JC01444 10.1126/science.1222135 10.1038/nclimate2100 10.1007/s00382-013-1906-6 10.1007/s00382-010-0904-1 10.1007/s00382-005-0085-5 10.1073/pnas.1407229111 10.1007/s00382-017-3881-9 10.1175/2008JCLI2639.1 10.1006/qres.2001.2316 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 10.1126/sciadv.aax8203 10.1175/JCLI3253.1 10.1175/JCLI-D-15-0789.1 10.1126/science.1058958 10.1002/grl.50643 10.1002/(SICI)1097-0088(199908)19:10<1119::AID-JOC414>3.0.CO;2-7 10.1029/2005GL023822 10.1175/2007JCLI1703.1 10.5194/cp-13-1081-2017 10.1029/2006JD007878 10.5194/gmd-3-227-2010 10.1175/JCLI-D-11-00573.1 10.1007/s00382-011-1013-5 10.1175/JCLI-D-15-0508.1 10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2 10.1029/2007GL031584 10.1007/s00382-012-1445-6 10.1175/1520-0442(2000)013<2356:IIZMFV>2.0.CO;2 10.1175/JCLI3617.1 10.5194/cp-15-735-2019 10.1073/pnas.1618201114 10.1002/wcc.441 10.1038/s41467‐021‐21830‐z 10.1016/S0065-2687(08)60005-9 10.1073/pnas.1318371111 10.1038/s41558-019-0663-x 10.1175/JCLI-D-19-0033.1 10.1146/annurev-marine-120408-151453 10.5194/gmd-6-373-2013 |
ContentType | Journal Article |
Copyright | 2021 Collegium Boreas. Published by John Wiley & Sons Ltd 2022. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 Collegium Boreas. Published by John Wiley & Sons Ltd – notice: 2022. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SN 7SS 7TG C1K F1W H95 H96 KL. L.G |
DOI | 10.1111/bor.12556 |
DatabaseName | CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Meteorological & Geoastrophysical Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Entomology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Meteorological & Geoastrophysical Abstracts - Academic Environmental Sciences and Pollution Management |
DatabaseTitleList | Entomology Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1502-3885 |
EndPage | 254 |
ExternalDocumentID | 10_1111_bor_12556 BOR12556 |
Genre | article |
GrantInformation_xml | – fundername: Brazilian National Research Council funderid: 232718/2014‐8; 407681/2013‐2 |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 23N 24P 31~ 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAFWJ AAMMB AANHP AAONW AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCMX ACGEJ ACGFS ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADXPE ADZMN AEFGJ AEIMD AENEX AFBPY AFFNX AFGKR AFRAH AFZJQ AGQPQ AGXDD AHEFC AIDQK AIDYY AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WUPDE WXSBR WYISQ XG1 ZCA ZY4 ZZTAW ~02 ~IA ~WT AAYXX CITATION 7SN 7SS 7TG C1K F1W GROUPED_DOAJ H95 H96 KL. L.G WIN |
ID | FETCH-LOGICAL-a3556-19a1335af1b7f6ac02504e0548c016e0e728129976dfbf16c98187f2d4b8511c3 |
IEDL.DBID | DR2 |
ISSN | 0300-9483 |
IngestDate | Sat Aug 23 12:50:50 EDT 2025 Sun Jul 06 05:07:02 EDT 2025 Thu Apr 24 23:00:23 EDT 2025 Sun Jul 06 04:45:06 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3556-19a1335af1b7f6ac02504e0548c016e0e728129976dfbf16c98187f2d4b8511c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0929-1388 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdf/10.1111/bor.12556 |
PQID | 2623496004 |
PQPubID | 976342 |
PageCount | 254 |
ParticipantIDs | proquest_journals_2623496004 crossref_primary_10_1111_bor_12556 crossref_citationtrail_10_1111_bor_12556 wiley_primary_10_1111_bor_12556_BOR12556 |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Aarhus |
PublicationPlace_xml | – name: Aarhus |
