Progress and Challenge of Amorphous Catalysts for Electrochemical Water Splitting

Electrochemical water splitting has been regarded a promising technology to provide a mobile and sustainable energy supply in the form of hydrogen fuel. The key to further development towards industrial application lies in high-efficiency and low-cost electrocatalysts. In recent years, new attention...

Full description

Saved in:
Bibliographic Details
Published inACS materials letters Vol. 3; no. 1; pp. 136 - 147
Main Authors Zhou, Yao, Fan, Hong Jin
Format Journal Article
LanguageEnglish
Published American Chemical Society 04.01.2021
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical water splitting has been regarded a promising technology to provide a mobile and sustainable energy supply in the form of hydrogen fuel. The key to further development towards industrial application lies in high-efficiency and low-cost electrocatalysts. In recent years, new attention has been paid to amorphous electrocatalysts, which have short-range atomic ordering instead of translational periodicity. The structural flexibility and rich defects associated with amorphous catalyst materials offer enormous opportunities for electrochemical water splitting. In this Perspective, we elaborate on recent studies of amorphous electrocatalysts for electrochemical water splitting. Our discussion covers the diverse amorphization strategies, the positive role of structural flexibility and defects in enriching active sites, as well as challenges in the characterization of local geometry and in improving electrochemical stability. Finally, we conclude with prospective remarks for future development in amorphous electrocatalyst materials for electrochemical water splitting.
AbstractList Electrochemical water splitting has been regarded a promising technology to provide a mobile and sustainable energy supply in the form of hydrogen fuel. The key to further development towards industrial application lies in high-efficiency and low-cost electrocatalysts. In recent years, new attention has been paid to amorphous electrocatalysts, which have short-range atomic ordering instead of translational periodicity. The structural flexibility and rich defects associated with amorphous catalyst materials offer enormous opportunities for electrochemical water splitting. In this Perspective, we elaborate on recent studies of amorphous electrocatalysts for electrochemical water splitting. Our discussion covers the diverse amorphization strategies, the positive role of structural flexibility and defects in enriching active sites, as well as challenges in the characterization of local geometry and in improving electrochemical stability. Finally, we conclude with prospective remarks for future development in amorphous electrocatalyst materials for electrochemical water splitting.
Author Zhou, Yao
Fan, Hong Jin
AuthorAffiliation School of Physical and Mathematical Science
