Adsorption capacity of sodic- and dendrimers-modified stevensite

The adsorption capacities of nano-sized organoclays composed of a stevensite-rich clay (R), phosphorus dendrimers (GC1 and GC2) and Na+-saturated clay were evaluated for their capacity to adsorb chromate and methylene blue (MB) in the range of 298-318 K. The adsorption kinetics and the isotherms wer...

Full description

Saved in:
Bibliographic Details
Published inClay minerals Vol. 53; no. 3; pp. 525 - 544
Main Authors Hajjaji, Mohamed, Beraa, Abdellah, Coppel, Yannick, Laurent, Regis, Caminade, Anne-Marie
Format Journal Article
LanguageEnglish
Published Middlesex Mineralogical Society 01.09.2018
Cambridge University Press
Subjects
Online AccessGet full text
ISSN0009-8558
1471-8030
DOI10.1180/clm.2018.39

Cover

Loading…
Abstract The adsorption capacities of nano-sized organoclays composed of a stevensite-rich clay (R), phosphorus dendrimers (GC1 and GC2) and Na+-saturated clay were evaluated for their capacity to adsorb chromate and methylene blue (MB) in the range of 298-318 K. The adsorption kinetics and the isotherms were analysed based on kinetic equations and isotherm models and by adopting a non-linear regression procedure. In addition, the organoclays and the Na+-saturated clays were characterized principally by solid-state nuclear magnetic resonance spectroscopy. The pseudo-second-order rate equation described kinetics data well, and the adsorption rates were not limited by the intraparticle diffusion or by the liquid film diffusion. Both chemical species were adsorbed spontaneously (-31 < ΔGT< -10 kJ/mol), but the adsorbents had a high affinity for MB species. The adsorption isotherms of chromate were fitted better by the Freundlich model, while those of MB followed the Langmuir model. Chromate adsorption took place at the edges and the free surfaces of stevensite, particularly at the protonated aluminols. MB was adsorbed as MBH2+ and MB+. The MB protonation occurred at the clay surfaces, and MB+ ions were located at the planar surfaces of stevensite as well as at the external surfaces of aggregates. Moreover, the tetrahedral sheet of stevensite involved in the formation of GC1-based organoclays was the subject of a partial chemical modification.
AbstractList The adsorption capacities of nano-sized organoclays composed of a stevensite-rich clay (R), phosphorus dendrimers (GC1 and GC2) and Na+-saturated clay were evaluated for their capacity to adsorb chromate and methylene blue (MB) in the range of 298–318 K. The adsorption kinetics and the isotherms were analysed based on kinetic equations and isotherm models and by adopting a non-linear regression procedure. In addition, the organoclays and the Na+-saturated clays were characterized principally by solid-state nuclear magnetic resonance spectroscopy. The pseudo-second-order rate equation described kinetics data well, and the adsorption rates were not limited by the intraparticle diffusion or by the liquid film diffusion. Both chemical species were adsorbed spontaneously (–31 < ΔG°T< –10 kJ/mol), but the adsorbents had a high affinity for MB species. The adsorption isotherms of chromate were fitted better by the Freundlich model, while those of MB followed the Langmuir model. Chromate adsorption took place at the edges and the free surfaces of stevensite, particularly at the protonated aluminols. MB was adsorbed as MBH2+ and MB+. The MB protonation occurred at the clay surfaces, and MB+ ions were located at the planar surfaces of stevensite as well as at the external surfaces of aggregates. Moreover, the tetrahedral sheet of stevensite involved in the formation of GC1-based organoclays was the subject of a partial chemical modification.