PublicationTitle | Boreas |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2002; 58 2017; 8 2013; 26 2020; 20 2019; 15 2016; 31 1981; 109 2005; 20 2008; 35 2020; 11 2020; 10 2018; 45 2017; 114 2007; 34 2013; 6 2017; 30 2014; 4 2001; 293 1999; 19 2000; 13 2006; 26 2005; 32 2008; 21 2010; 3 2012; 25 2010; 2 1996; 27 2012; 337 2016; 46 2014; 10 2009; 22 2009; 24 2019; 5 2006; 51 2019; 32 2013; 40 2008 2006; 19 2005 2011; 37 2012; 38 2014; 111 2014; 42 2009; 458 2016; 6 2007; 112 2021; 12 2017; 13 1997; 78 1964; 10 2016 1998; 103 2018; 50 2016; 29 2005; 18 1998; 79 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_60_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_61_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 79 start-page: 2715 year: 1998 end-page: 2726 article-title: Interdecadal modulation of ENSO teleconnections publication-title: Bulletin of the American Meteorological Society – volume: 26 start-page: 79 year: 2006 end-page: 91 article-title: Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation publication-title: Climate Dynamics – volume: 114 start-page: 3340 year: 2017 end-page: 3345 article-title: Pacific North American circulation pattern links external forcing and North American hydroclimatic change over the past millennium publication-title: Proceedings of the National Academy of Sciences – volume: 78 start-page: 1069 year: 1997 end-page: 1079 article-title: A Pacific interdecadal climate oscillation with impacts on salmon production publication-title: Bulletin of the American Meteorological Society – volume: 13 start-page: 1081 year: 2017 end-page: 1095 article-title: Oceanic response to changes in the WAIS and astronomical forcing during the MIS 31 superinterglacial publication-title: Climate of the Past – volume: 10 start-page: 30 year: 2020 end-page: 34 article-title: The Pacific Decadal Oscillation less predictable under greenhouse warming publication-title: Nature Climate Change – volume: 26 start-page: 9090 year: 2013 end-page: 9091 article-title: PNA predictability at various time scales publication-title: Journal of Climate – volume: 458 start-page: 329 year: 2009 end-page: 332 article-title: Modelling West Antarctic ice sheet growth and collapse through the past five million years publication-title: Nature – volume: 50 start-page: 4379 year: 2018 end-page: 4403 article-title: Pacific‐North American teleconnection and North Pacific Oscillation: historical simulation and future projection in CMIP5 models publication-title: Climate Dynamics – volume: 13 start-page: 1000 year: 2000 end-page: 1016 article-title: Annular modes in the extratropical circulation. Part I: Month‐to‐month variability publication-title: Journal of Climate – volume: 40 start-page: 1291 year: 2013 end-page: 1299 article-title: Maintenance of PDO variability during the mid‐Holocene in PMIP2 publication-title: Climate Dynamics – volume: 25 start-page: 6136 year: 2012 end-page: 6151 article-title: Influence of ENSO on Pacific decadal variability: an analysis based on the NCEP climate forecast system publication-title: Journal of Climate – volume: 45 start-page: 2487 year: 2018 end-page: 2496 article-title: Disentangling global warming, multidecadal variability, and El Niño in Pacific temperatures publication-title: Geophysical Research Letters – start-page: 223 year: 2005 end-page: 246 – volume: 3 start-page: 227 year: 2010 end-page: 242 article-title: Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1) publication-title: Geoscientific Model Development – volume: 18 start-page: 1315 year: 2005 end-page: 1325 article-title: The importance of atmospheric dynamics in the northern hemisphere wintertime climate response to changes in the earth’s orbit publication-title: Journal of Climate – volume: 21 start-page: 459 year: 2008 end-page: 475 article-title: Climate anomalies induced by the Arctic and