AuthorAffiliation_xml – name: School of Physical and Mathematical Science
Author_xml – sequence: 1
  givenname: Yao
  surname: Zhou
  fullname: Zhou, Yao
  organization: School of Physical and Mathematical Science
– sequence: 2
  givenname: Hong Jin
  orcidid: 0000-0003-1237-4555
  surname: Fan
  fullname: Fan, Hong Jin
  email: fanhj@ntu.edu.sg
  organization: School of Physical and Mathematical Science
BookMark eNqNkMtqwzAUREVJoWmaf9APONXLtrQpBJM-INCWFLo0siw7CrIUJGWRv69DsijZtKs7XOYMw9yDifNOAwAxWmBE8KNUcZBJByNttDqlBVII5YjcgCkpqMiYKMXkl74D8xh3CI1sgQVjU_D5EXwfdIxQuhZWW2mtdr2GvoPLwYf91h8irGSS9hhThJ0PcGW1SsGrrR6MkhZ-nxrAzd6alIzrH8BtN9bR88udgc3z6qt6zdbvL2_Vcp1JmrOUsYLLgosGMYYbokjZ8HZ8EJWXrGs45WVLSaHyRncNboWkjDOGGKZlKxpNZ-DpnKqCjzHorlYmyWS8S0EaW2NUnxaqrxeqLwuNAfwqYB_MIMPxPyg7o6Oj3vlDcKPjb-wHUiCIZQ
CitedBy_id crossref_primary_10_1002_smll_202311356
crossref_primary_10_20517_microstructures_2023_66
crossref_primary_10_1039_D4NJ03712J
crossref_primary_10_1021_acsmaterialslett_1c00086
crossref_primary_10_1002_cssc_202101666
crossref_primary_10_1002_smll_202200452
crossref_primary_10_1002_smll_202407261
crossref_primary_10_1016_j_cej_2023_145826
crossref_primary_10_1002_adfm_202101239
crossref_primary_10_1002_jemt_24762
crossref_primary_10_1002_adma_202300526
crossref_primary_10_1002_smll_202308182
crossref_primary_10_1016_j_ijhydene_2022_07_163
crossref_primary_10_1002_aenm_202100624
crossref_primary_10_1016_j_apcatb_2021_121055
crossref_primary_10_1021_acsami_2c16543
crossref_primary_10_1007_s40843_022_2296_1
crossref_primary_10_1021_acsanm_3c04938
crossref_primary_10_1021_acsanm_1c02224
crossref_primary_10_3389_fchem_2024_1374878
crossref_primary_10_1016_j_apsusc_2024_161353
crossref_primary_10_1016_j_jcis_2022_04_127
crossref_primary_10_1039_D1NR06764H
crossref_primary_10_1016_j_jcis_2023_09_185
crossref_primary_10_1016_j_jallcom_2025_178575
crossref_primary_10_1021_acsmaterialslett_0c00549
crossref_primary_10_1039_D2TA03325A
crossref_primary_10_1021_acs_inorgchem_3c00686
crossref_primary_10_1021_acsomega_2c08288
crossref_primary_10_1007_s40843_024_3201_3
crossref_primary_10_1016_j_est_2023_108728
crossref_primary_10_1002_eem2_12573
crossref_primary_10_1016_j_jcis_2025_02_067
crossref_primary_10_1016_j_ijhydene_2022_11_316
crossref_primary_10_1063_5_0174615
crossref_primary_10_1002_aenm_202203002
crossref_primary_10_1039_D4TA02785J
crossref_primary_10_1016_j_electacta_2021_139648
crossref_primary_10_1002_cctc_202100129
crossref_primary_10_1039_D3NJ05125K
crossref_primary_10_1016_S1872_2067_21_63939_6
crossref_primary_10_1021_acsnano_3c12049
crossref_primary_10_1002_cssc_202201656
crossref_primary_10_1007_s12274_022_4605_y
crossref_primary_10_1016_j_jallcom_2024_174762
crossref_primary_10_1007_s11581_023_04904_4
crossref_primary_10_1016_j_jallcom_2021_162409
crossref_primary_10_1039_D2QI02629E
crossref_primary_10_1016_j_ijhydene_2022_08_261
crossref_primary_10_1039_D2DT00639A