The adsorption capacities of nano-sized organoclays composed of a stevensite-rich clay (R), phosphorus dendrimers (GC1 and GC2) and Na + -saturated clay were evaluated for their capacity to adsorb chromate and methylene blue (MB) in the range of 298–318 K. The adsorption kinetics and the isotherms were analysed based on kinetic equations and isotherm models and by adopting a non-linear regression procedure. In addition, the organoclays and the Na + -saturated clays were characterized principally by solid-state nuclear magnetic resonance spectroscopy. The pseudo-second-order rate equation described kinetics data well, and the adsorption rates were not limited by the intraparticle diffusion or by the liquid film diffusion. Both chemical species were adsorbed spontaneously (–31 < ΔG° T < –10 kJ/mol), but the adsorbents had a high affinity for MB species. The adsorption isotherms of chromate were fitted better by the Freundlich model, while those of MB followed the Langmuir model. Chromate adsorption took place at the edges and the free surfaces of stevensite, particularly at the protonated aluminols. MB was adsorbed as MBH 2+ and MB + . The MB protonation occurred at the clay surfaces, and MB + ions were located at the planar surfaces of stevensite as well as at the external surfaces of aggregates. Moreover, the tetrahedral sheet of stevensite involved in the formation of GC1-based organoclays was the subject of a partial chemical modification.
The adsorption capacities of nano-sized organoclays composed of a stevensite-rich clay (R), phosphorus dendrimers (GC1 and GC2) and Na+-saturated clay were evaluated for their capacity to adsorb chromate and methylene blue (MB) in the range of 298-318 K. The adsorption kinetics and the isotherms were analysed based on kinetic equations and isotherm models and by adopting a non-linear regression procedure. In addition, the organoclays and the Na+-saturated clays were characterized principally by solid-state nuclear magnetic resonance spectroscopy. The pseudo-second-order rate equation described kinetics data well, and the adsorption rates were not limited by the intraparticle diffusion or by the liquid film diffusion. Both chemical species were adsorbed spontaneously (-31 < ΔGT< -10 kJ/mol), but the adsorbents had a high affinity for MB species. The adsorption isotherms of chromate were fitted better by the Freundlich model, while those of MB followed the Langmuir model. Chromate adsorption took place at the edges and the free surfaces of stevensite, particularly at the protonated aluminols. MB was adsorbed as MBH2+ and MB+. The MB protonation occurred at the clay surfaces, and MB+ ions were located at the planar surfaces of stevensite as well as at the external surfaces of aggregates. Moreover, the tetrahedral sheet of stevensite involved in the formation of GC1-based organoclays was the subject of a partial chemical modification.
Author Coppel, Yannick
Beraa, Abdellah
Caminade, Anne-Marie
Hajjaji, Mohamed
Laurent, Regis
Author_xml – sequence: 1
  fullname: Hajjaji, Mohamed
– sequence: 2
  fullname: Beraa, Abdellah
– sequence: 3
  fullname: Coppel, Yannick
– sequence: 4
  fullname: Laurent, Regis
– sequence: 5
  fullname: Caminade, Anne-Marie
BackLink https://hal.science/hal-02129126$$DView record in HAL