Antarctic oscillations: glacial maximum and present‐day perspectives publication-title: Journal of Climate – volume: 30 start-page: 3907 year: 2017 end-page: 3925 article-title: On the response of the Aleutian low to greenhouse warming publication-title: Journal of Climate – volume: 46 start-page: 2337 year: 2016 end-page: 2351 article-title: Atlantic forcing of Pacific decadal variability publication-title: Climate Dynamics – volume: 4 start-page: 111 year: 2014 end-page: 116 article-title: Increasing frequency of extreme El Niño events due to greenhouse warming publication-title: Nature Climate Change – volume: 37 start-page: 775 year: 2011 end-page: 802 article-title: Pollen‐based continental climate reconstructions at 6 and 21 ka: a global synthesis publication-title: Climate Dynamics – year: 2008 – volume: 13 start-page: 2356 year: 2000 end-page: 2362 article-title: Is interannual zonal mean flow variability simply climate noise? publication-title: Journal of Climate – volume: 111 start-page: 360 year: 2014 end-page: 498 article-title: Atmospheric controls on Northeast Pacific temperature variability and change, 1900–2012 publication-title: Proceedings of the National Academy of Sciences – volume: 20 start-page: PA1003 year: 2005 article-title: A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ O records publication-title: Paleoceanography – volume: 6 start-page: 373 year: 2013 end-page: 388 article-title: The OASIS3 coupler: a European climate modelling community software publication-title: Geoscientific Model Development – volume: 112 start-page: D12102 year: 2007 article-title: Toward understanding the double Intertropical Convergence Zone pathology in coupled ocean‐atmosphere general circulation models publication-title: Journal of Geophysical Research: Atmospheres – volume: 27 start-page: 313 year: 1996 end-page: 326 article-title: Mid‐Pliocene warmth: stronger greenhouse and stronger conveyor publication-title: Marine Micropaleontology – volume: 22 start-page: 1255 year: 2009 end-page: 1276 article-title: Forcing of low‐frequency ocean variability in the northeast Pacific publication-title: Journal of Climate – volume: 111 start-page: E3501 year: 2014 end-page: E3505 article-title: The Holocene temperature conundrum publication-title: Proceedings of the National Academy of Sciences – volume: 337 start-page: 315 year: 2012 end-page: 320 article-title: 2.8 million years of arctic climate change from lake El‐gygytgyn. NE Russia publication-title: Science – volume: 42 start-page: 3337 year: 2014 end-page: 3355 article-title: Pacific interdecadal variability driven by tropical‐extratropical interactions publication-title: Climate Dynamics – volume: 15 start-page: 735 year: 2019 end-page: 749 article-title: A modified seasonal cycle during MIS 31 super‐interglacial favors stronger interannual ENSO and monsoon variability publication-title: Climate of the Past – volume: 20 start-page: 5249 year: 2020 end-page: 5268 article-title: Hadley cell expansion in CMIP6 models publication-title: Atmospheric Chemistry and Physics – volume: 32 start-page: 6271 year: 2019 end-page: 6284 article-title: Contrastive influence of ENSO and PNA on variability and predictability of North American winter precipitation publication-title: Journal of Climate – volume: 12 start-page: 1519 year: 2021 article-title: Acceleration of Western Arctic sea ice loss linked to the Pacific North American pattern publication-title: Nature Communications – volume: 18 start-page: 160 year: 2005 end-page: 177 article-title: The Aleutian low and winter climatic conditions in the Bering sea. Part I: classification