crossref_primary_10_26599_NRE_2024_9120129
crossref_primary_10_1016_j_est_2023_107708
crossref_primary_10_1021_acscatal_4c07903
crossref_primary_10_1016_j_colsurfa_2022_128248
crossref_primary_10_1016_j_inoche_2023_111142
crossref_primary_10_1021_acsmaterialslett_3c01414
crossref_primary_10_1016_j_ijhydene_2022_09_070
crossref_primary_10_1002_smll_202206859
crossref_primary_10_1016_j_rser_2022_112887
crossref_primary_10_1016_j_cej_2023_141727
crossref_primary_10_1016_j_ijhydene_2023_04_136
crossref_primary_10_1002_adma_202100537
crossref_primary_10_1016_j_ijhydene_2022_01_161
crossref_primary_10_1021_acsmaterialslett_4c00456
crossref_primary_10_1039_D3TA08052H
crossref_primary_10_1016_j_nanoen_2024_109869
crossref_primary_10_1016_j_apmt_2024_102466
crossref_primary_10_1002_cphc_202400640
crossref_primary_10_1016_j_ijhydene_2023_09_308
crossref_primary_10_1016_j_mtchem_2023_101758
crossref_primary_10_1039_D4TA05919K
crossref_primary_10_1016_j_cej_2022_141120
crossref_primary_10_1016_j_electacta_2021_139554
crossref_primary_10_1139_cjc_2023_0016
crossref_primary_10_1016_j_apcatb_2024_124465
crossref_primary_10_1021_acsami_4c19097
crossref_primary_10_1002_adfm_202405867
crossref_primary_10_1021_acs_chemmater_4c00379
crossref_primary_10_1039_D3CP05158G
crossref_primary_10_1016_j_ijhydene_2025_02_050
crossref_primary_10_1016_j_jphotochem_2023_114649
crossref_primary_10_1016_j_jallcom_2022_164670
crossref_primary_10_1016_j_ijhydene_2024_11_174
crossref_primary_10_3389_fchem_2022_1030803
crossref_primary_10_1039_D2TA02989H
crossref_primary_10_1021_acsami_4c05382
crossref_primary_10_1039_D2TC04267C
crossref_primary_10_3389_fchem_2022_1064906
crossref_primary_10_1016_j_est_2023_109794
crossref_primary_10_1016_j_matchemphys_2024_130331
crossref_primary_10_1016_j_jcis_2025_137409
crossref_primary_10_1002_adsu_202300008
crossref_primary_10_1016_j_apcatb_2023_123343
crossref_primary_10_1016_j_jcis_2023_09_173
crossref_primary_10_1039_D3EY00157A
crossref_primary_10_1021_acsami_3c13210
crossref_primary_10_1016_j_ijhydene_2023_03_327
crossref_primary_10_1021_acsmaterialslett_1c00762
crossref_primary_10_3389_fenrg_2022_901395
crossref_primary_10_1039_D3NJ03346E
crossref_primary_10_1016_j_electacta_2024_145188
crossref_primary_10_1021_acsami_1c22092
crossref_primary_10_1002_celc_202100984
crossref_primary_10_1016_j_cclet_2023_108285
crossref_primary_10_1002_smtd_202101017
crossref_primary_10_1021_acs_chemrev_3c00229
crossref_primary_10_1016_j_jcis_2022_04_160
crossref_primary_10_1007_s12598_024_03082_0
crossref_primary_10_20517_energymater_2024_41
crossref_primary_10_1039_D1TA02783B
crossref_primary_10_1016_j_jallcom_2024_173647
crossref_primary_10_1002_adsu_202300379
crossref_primary_10_1021_acs_energyfuels_3c02567
crossref_primary_10_1016_j_cej_2023_142224
crossref_primary_10_1021_acscatal_3c04498
crossref_primary_10_1021_acsnano_2c11094
crossref_primary_10_1016_j_mtcata_2023_100025