BookMark eNp1kE1LAzEQhoMo2FZP_oEFTyJbJ8luPm4W8QsKXvQc0s2spmw3NdlW_PemVEQEcxkyPDPz8ozJYR96JOSMwpRSBVdNt5oyoGrK9QEZ0UrSUgGHQzICAF2qulbHZJzSMn95pfiIXM9cCnE9-NAXjV3bxg-fRWiLFJxvysL2rnDYu-hXGFO5yt3WoyvSgFvskx_whBy1tkt4-l0n5OXu9vnmoZw_3T_ezOal5XU1lC2TskXOdVVBLSyjvBJCASoHjkuGQraCIddU6FbqOj-hJF1wZqGyYuH4hFzs977ZzqxzHhs_TbDePMzmZtcDRpmmTGxpZs_37DqG9w2mwSzDJvY5nmEMdK2UBJGpyz3VxJBSxPZnLQWz02myTrPTabjONP1DZ1V2522I1nf_zHxfeMWQGo99gx8hdu5XHKDaAGUgGf8C7euGjg
CitedBy_id crossref_primary_10_5004_dwt_2019_23501
crossref_primary_10_1002_zaac_202400118
crossref_primary_10_1016_j_porgcoat_2020_105837
crossref_primary_10_1039_C9TA05718H
crossref_primary_10_1088_1757_899X_890_1_012084
crossref_primary_10_1007_s13369_023_07838_1
crossref_primary_10_5004_dwt_2021_27062
Cites_doi 10.1016/j.clay.2016.11.017
10.3390/molecules21040538
10.1016/j.cej.2013.02.061
10.1016/j.cej.2012.09.029
10.1180/claymin.2015.050.5.08
10.3390/min7040049
10.3390/ma5122874
10.1016/j.clay.2017.05.011
10.1180/claymin.2013.048.5.22
10.1016/j.jhazmat.2004.09.023
10.1180/claymin.2016.051.2.09
10.1063/1.1723871
10.1016/j.clay.2015.06.038
10.1016/j.jcis.2012.12.054
10.1016/j.clay.2014.03.023
10.1016/j.desal.2008.04.040
10.1533/9780857096296.1.3
10.1080/00958972.2011.583646
10.1180/0009855023720037
10.1016/j.crte.2008.07.015
10.1016/j.clay.2011.07.019
10.1002/pola.27501
10.1016/j.jcis.2016.11.070
10.1016/j.clay.2010.02.004
10.1021/ja02242a004
10.1016/j.clay.2014.05.028
10.1039/B815259D
10.1016/j.jhazmat.2009.09.096
10.1180/claymin.2012.047.2.05
10.1007/s13201-014-0167-9
10.1515/zpch-1907-5723
10.1016/j.jhazmat.2010.06.110
10.1080/19443994.2015.1062429
10.1017/S0885715614000840
10.1016/j.jlumin.2017.03.039
10.1016/j.jhazmat.2006.06.077
10.1631/jzus.A0820524
10.1016/j.micromeso.2014.03.031
10.1007/978-3-319-16712-1
10.1021/tx200251t
10.1016/j.jenvman.2010.11.011
10.1016/j.clay.2012.02.006
10.3184/095422909X466095
ContentType Journal Article
Copyright GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Mineralogical Society of Great Britain and Ireland
Copyright © Mineralogical Society of Great Britain and Ireland 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Mineralogical Society of Great Britain and Ireland
– notice: Copyright © Mineralogical Society of Great Britain and Ireland 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QQ
7RQ
7SR
7UA
7XB
8FD
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
C1K
CCPQU
D1I
DWQXO
F1W
H96
HCIFZ
JG9
KB.
L.G
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
1XC
DOI 10.1180/clm.2018.39
DatabaseName CrossRef
Ceramic Abstracts
Career & Technical Education Database
Engineered Materials Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Materials Research Database
Materials Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Ceramic Abstracts
ProQuest SciTech Collection
ProQuest Career and Technical Education
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1471-8030
EndPage 544
ExternalDocumentID oai_HAL_hal_02129126v1
10_1180_clm_2018_39
2019_012072
GeographicLocations Morocco
France
GeographicLocations_xml – name: Morocco
– name: France
GroupedDBID 09C
09E
0R~
29B
4.4
5GY
7RQ
8FE
8FG
AAAZR
AABWE
AAGFV
AANRG
AAQCX
AASVR
AAUKB
AAWFE
ABAQN
ABBZL
ABEFU
ABJCF
ABJNI
ABTAH
ABVZP
ABXAU
ABZCX
ACGFS
ACIWK
ACQPF
ACUIJ
ACYZP
ACZBO
ACZWT
ADDNB
ADGQD
ADOVH
ADOVT
ADVJH
AEBAK
AEHGV
AENCP
AENEX
AEQDQ
AFCXV
AFKQG
AFKRA
AFLVW
AFRAH
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AI.