publication-title: Journal of Climate – volume: 6 start-page: 856 year: 2016 end-page: 860 article-title: Contribution of sea‐ice loss to arctic amplification is regulated by Pacific ocean decadal variability publication-title: Nature Climate Change – volume: 58 start-page: 2 year: 2002 end-page: 13 article-title: Last interglacial climates publication-title: Quaternary Research – volume: 103 start-page: 14291 year: 1998 end-page: 14324 article-title: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures publication-title: Journal of Geophysical Research: Oceans – volume: 40 start-page: 3682 year: 2013 end-page: 3687 article-title: Opposite CMIP3/CMIP5 trends in the wintertime northern annular mode explained by combined local sea ice and remote tropical influences publication-title: Geophysical Research Letters – volume: 10 start-page: 3127 year: 2014 end-page: 3161 article-title: A GCM comparison of Plio‐Pleistocene interglacial‐glacial periods in relation to Lake El’gygytgyn, NE Arctic Russia publication-title: Climate of the Past Discussions – year: 2016 – volume: 5 year: 2019 article-title: Mid‐Holocene Northern Hemisphere warming driven by Arctic amplification publication-title: Science Advances – volume: 24 start-page: PA2218 year: 2009 article-title: High‐amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period publication-title: Paleoceanography – volume: 32 start-page: L21803 year: 2005 article-title: The glacial North Atlantic Oscillation publication-title: Geophysical Research Letters – volume: 293 start-page: 85 year: 2001 end-page: 89 article-title: Regional climate impacts of the Northern Hemisphere annular mode publication-title: Science – volume: 19 start-page: 276 year: 2006 end-page: 287 article-title: Observed relationships between the El Niño southern oscillation and the extratropical zonal‐mean circulation publication-title: Journal of Climate – volume: 38 start-page: 709 year: 2012 end-page: 724 article-title: Individual contribution of insolation and CO to the interglacial climates of the past 800,000 years publication-title: Climate Dynamics – volume: 2 start-page: 115 year: 2010 end-page: 143 article-title: Sea surface temperature variability: patterns and mechanisms publication-title: Annual Review of Marine Science – volume: 8 start-page: e441 year: 2017 article-title: Modelling interdecadal climate variability and the role of the ocean publication-title: WIREs Climate Change – volume: 109 start-page: 784 year: 1981 end-page: 812 article-title: Teleconnections in the geopotential height field during the northern hemisphere winter publication-title: Monthly Weather Review – volume: 51 start-page: 75 year: 2006 end-page: 79 article-title: Relationship between Arctic oscillation and Pacific decadal oscillation on decadal timescale publication-title: Chinese Science Bulletin – volume: 19 start-page: 1119 year: 1999 end-page: 1129 article-title: A wavelet characterization of the North Atlantic oscillation variation and its relationship to the North Atlantic sea surface temperature publication-title: International Journal of Climatology: A Journal of the Royal Meteorological Society – volume: 10 start-page: 1 year: 1964 end-page: 82 article-title: Atlantic air‐sea interaction publication-title: Advances in Geophysics – volume: 35 start-page: L20701 year: 2008 article-title: Role of the Pacific‐North American (PNA) pattern in the 2007 Arctic sea ice decline publication-title: Geophysical Research Letters – volume: 29 start-page: 4399 year: 2016 end-page: 4427 article-title: The Pacific decadal oscillation, revisited publication-title: Journal