crossref_primary_10_1088_2632_959X_ad9ac0
crossref_primary_10_1016_j_jallcom_2023_171746
crossref_primary_10_1016_j_jallcom_2023_171508
crossref_primary_10_1016_j_electacta_2024_144005
crossref_primary_10_1021_acsaem_1c03282
crossref_primary_10_3390_catal11111338
crossref_primary_10_1021_acs_jpcc_2c03819
crossref_primary_10_1016_j_ijhydene_2022_04_200
crossref_primary_10_1016_j_ijhydene_2024_12_387
crossref_primary_10_1016_j_apcatb_2022_121088
crossref_primary_10_1021_acssuschemeng_4c05477
crossref_primary_10_1016_j_ccr_2022_214916
crossref_primary_10_1016_j_apcatb_2024_123706
crossref_primary_10_1039_D3DT01745A
crossref_primary_10_1007_s10562_024_04647_5
crossref_primary_10_1016_j_jhazmat_2022_130651
crossref_primary_10_1021_acsmaterialslett_4c00544
crossref_primary_10_1039_D2GC03377A
crossref_primary_10_1016_j_ijhydene_2024_10_278
crossref_primary_10_1016_j_mtener_2021_100887
crossref_primary_10_1016_j_cej_2025_161095
crossref_primary_10_1002_aenm_202404151
crossref_primary_10_1016_j_mtener_2021_100902
crossref_primary_10_1039_D4TA02869D
crossref_primary_10_1002_aenm_202303614
crossref_primary_10_1039_D2CE00124A
crossref_primary_10_1007_s10854_024_12332_x
crossref_primary_10_1021_acsami_1c19936
crossref_primary_10_1063_5_0054273
crossref_primary_10_1021_acsaem_3c02306
crossref_primary_10_1021_acs_inorgchem_2c02666
crossref_primary_10_1002_adfm_202410193
crossref_primary_10_1016_j_electacta_2023_142133
crossref_primary_10_1002_cctc_202401687
crossref_primary_10_1002_smll_202105680
crossref_primary_10_1039_D2TA00686C
crossref_primary_10_1002_smll_202300368
crossref_primary_10_1039_D3DT00160A
crossref_primary_10_1002_smll_202303912
crossref_primary_10_1016_j_jelechem_2022_116363
crossref_primary_10_1016_j_snb_2024_135944
crossref_primary_10_1002_aenm_202101937
crossref_primary_10_1016_j_molstruc_2022_133121
crossref_primary_10_1016_j_jpowsour_2023_233307
crossref_primary_10_1016_j_pmatsci_2024_101408
crossref_primary_10_1002_admi_202202499
crossref_primary_10_1002_advs_202305630
crossref_primary_10_1002_aenm_202200827
crossref_primary_10_1002_smll_202308594
crossref_primary_10_1002_tcr_202200212
crossref_primary_10_1002_smll_202207852
crossref_primary_10_1021_acs_iecr_3c02144
crossref_primary_10_1002_smll_202409097
crossref_primary_10_1016_j_jcis_2024_05_179
crossref_primary_10_1021_acs_energyfuels_2c03022
crossref_primary_10_1016_j_cej_2024_151697
crossref_primary_10_1016_j_ijhydene_2023_09_066
crossref_primary_10_1039_D2TA08073G
crossref_primary_10_1007_s42247_025_01065_0
crossref_primary_10_1021_acs_jpcc_3c04283
crossref_primary_10_1021_acsanm_1c00850
crossref_primary_10_1002_smll_202105972
crossref_primary_10_1016_S1872_2067_23_64486_9
crossref_primary_10_1155_2023_5570480
crossref_primary_10_3390_inorganics11070305
crossref_primary_10_1002_smll_202207295
crossref_primary_10_1002_adfm_202405270
crossref_primary_10_1016_j_ijhydene_2024_08_040
crossref_primary_10_1016_j_jallcom_2025_179378