AIHIV
AIOIP
AJCYY
AJPFC
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARZZG
ATUCA
AYIQA
BAKPI
BBCWN
BBDJO
BBLKV
BCGOX
BENPR
BESQT
BGLVJ
BJBOZ
BLZWO
BPHCQ
CAG
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
CTKSN
D1I
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GOHGZ
H13
HCIFZ
IH6
IL9
IOO
IY9
JHPGK
KB.
KCGVB
KFECR
LW7
MV1
MVM
NIKVX
NZEOI
OK1
PDBOC
PQQKQ
PROAC
RCA
RGW
RIG
ROL
T9M
TN5
VH1
WFFJZ
Y6R
ZDLDU
ZJOSE
ZMEZD
ZY4
~02
AAYXX
ABGDZ
ABVKB
ABXHF
ACDLN
ADKIL
AEUYN
AFZFC
AKMAY
CITATION
PHGZM
PHGZT
7QQ
7SR
7UA
7XB
8FD
C1K
F1W
H96
JG9
L.G
PKEHL
PQEST
PQGLB
PQUKI
Q9U
1XC
ID FETCH-LOGICAL-a354t-f277fe33944056a21346680e8d0d372e67f62e39169f7955556871b32a04a6bd3
IEDL.DBID BENPR
ISSN 0009-8558
IngestDate Fri May 09 12:11:57 EDT 2025
Sat Jul 19 03:40:31 EDT 2025
Tue Jul 01 01:26:44 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
Tue Oct 29 04:53:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://www.cambridge.org/core/terms
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a354t-f277fe33944056a21346680e8d0d372e67f62e39169f7955556871b32a04a6bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6742-1000
0000-0003-0970-4082
0000-0001-8487-3578
PQID 2209588706
PQPubID 2048078
PageCount 20
ParticipantIDs hal_primary_oai_HAL_hal_02129126v1
proquest_journals_2209588706
crossref_primary_10_1180_clm_2018_39
crossref_citationtrail_10_1180_clm_2018_39
geoscienceworld_journals_2019_012072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180900
2018-09-00
20180901
2018-09
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 9
  year: 2018
  text: 20180900
PublicationDecade 2010
PublicationPlace Middlesex
PublicationPlace_xml – name: Middlesex
PublicationTitle Clay minerals
PublicationYear 2018
Publisher Mineralogical Society
Cambridge University Press
Publisher_xml – name: Mineralogical Society
– name: Cambridge University Press
References S0009855818000390_ref19
Mailer (S0009855818000390_ref33) 2015; 27
S0009855818000390_ref11
S0009855818000390_ref10
S0009855818000390_ref32
S0009855818000390_ref35
S0009855818000390_ref13
S0009855818000390_ref34
S0009855818000390_ref12
S0009855818000390_ref15
S0009855818000390_ref37
S0009855818000390_ref14
S0009855818000390_ref36
S0009855818000390_ref39
S0009855818000390_ref17
S0009855818000390_ref38
S0009855818000390_ref16
S0009855818000390_ref31
S0009855818000390_ref30
Freundlich (S0009855818000390_ref18) 1907; 57
(S0009855818000390_ref46) 2003
S0009855818000390_ref29
Hossain (S0009855818000390_ref25) 2013; 3
S0009855818000390_ref22
S0009855818000390_ref44
S0009855818000390_ref21
S0009855818000390_ref43
S0009855818000390_ref24
S0009855818000390_ref23
S0009855818000390_ref48
S0009855818000390_ref26
S0009855818000390_ref47
S0009855818000390_ref27
S0009855818000390_ref40
S0009855818000390_ref42
S0009855818000390_ref20
S0009855818000390_ref9
S0009855818000390_ref41
S0009855818000390_ref8
S0009855818000390_ref7
S0009855818000390_ref6
S0009855818000390_ref5