of Climate – volume: 11 start-page: 4230 year: 2020 article-title: Dynamics for El Niño‐La Niña asymmetry constrain equatorial‐Pacific warming pattern publication-title: Nature Communications – volume: 31 start-page: 1206 year: 2016 end-page: 1224 article-title: The warm Marine Isotope Stage 31 in the Labrador Sea: low surface salinities and cold subsurface waters prevented winter convection publication-title: Paleoceanography – volume: 34 start-page: L23705 year: 2007 article-title: On the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation: might they be related? publication-title: Geophysical Research Letters – ident: e_1_2_11_18_1 doi: 10.1175/JCLI3327.1 – ident: e_1_2_11_41_1 – ident: e_1_2_11_50_1 doi: 10.1038/nclimate3011 – ident: e_1_2_11_58_1 doi: 10.1002/2017GL076327 – ident: e_1_2_11_60_1 doi: 10.1175/JCLI-D-12-00609.1 – ident: e_1_2_11_51_1 doi: 10.1007/s11434-004-0221-3 – ident: e_1_2_11_19_1 doi: 10.1038/s41467‐020‐17983‐y – ident: e_1_2_11_47_1 doi: 10.1038/nature07809 – ident: e_1_2_11_48_1 doi: 10.1016/0377-8398(95)00048-8 – ident: e_1_2_11_29_1 doi: 10.1007/s00382-015-2705-z – ident: e_1_2_11_10_1 doi: 10.5194/cpd-10-3127-2014 – ident: e_1_2_11_37_1 doi: 10.1029/2004PA001071 – ident: e_1_2_11_17_1 doi: 10.5194/acp-20-5249-2020 – ident: e_1_2_11_34_1 doi: 10.1029/2008PA001669 – ident: e_1_2_11_3_1 doi: 10.1002/2015PA002903 – ident: e_1_2_11_56_1 doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2 – ident: e_1_2_11_21_1 doi: 10.1007/3-540-27250-X_7 – ident: e_1_2_11_33_1 doi: 10.1029/2008GL035205 – ident: e_1_2_11_54_1 doi: 10.1029/97JC01444 – ident: e_1_2_11_22_1 – ident: e_1_2_11_43_1 doi: 10.1126/science.1222135 – ident: e_1_2_11_6_1 doi: 10.1038/nclimate2100 – ident: e_1_2_11_13_1 doi: 10.1007/s00382-013-1906-6 – ident: e_1_2_11_4_1 doi: 10.1007/s00382-010-0904-1 – ident: e_1_2_11_30_1 doi: 10.1007/s00382-005-0085-5 – ident: e_1_2_11_40_1 doi: 10.1073/pnas.1407229111 – ident: e_1_2_11_8_1 doi: 10.1007/s00382-017-3881-9 – ident: e_1_2_11_9_1 doi: 10.1175/2008JCLI2639.1 – ident: e_1_2_11_31_1 doi: 10.1006/qres.2001.2316 – ident: e_1_2_11_42_1 doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 – ident: e_1_2_11_46_1 doi: 10.1126/sciadv.aax8203 – ident: e_1_2_11_49_1 doi: 10.1175/JCLI3253.1 – ident: e_1_2_11_15_1 doi: 10.1175/JCLI-D-15-0789.1 – ident: e_1_2_11_53_1 doi: 10.1126/science.1058958 – ident: e_1_2_11_7_1 doi: 10.1002/grl.50643 – ident: e_1_2_11_23_1 doi: 10.1002/(SICI)1097-0088(199908)19:10<1119::AID-JOC414>3.0.CO;2-7 – ident: e_1_2_11_25_1 doi: 10.1029/2005GL023822 – ident: e_1_2_11_26_1 doi: 10.1175/2007JCLI1703.1 – ident: e_1_2_11_28_1 doi: 10.5194/cp-13-1081-2017 – ident: e_1_2_11_61_1 doi: 10.1029/2006JD007878 – ident: e_1_2_11_20_1 doi: 10.5194/gmd-3-227-2010 – ident: e_1_2_11_57_1 doi: 10.1175/JCLI-D-11-00573.1 – ident: e_1_2_11_59_1 doi: 10.1007/s00382-011-1013-5 – ident: e_1_2_11_44_1 doi: 10.1175/JCLI-D-15-0508.1 – ident: e_1_2_11_16_1 doi: 10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2 – ident: e_1_2_11_52_1 doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2 – ident: e_1_2_11_45_1 doi: 10.1029/2007GL031584 – ident: e_1_2_11_2_1 doi: 10.1007/s00382-012-1445-6 – ident: e_1_2_11_14_1 doi: 10.1175/1520-0442(2000)013<2356:IIZMFV>2.0.CO;2 – ident: e_1_2_11_32_1 doi: 10.1175/JCLI3617.1 – ident: e_1_2_11_27_1 doi: 10.5194/cp-15-735-2019 – ident: e_1_2_11_39_1 doi: 10.1073/pnas.1618201114 – ident: e_1_2_11_12_1 doi: 10.1002/wcc.441 – ident: e_1_2_11_38_1 doi: 10.1038/s41467‐021‐21830‐z – ident: e_1_2_11_5_1 doi: 10.1016/S0065-2687(08)60005-9 – ident: e_1_2_11_24_1 doi: 10.1073/pnas.1318371111 – ident: e_1_2_11_35_1 doi: 10.1038/s41558-019-0663-x – ident: e_1_2_11_36_1 doi: 10.1175/JCLI-D-19-0033.1 – ident: e_1_2_11_11_1 doi: 10.1146/annurev-marine-120408-151453 – ident: e_1_2_11_55_1 doi: 10.5194/gmd-6-373-2013 |