crossref_primary_10_1039_D1DT03633E
Cites_doi 10.1039/C4EE03004D
10.1126/sciadv.1603206
10.1039/C7NR04381C
10.1002/anie.201902411
10.1002/anie.201900428
10.1016/j.mtener.2017.07.016
10.1021/acsmaterialslett.0c00114
10.1002/aenm.201902703
10.1021/acscatal.6b02573
10.1039/C8EE00611C
10.1038/ncomms7616
10.1021/jacs.8b10722
10.1039/C7TA08720A
10.1016/j.apcatb.2019.118240
10.1002/adfm.201806229
10.1002/adma.201704574
10.1021/cr1002326
10.1039/C5CS00434A
10.1016/j.apcatb.2019.04.017
10.1103/PhysRevB.43.5243
10.1021/ja509348t
10.1038/ncomms8261
10.1021/acsami.0c03462
10.1039/D0RA04828C
10.1021/ja1023767
10.1002/adma.201500894
10.1002/anie.201409333
10.1021/acsami.7b13939
10.1039/C9CP01463B
10.1021/acs.inorgchem.6b02929
10.1039/B802885K
10.1039/C9CS00607A
10.1038/s41467-019-12859-2
10.1021/acscatal.7b03198
10.1039/C8NR06459H
10.1039/C5RA00995B
10.1039/C9TA00061E
10.1002/adma.201900883
10.1038/nmat4564
10.1002/adma.201506314
10.1038/ncomms9311
10.1038/nmat4588
10.1021/jacs.9b09932
10.1038/s41467-019-13519-1
10.1016/j.jnoncrysol.2019.119476
10.1038/nmat2897
10.1021/acsnano.9b05571
10.1002/anie.201803136
10.1002/aenm.201700919
10.1038/s41467-020-16111-0
10.1038/nmat4660
10.1002/adma.201902964
10.1016/0022-0728(88)80013-5
10.1021/ja1069272
10.1021/acsnano.5b05652
10.1016/S0022-3115(99)00023-9
10.1039/C8TA05552A
10.1039/C9EE00950G
10.1039/C9EE02388G
10.1002/aenm.201401880
10.1002/anie.201809921
10.1021/jp408585z
10.1038/ncomms14548
10.1021/ja413147e
10.1039/C9EE01202H
10.1021/acsnano.8b00693
10.1002/anie.201407031
10.1021/jz301414z
10.1038/s41929-018-0203-5
10.1002/adfm.201808632
10.1063/1.1808484
10.1016/j.ejps.2018.02.012
10.1002/celc.201900880
10.1002/smll.201703514
10.1007/s12274-017-1783-0
10.1038/s41467-018-03429-z
10.1002/adma.201805513
10.1021/cs401245q
10.1002/aenm.201602122
10.1002/anie.201307543
10.1002/aenm.201600221
10.1002/aenm.201903120
10.1038/ncomms9625
10.1002/smll.201906766
10.1016/S0022-3093(98)00694-2
10.1021/acscatal.5b02369
10.1016/j.mtener.2019.02.004
10.1002/adma.202003414
10.1002/adma.201202920
10.1002/anie.201900167
10.1016/j.electacta.2010.11.062
10.1002/anie.201506727
10.1002/adma.201501884
10.1021/nn503760c
10.1002/smll.201905779
10.1002/anie.201909939
10.1002/aenm.201701475
10.1038/s41929-018-0072-y
10.1038/ncomms13638
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsmaterialslett.0c00502
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2639-4979
EndPage 147
ExternalDocumentID 10_1021_acsmaterialslett_0c00502
a363118786
GroupedDBID ACS
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
BAANH
CITATION
CUPRZ
M~E
ID FETCH-LOGICAL-a354t-468a689b0441b2c27b8da682c574fb8387d326c5befb1d9a3484404137d9be3
IEDL.DBID ACS
ISSN 2639-4979
IngestDate Tue Jul 01 04:21:51 EDT 2025
Thu Apr 24 23:12:43 EDT 2025
Thu Jan 13 12:42:27 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a354t-468a689b0441b2c27b8da682c574fb8387d326c5befb1d9a3484404137d9be3
ORCID 0000-0003-1237-4555