Koller (S0009855818000390_ref28) 2012
S0009855818000390_ref4
S0009855818000390_ref3
S0009855818000390_ref2
S0009855818000390_ref1
References_xml – volume: 3
  start-page: 223
  year: 2013
  ident: S0009855818000390_ref25
  article-title: Introductory of Microsoft Excel Solver function-Spreadsheet method for isotherm and kinetics modeling of metals biosorption in water and wastewater
  publication-title: Journal of Water Sustainabililty
– ident: S0009855818000390_ref8
  doi: 10.1016/j.clay.2016.11.017
– ident: S0009855818000390_ref10
  doi: 10.3390/molecules21040538
– ident: S0009855818000390_ref42
  doi: 10.1016/j.cej.2013.02.061
– ident: S0009855818000390_ref40
  doi: 10.1016/j.cej.2012.09.029
– ident: S0009855818000390_ref32
  doi: 10.1180/claymin.2015.050.5.08
– ident: S0009855818000390_ref29
  doi: 10.3390/min7040049
– ident: S0009855818000390_ref3
  doi: 10.3390/ma5122874
– ident: S0009855818000390_ref43
  doi: 10.1016/j.clay.2017.05.011
– ident: S0009855818000390_ref13
  doi: 10.1180/claymin.2013.048.5.22
– ident: S0009855818000390_ref5
  doi: 10.1016/j.jhazmat.2004.09.023
– ident: S0009855818000390_ref17
  doi: 10.1180/claymin.2016.051.2.09
– ident: S0009855818000390_ref22
  doi: 10.1063/1.1723871
– volume-title: Chromium in Drinking-Water. Background Document for Preparation of WHO Guidelines for Drinking-Water Quality
  year: 2003
  ident: S0009855818000390_ref46
– ident: S0009855818000390_ref12
  doi: 10.1016/j.clay.2015.06.038
– ident: S0009855818000390_ref47
  doi: 10.1016/j.jcis.2012.12.054
– ident: S0009855818000390_ref14
  doi: 10.1016/j.clay.2014.03.023
– ident: S0009855818000390_ref2
  doi: 10.1016/j.desal.2008.04.040
– ident: S0009855818000390_ref26
  doi: 10.1533/9780857096296.1.3
– ident: S0009855818000390_ref39
  doi: 10.1080/00958972.2011.583646
– ident: S0009855818000390_ref23
  doi: 10.1180/0009855023720037
– ident: S0009855818000390_ref4
  doi: 10.1016/j.crte.2008.07.015
– ident: S0009855818000390_ref16
  doi: 10.1016/j.clay.2011.07.019
– volume: 27
  start-page: 145102
  year: 2015
  ident: S0009855818000390_ref33
  article-title: Particle sizing by dynamic light scattering: non-linear cumulant analysis
  publication-title: Journal of Physics: Condensed Matter
– ident: S0009855818000390_ref21
  doi: 10.1002/pola.27501
– ident: S0009855818000390_ref37
  doi: 10.1016/j.jcis.2016.11.070
– ident: S0009855818000390_ref9
  doi: 10.1016/j.clay.2010.02.004
– ident: S0009855818000390_ref30
  doi: 10.1021/ja02242a004
– ident: S0009855818000390_ref38
  doi: 10.1016/j.clay.2014.05.028
– ident: S0009855818000390_ref34
  doi: 10.1039/B815259D
– ident: S0009855818000390_ref1
  doi: 10.1016/j.jhazmat.2009.09.096
– ident: S0009855818000390_ref24
  doi: 10.1180/claymin.2012.047.2.05
– ident: S0009855818000390_ref20
  doi: 10.1007/s13201-014-0167-9
– volume: 57
  start-page: 385
  year: 1907
  ident: S0009855818000390_ref18
  article-title: Über die adsorption in Lösungen
  publication-title: Zeitschrift für Physikalische Chemie.