SSID | ssj0004304 |
Score | 2.3103878 |
Snippet | The Pacific Decadal Oscillation (PDO), the Pacific‐North American Pattern (PNA) and the Northern Annular Mode (NAM) influence the Northern Hemisphere climate... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 238 |
SubjectTerms | Air-sea interaction Aleutian low Amplitude Amplitudes Arctic Oscillation Boundary conditions Climate Environmental conditions Interannual variability Interglacial periods Isotopes Modes Northern Hemisphere Pacific Decadal Oscillation Periodicity Temperature gradients Variability |
Title | Climate response to drastically modified PDO, PNA and NAM in the superinterglacial MIS 31 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbor.12556 https://www.proquest.com/docview/2623496004 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JS8QwFMeDCoIXd3FchiAePNghbdIleBp3hVkYHVAQSpomMDh2ZJaDfnpf0nZGRUG89ZBueXl5vxde_kHokMKMR7hQTuonxGGaM4dz5TuUiIDolGoqzebkRjO47rLbB_9hDp2Ue2FyfYjpgpvxDDtfGwcXyeiTk0MX1VwjoAXzr6nVMkDUmUlHMUpy6ShCHM4iWqgKmSqe6Z1fY9EMMD9jqo0zlyvoqfzCvLzkuTYZJzX5_k288Z-_sIqWC_7E9XzArKE5la2jxSt7vu_bBno86_eAYRUe5rWzCo8HOB2KkV3y7r_hl0Ha04CtuH3eOsbtZh2LLMXNegP3MgwwiUcTo51szAVgbtbjcePmDlN3E3UvL-7Prp3i9AVHAIMEjssF5K--0G4S6kBIK3amgPAiCZioiAo9gAMOOJPqRLuB5BD7Q-2lLDEUJ-kWWsgGmdpGGFIcLWQoFeSGTIUQHjxJo0jCnZEKfV5BR6UdYllIk5sTMvpxmaJAT8W2pyroYNr0Ndfj-KnRXmnMuHDJUewB6DHI1wiD11mr_P6A-LTVsRc7f2-6i5Y8szXCLs_soYXxcKL2AVjGSRXNe6xdtel-1Y7SD8or5Zc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LT9wwEIdHPITohVKg6gItFuLAgayc2HlY4rKlpUvLLoiHBAcUOY4trbpk0T4O8NczdpIFKpBQbzk4L4_H_mZk_wZgh-GMR4XUXh5m1ONGcE8IHXqMyoianBmm7OHkTjdqX_LfV-HVDOzXZ2FKfYhpws16hpuvrYPbhPQzL8c-avpWQWsW5m1FbxdQnT2JR3FGS_EoSj3BE1bpCtl9PNNbX65GT4j5HFTdSnP4EW7qbyw3mPxtTsZZUz38I9_4vz-xDEsVgpJWOWY-wYwuVmDhlyvxe78K1wf9HmKsJsNy-6wm4wHJh3Lkst79e3I7yHsGyZWc_jjZI6fdFpFFTrqtDukVBHmSjCZWPtlaDNncpuRJ5-icMH8NLg9_Xhy0vaoAgycRQyLPFxJD2FAaP4tNJJXTO9MIeYlCUtRUxwHygUCiyU1m_EgJXP5jE-Q8syCn2GeYKwaF_gIEoxwjVaw0hodcx7hCBIolicI7Ex2HogG7tSFSVamT2yIZ_bSOUrCnUtdTDdieNr0rJTlea7RZWzOtvHKUBsh6HEM2yvF1zixvPyD9fnLmLtbf33QLFtsXneP0-Kj7ZwM-BPakhMvWbMLceDjRX5Ffxtk3N0wfAVyX5-Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LbxMxEIdHJQjUS6E8RNsAVsWBAxt5196HxSk0pM88VKhUJKSV12tLUdNNlMch_PWMvbtJqUBCve3B-_J4PN-M7J8BPjCc8aiQ2svDjHrcCO4JoUOPURlRkzPDlN2c3OtHJ1f87Dq83oLP9V6YUh9iXXCznuHma-vg09zccXLsopZvBbQewWMe0cQO6c7lRjuKM1pqR1HqCZ6wSlbILuNZ3_pnMNoQ5l1OdYGm-wx-1p9Yri-5aS0XWUv9uqfe-MB_eA47FYCSdjlidmFLFy_gybE74Hf1En4cjUcIsZrMysWzmiwmJJ_Juat5j1fkdpKPDHIrGXYGn8iw3yayyEm_3SOjgiBNkvnSiidbeyGZ24I86Z1-I8x_BVfdr9-PTrzq-AVPIoREni8kJrChNH4Wm0gqp3amEfEShZyoqY4DpAOBPJObzPiREhj8YxPkPLMYp9hraBSTQr8BgjmOkSpWGpNDrmOMD4FiSaLwzkTHodiDj7UdUlVpk9sjMsZpnaNgT6Wup_bgcN10Wgpy_K1RszZmWvnkPA2Q9DgmbJTj65xV_v2A9Mvg0l3s_3_T9_B02OmmF6f98wPYDuw2CVeqaUJjMVvqtwgvi-ydG6S_Ac4d5p4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+response+to+drastically+modified+PDO%2C+PNA+and+NAM+in+the+superinterglacial+MIS+31&rft.jtitle=Boreas&rft.au=Justino%2C+Fl%C3%A1vio&rft.au=Gurj%C3%A3o%2C+Carlos&rft.au=Lindemann%2C+Douglas&rft.date=2022-01-01&rft.issn=0300-9483&rft.eissn=1502-3885&rft.volume=51&rft.issue=1&rft.spage=238&rft.epage=254&rft_id=info:doi/10.1111%2Fbor.12556&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_bor_12556 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-9483&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-9483&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-9483&client=summon |