OpenAccessLink https://dr.ntu.edu.sg/bitstream/10356/146208/3/ACS%20Mater%20Lett%20-%20R3.pdf
PageCount 12
ParticipantIDs crossref_citationtrail_10_1021_acsmaterialslett_0c00502
crossref_primary_10_1021_acsmaterialslett_0c00502
acs_journals_10_1021_acsmaterialslett_0c00502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210104
2021-01-04
PublicationDateYYYYMMDD 2021-01-04
PublicationDate_xml – month: 01
  year: 2021
  text: 20210104
  day: 04
PublicationDecade 2020
PublicationTitle ACS materials letters
PublicationTitleAlternate ACS Materials Lett
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref13/cit13
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref11/cit11
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref25/cit25
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref39/cit39
  doi: 10.1039/C4EE03004D
– ident: ref42/cit42
  doi: 10.1126/sciadv.1603206
– ident: ref36/cit36
  doi: 10.1039/C7NR04381C
– ident: ref66/cit66
  doi: 10.1002/anie.201902411
– ident: ref31/cit31
  doi: 10.1002/anie.201900428
– ident: ref6/cit6
  doi: 10.1016/j.mtener.2017.07.016
– ident: ref71/cit71
  doi: 10.1021/acsmaterialslett.0c00114
– ident: ref84/cit84
  doi: 10.1002/aenm.201902703
– ident: ref22/cit22
  doi: 10.1021/acscatal.6b02573
– ident: ref38/cit38
  doi: 10.1039/C8EE00611C
– ident: ref54/cit54
  doi: 10.1038/ncomms7616
– ident: ref75/cit75
  doi: 10.1021/jacs.8b10722
– ident: ref49/cit49
  doi: 10.1039/C7TA08720A
– ident: ref65/cit65
  doi: 10.1016/j.apcatb.2019.118240
– ident: ref90/cit90
  doi: 10.1002/adfm.201806229
– ident: ref48/cit48
  doi: 10.1002/adma.201704574
– ident: ref1/cit1
  doi: 10.1021/cr1002326
– ident: ref5/cit5
  doi: 10.1039/C5CS00434A
– ident: ref21/cit21
  doi: 10.1016/j.apcatb.2019.04.017
– ident: ref58/cit58
  doi: 10.1103/PhysRevB.43.5243
– ident: ref45/cit45
  doi: 10.1021/ja509348t
– ident: ref14/cit14
  doi: 10.1038/ncomms8261
– ident: ref57/cit57
  doi: 10.1021/acsami.0c03462
– ident: ref95/cit95
  doi: 10.1039/D0RA04828C
– ident: ref98/cit98
  doi: 10.1021/ja1023767
– ident: ref19/cit19
  doi: 10.1002/adma.201500894
– ident: ref69/cit69
  doi: 10.1002/anie.201409333
– ident: ref51/cit51
  doi: 10.1021/acsami.7b13939
– ident: ref59/cit59
  doi: 10.1039/C9CP01463B
– ident: ref99/cit99
  doi: 10.1021/acs.inorgchem.6b02929
– ident: ref97/cit97
  doi: 10.1039/B802885K
– ident: ref3/cit3
  doi: 10.1039/C9CS00607A
– ident: ref40/cit40
  doi: 10.1038/s41467-019-12859-2
– ident: ref43/cit43
  doi: 10.1021/acscatal.7b03198
– ident: ref2/cit2
  doi: 10.1039/C8NR06459H
– ident: ref68/cit68
  doi: 10.1039/C5RA00995B
– ident: ref78/cit78
  doi: 10.1039/C9TA00061E
– ident: ref74/cit74
  doi: 10.1002/adma.201900883
– ident: ref27/cit27
  doi: 10.1038/nmat4564
– ident: ref18/cit18
  doi: 10.1002/adma.201506314
– ident: ref87/cit87
  doi: 10.1038/ncomms9311
– ident: ref89/cit89
  doi: 10.1038/nmat4588
– ident: ref29/cit29
  doi: 10.1021/jacs.9b09932