  doi: 10.1515/zpch-1907-5723
– ident: S0009855818000390_ref41
  doi: 10.1016/j.jhazmat.2010.06.110
– start-page: 189
  volume-title: Solid State NMR
  year: 2012
  ident: S0009855818000390_ref28
– ident: S0009855818000390_ref7
  doi: 10.1080/19443994.2015.1062429
– ident: S0009855818000390_ref15
  doi: 10.1017/S0885715614000840
– ident: S0009855818000390_ref11
  doi: 10.1016/j.jlumin.2017.03.039
– ident: S0009855818000390_ref6
  doi: 10.1016/j.jhazmat.2006.06.077
– ident: S0009855818000390_ref35
  doi: 10.1631/jzus.A0820524
– ident: S0009855818000390_ref36
  doi: 10.1016/j.micromeso.2014.03.031
– ident: S0009855818000390_ref27
  doi: 10.1007/978-3-319-16712-1
– ident: S0009855818000390_ref48
  doi: 10.1021/tx200251t
– ident: S0009855818000390_ref19
  doi: 10.1016/j.jenvman.2010.11.011
– ident: S0009855818000390_ref31
  doi: 10.1016/j.clay.2012.02.006
– ident: S0009855818000390_ref44
  doi: 10.3184/095422909X466095
SSID ssj0003483
Score 2.2393043
Snippet The adsorption capacities of nano-sized organoclays composed of a stevensite-rich clay (R), phosphorus dendrimers (GC1 and GC2) and Na+-saturated clay were...
The adsorption capacities of nano-sized organoclays composed of a stevensite-rich clay (R), phosphorus dendrimers (GC1 and GC2) and Na + -saturated clay were...
SourceID hal
proquest
crossref
geoscienceworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 525
SubjectTerms Adsorbents
Adsorption
Analytical methods
Aqueous solutions
Capacity
Chemical modification
Chemical Sciences
Chemical speciation
Chromate
Chromates
clastic sediments
Clay
clay minerals
Coordination chemistry
Dendrimers
Diffusion
Diffusion rate
Effluents
Free surfaces
Isotherms
Kinetic equations
Kinetics
Langmuir equation
Magnetic resonance spectroscopy
mathematical models
Methylene blue
Mineralogy
Minerals
NMR
Nuclear magnetic resonance
numerical models
Organic chemistry
Phosphorus
Pollutants
Protonation
Regression analysis
sediments
sheet silicates
silicates
Species diffusion
spectroscopy
Stevensite
Surface chemistry
Title Adsorption capacity of sodic- and dendrimers-modified stevensite
URI https://pubs.geoscienceworld.org/claymin/article/53/3/525/568270/Adsorption-capacity-of-sodic-and
https://www.proquest.com/docview/2209588706
https://hal.science/hal-02129126