– ident: ref37/cit37
  doi: 10.1038/s41467-019-13519-1
– ident: ref56/cit56
  doi: 10.1016/j.jnoncrysol.2019.119476
– ident: ref91/cit91
  doi: 10.1038/nmat2897
– ident: ref81/cit81
  doi: 10.1021/acsnano.9b05571
– ident: ref30/cit30
  doi: 10.1002/anie.201803136
– ident: ref93/cit93
  doi: 10.1002/aenm.201700919
– ident: ref13/cit13
  doi: 10.1038/s41467-020-16111-0
– ident: ref26/cit26
  doi: 10.1038/nmat4660
– ident: ref41/cit41
  doi: 10.1002/adma.201902964
– ident: ref50/cit50
  doi: 10.1016/0022-0728(88)80013-5
– ident: ref10/cit10
  doi: 10.1021/ja1069272
– ident: ref46/cit46
  doi: 10.1021/acsnano.5b05652
– ident: ref62/cit62
  doi: 10.1016/S0022-3115(99)00023-9
– ident: ref94/cit94
  doi: 10.1039/C8TA05552A
– ident: ref85/cit85
  doi: 10.1039/C9EE00950G
– ident: ref83/cit83
  doi: 10.1039/C9EE02388G
– ident: ref55/cit55
  doi: 10.1002/aenm.201401880
– ident: ref63/cit63
  doi: 10.1002/anie.201809921
– ident: ref73/cit73
  doi: 10.1021/jp408585z
– ident: ref86/cit86
  doi: 10.1038/ncomms14548
– ident: ref96/cit96
  doi: 10.1021/ja413147e
– ident: ref8/cit8
  doi: 10.1039/C9EE01202H
– ident: ref28/cit28
  doi: 10.1021/acsnano.8b00693
– ident: ref88/cit88
  doi: 10.1002/anie.201407031
– ident: ref72/cit72
  doi: 10.1021/jz301414z
– ident: ref15/cit15
  doi: 10.1038/s41929-018-0203-5
– ident: ref80/cit80
  doi: 10.1002/adfm.201808632
– ident: ref61/cit61
  doi: 10.1063/1.1808484
– ident: ref60/cit60
  doi: 10.1016/j.ejps.2018.02.012
– ident: ref70/cit70
  doi: 10.1002/celc.201900880
– ident: ref33/cit33
  doi: 10.1002/smll.201703514
– ident: ref52/cit52
  doi: 10.1007/s12274-017-1783-0
– ident: ref12/cit12
  doi: 10.1038/s41467-018-03429-z
– ident: ref4/cit4
  doi: 10.1002/adma.201805513
– ident: ref9/cit9
  doi: 10.1021/cs401245q
– ident: ref20/cit20
  doi: 10.1002/aenm.201602122
– ident: ref82/cit82
  doi: 10.1002/anie.201307543
– ident: ref23/cit23
  doi: 10.1002/aenm.201600221
– ident: ref11/cit11
  doi: 10.1002/aenm.201903120
– ident: ref34/cit34
  doi: 10.1038/ncomms9625
– ident: ref77/cit77
  doi: 10.1002/smll.201906766
– ident: ref64/cit64
  doi: 10.1016/S0022-3093(98)00694-2
– ident: ref47/cit47
  doi: 10.1021/acscatal.5b02369
– ident: ref79/cit79
  doi: 10.1016/j.mtener.2019.02.004
– ident: ref32/cit32
  doi: 10.1002/adma.202003414
– ident: ref25/cit25
  doi: 10.1002/adma.201202920
– ident: ref92/cit92
  doi: 10.1002/anie.201900167
– ident: ref35/cit35
  doi: 10.1016/j.electacta.2010.11.062
– ident: ref16/cit16
  doi: 10.1002/anie.201506727
– ident: ref24/cit24
  doi: 10.1002/adma.201501884
– ident: ref44/cit44
  doi: 10.1021/nn503760c
– ident: ref7/cit7
  doi: 10.1002/smll.201905779
– ident: ref76/cit76
  doi: 10.1002/anie.201909939
– ident: ref53/cit53
  doi: 10.1002/aenm.201701475
– ident: ref67/cit67
  doi: 10.1038/s41929-018-0072-y
– ident: ref17/cit17
  doi: 10.1038/ncomms13638
SSID ssj0002161944
Score 2.5555296
SecondaryResourceType review_article