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90IujD8BOrU4rsSai2ST_SJ52yD0RExIFvpU1SFaTVdQr-9951WRkDfU1DaC_p7-6S3O8H0EXAkwHxVHLKTRD9XCeWTDuap26sJXrIvL4gex-Oxv7tc_BsNtwqc61yjok1UKtS0h75BWMYDAg6lbv8-HRINYpOV42ExiqsIQQLTL7Wrvv3D48NFnNfNFpqIgiEqdCj-mb5ToXonjgnnfAFn9R-0YZGUtekpeh0XumO5BJU1_5nsAVtEzjavdlMb8OKLnZgc4FOcAfWh7VM788uXPVUVU5qNLAlukOJsbZd5nZVqjfp2GmhbMQbRdT-E8x1sTXHUNSuaokz-uI9GA_6Tzcjx2glOCkP_KmTsyjKNacyVwxpUuJpC0PhaqFcxSOmwygPmaYq2ziP4iAg4rHIyzhLXT8NM8X3oVWUhT4AO_Z8pjgxeWXKVxmmz4qYmXgepmRPacHZ3FqJNETipGfxntQJhXATNG1Cpk14bEG36fwx48_4o9uS2RPzL1XUJU6oxjdiFpziXDQDETX2qHeXUBtR1cceC789CzrzqVoYpFk-h_8_PoINeqfZNbIOtKaTL32Mccc0O4FVMRiemCX2CyPl1I4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BFQIOqKVFLI_WQnBBSknsPJwDglXbZYGFE0jc3MR2AAltYLOA-FP9jZ3xJtEKqb1xTaxRNB7PI575PoAddHg6IpxKQbUJej_fSzW3nhWZn1qNEbJwDbIXcf8qPL2OrmfgTzMLQ22VjU90jtqUmv6R73OOyYCkW7nDh0ePWKPodrWh0JiYxZl9fcGSrTo4-Yn7u8t579flj75Xswp4mYjCsVfwJCmsoIFQDP4ZIZrFsfStNL4RCbdxUsTc0jxqWiRpFBFEVxLkgmd-mMW5ESh3Fj6EKIFOlOwdt55fhLJlbpNRJOt5QJqm1vc09h7I78RKPhUBl29sDVppHUQqhrhb6sh8ExhctOt9hOU6TWXdiV19ghk7XIGlKfDCFZg_dqTAr5_hqGuqcuR8D9MYfDVm9qwsWFWaO-2xbGgYejdDRAIjrKzxaYGJL6scoRrp9wtcvYsOV2FuWA7tGrA0CLkRhBuWm9DkWKwbwoESRZyRPnUH9hptKV3DlhN7xr1y5Yv0FapWkWqVSDuw0y5-mKB1_GPZG7Wr-uRWtCRVNFGc8A5s4160ggiIu98dKHpGwPhpwOPnoAObzVZNCWmNdf3_r7_BQv_yfKAGJxdnG7BI3zdpYNuEufHoyW5hxjPOvzozY_D7ve36L_pGDCk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS-RAEC50RNEHUVdxdj2axX1ZiCbdOR-W3fGYHQ8GWRR8a5M-VJCJOxlX_Gv-uq3KJGEQ9M3XTlOE6kod6arvA9hBh6cCwqkUVJug93OdRHHjGJG6iVEYIW3ZINsPe5f-yVVwNQUv9SwMtVXWPrF01DpX9I98j3NMBmK6lduzVVvE-WH358Nfhxik6Ka1ptMYm8ipeX7C8q34cXyIZ_2N8-7RxUHPqRgGnFQE_sixPIqsETQciolASuhmYRi7JtauFhE3YWRDbmg2NbFREgQE1xV5meCp66dhpgXKnYaZCKsitwUz-0f98z9NHBB-3PC4xUEQV9OBNFut7mkI3ot3iaN8Ih4u3pgKwtKUgKkY8G6pP_NVmChjX3cJFquklXXGVrYMU2awAgsTUIYrMPu7pAh-_gS_OrrIh6UnYgpDscI8n-WWFbm-Uw5LB5qhr9NEKzDEOhtXLabBrCjp1UjDq3D5IVpcg9YgH5h1YInncy0IRSzTvs6wdNeECiVsmJI-VRu-19qSqgIxJy6Ne1kWM7ErUbWSVCtF0oadZvPDGLvjjW2v1C6r77igLYmk-eKIt-ErnkUjiGC5e50zSWsEk594PPzntWGjPqoJIY3pfn7_8TbMoU3Ls-P-6ReYp9cbd7NtQGs0fDSbmP6Msq3Kzhhcf7Rp_wcuRBG7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+capacity+of+sodic-+and+dendrimers-modified+stevensite&rft.jtitle=Clay+minerals&rft.au=Hajjaji%2C+Mohamed&rft.au=Beraa%2C+Abdellah&rft.au=Coppel%2C+Yannick&rft.au=Laurent%2C+Regis&rft.date=2018-09-01&rft.pub=Mineralogical+Society&rft.issn=0009-8558&rft.volume=53&rft.issue=3&rft.spage=525&rft.epage=544&rft_id=info:doi/10.1180%2Fclm.2018.39&rft.externalDocID=2019_012072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-8558&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-8558&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-8558&client=summon