Snippet Electrochemical water splitting has been regarded a promising technology to provide a mobile and sustainable energy supply in the form of hydrogen fuel. The...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 136
Title Progress and Challenge of Amorphous Catalysts for Electrochemical Water Splitting
URI http://dx.doi.org/10.1021/acsmaterialslett.0c00502
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELaqssDAG1Fe8sCa0tiOH2MVtaqQQKCC6Bb5kS5Agkg6wMBv55ykVQXi0cVDpEucu4vv8_nyHULnPKIutdNeoGxEA6apCjSlJqBEasnBibSu2D6v-eieXU6iSQuRH07wSXihbQHYrTYHvErZ7VlPWgLL7hrhUvgNVz8eL_IqJPT7cn-YTDitGqippoDnt5v52GSLpdi0FGSGW_WPf0XFTehrSx67s9J07ft35sYV5r-NNhvMifu1k-ygVprtoo0lJsI9dHvj67Rg1cM6czied1jB-RT3n3OwRT4rcOxTPW9FWWBAunhQN9CxDeMAfvCPx2MAtVUp9T4aDwd38Shoui2AcSJWBoxLzaUyPQBIhlgijHRwgdhIsKmRVAoHUM9GJp2a0ClNmfTcgiEVTpmUHqB2lmfpIcLaRso4J6zWjgkjJBe90CoNA2dKyw4KQCdJ860USXUMTsLkq6KSRlEdJOZWSWxDXO77Zzz9QzJcSL7U5B1_yhytOLtjtE58mYvPyrAT1C5fZ-kp4JTSnFWOCePVx-AT-frqbw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhoxEB5Rcmh7aJMmUelP6kN7XMLa3rV96AHRIAgEtYIonLryz3JJAlV3UZW-UF4lj9XxslDEIUkPHHrZgyV7bc_Y_jwz_gbgYxwxl9pJI1A2YgHXTAWaMRMwKrWMUYm0Ltg-B3HnnJ-Oo3EFbpdvYbATGbaUFU78v-wC4TGWIYRbSAVHlNcb1nOX0DKespfe_MLbWva5-wVF-4nS9smo1QnKhAL4_4jnAY-ljqUyDcQAhloqjHRYQG0k-MRIJoVDNGMjk05M6JRmXHr6vJAJp0zKsNUnsIMIiPpbXrM1XBlzaOiNAd6DTWNWZG1TZdTQfV33B6LN1g7EtZOt_RLuVnNSBLRc1ue5qdvfG3SR_8Gk7cKLEl2T5mI57EElnb6C52uci_vw7auPSMP9neipI61lLhkym5Dm9Qy1bjbPSMsbtW6yPCOI6cnJIlWQLbkVyIUfLBkifC-Cxg9guIURHUJ1Opumr4FoGynjnLBaOy6MkLFohFZp_MRcaVmDACWQlLtClhQOfxomm2JJSrHUQCxVIbElRbvPFHL1iJrhquaPBU3Jg3Xe_GPvPsDTzuisn_S7g95beEZ9cI-3RfF3UM1_ztP3iM5yc1SsDALft6tTfwAs8Ei8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BlRAc2vJSoQ98gGOWje3E9oHDah-CghBoQXAi8iO5tN1FJCtE_xJ_hR_FOOtdrThAe-DAJQdLtsaesf15ZvINwE6aMJfbohkpm7CIa6YizZiJGJVapmhEWtdsnyfpwQX_eZVczcHD5F8YFKLEkco6iO939Y0rAsNAvIftCOPGmsFZVY2m9fwlNORUHuX3d_hiK_cPO6jeXUp73fP2QRSKCqAMCa8inkqdSmWaiAMMtVQY6bCB2kTwwkgmhUNEYxOTFyZ2SjMuPYVezIRTJmc46jx88LFC_9JrtftThw6NvUPAR7FpyurKbSpkDr0kur8UbTlzKc7cbr1P8Dhdlzqp5VdjVJmG_fuMMvKdLNxn-BhQNmmNt8UKzOWDVVie4V5cg7NTn5mG5zzRA0fak5oyZFiQ1p8hWt9wVJK2d27dl1VJENuT7rhkkA0cC-TST5b0EcbXyePr0H-DGW3AwmA4yL8A0TZRxjlhtXZcGCFT0Yyt0vhJudJyEyLUQBZOhzKrA_80zp6rJQtq2QQxMYfMBqp2XzHk9z_0jKc9b8Z0Ja_22fpP6bZh8bTTy44PT46-whL1OT7eJcW_wUJ1O8q_I0irzI96cxC4fluTegLpZEs_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+and+Challenge+of+Amorphous+Catalysts+for+Electrochemical+Water+Splitting&rft.jtitle=ACS+materials+letters&rft.au=Zhou%2C+Yao&rft.au=Fan%2C+Hong+Jin&rft.date=2021-01-04&rft.issn=2639-4979&rft.eissn=2639-4979&rft.volume=3&rft.issue=1&rft.spage=136&rft.epage=147&rft_id=info:doi/10.1021%2Facsmaterialslett.0c00502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsmaterialslett_0c00502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-4979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-4979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-4979&client=summon