Progress and Challenge of Amorphous Catalysts for Electrochemical Water Splitting
Electrochemical water splitting has been regarded a promising technology to provide a mobile and sustainable energy supply in the form of hydrogen fuel. The key to further development towards industrial application lies in high-efficiency and low-cost electrocatalysts. In recent years, new attention...
Saved in:
Published in | ACS materials letters Vol. 3; no. 1; pp. 136 - 147 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
04.01.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical water splitting has been regarded a promising technology to provide a mobile and sustainable energy supply in the form of hydrogen fuel. The key to further development towards industrial application lies in high-efficiency and low-cost electrocatalysts. In recent years, new attention has been paid to amorphous electrocatalysts, which have short-range atomic ordering instead of translational periodicity. The structural flexibility and rich defects associated with amorphous catalyst materials offer enormous opportunities for electrochemical water splitting. In this Perspective, we elaborate on recent studies of amorphous electrocatalysts for electrochemical water splitting. Our discussion covers the diverse amorphization strategies, the positive role of structural flexibility and defects in enriching active sites, as well as challenges in the characterization of local geometry and in improving electrochemical stability. Finally, we conclude with prospective remarks for future development in amorphous electrocatalyst materials for electrochemical water splitting. |
---|---|
AbstractList | Electrochemical water splitting has been regarded a promising technology to provide a mobile and sustainable energy supply in the form of hydrogen fuel. The key to further development towards industrial application lies in high-efficiency and low-cost electrocatalysts. In recent years, new attention has been paid to amorphous electrocatalysts, which have short-range atomic ordering instead of translational periodicity. The structural flexibility and rich defects associated with amorphous catalyst materials offer enormous opportunities for electrochemical water splitting. In this Perspective, we elaborate on recent studies of amorphous electrocatalysts for electrochemical water splitting. Our discussion covers the diverse amorphization strategies, the positive role of structural flexibility and defects in enriching active sites, as well as challenges in the characterization of local geometry and in improving electrochemical stability. Finally, we conclude with prospective remarks for future development in amorphous electrocatalyst materials for electrochemical water splitting. |
Author | Zhou, Yao Fan, Hong Jin |
AuthorAffiliation | School of Physical and Mathematical Science |
AuthorAffiliation_xml | – name: School of Physical and Mathematical Science |
Author_xml | – sequence: 1 givenname: Yao surname: Zhou fullname: Zhou, Yao organization: School of Physical and Mathematical Science – sequence: 2 givenname: Hong Jin orcidid: 0000-0003-1237-4555 surname: Fan fullname: Fan, Hong Jin email: fanhj@ntu.edu.sg organization: School of Physical and Mathematical Science |
BookMark | eNqNkMtqwzAUREVJoWmaf9APONXLtrQpBJM-INCWFLo0siw7CrIUJGWRv69DsijZtKs7XOYMw9yDifNOAwAxWmBE8KNUcZBJByNttDqlBVII5YjcgCkpqMiYKMXkl74D8xh3CI1sgQVjU_D5EXwfdIxQuhZWW2mtdr2GvoPLwYf91h8irGSS9hhThJ0PcGW1SsGrrR6MkhZ-nxrAzd6alIzrH8BtN9bR88udgc3z6qt6zdbvL2_Vcp1JmrOUsYLLgosGMYYbokjZ8HZ8EJWXrGs45WVLSaHyRncNboWkjDOGGKZlKxpNZ-DpnKqCjzHorlYmyWS8S0EaW2NUnxaqrxeqLwuNAfwqYB_MIMPxPyg7o6Oj3vlDcKPjb-wHUiCIZQ |
CitedBy_id | crossref_primary_10_1002_smll_202311356 crossref_primary_10_20517_microstructures_2023_66 crossref_primary_10_1039_D4NJ03712J crossref_primary_10_1021_acsmaterialslett_1c00086 crossref_primary_10_1002_cssc_202101666 crossref_primary_10_1002_smll_202200452 crossref_primary_10_1002_smll_202407261 crossref_primary_10_1016_j_cej_2023_145826 crossref_primary_10_1002_adfm_202101239 crossref_primary_10_1002_jemt_24762 crossref_primary_10_1002_adma_202300526 crossref_primary_10_1002_smll_202308182 crossref_primary_10_1016_j_ijhydene_2022_07_163 crossref_primary_10_1002_aenm_202100624 crossref_primary_10_1016_j_apcatb_2021_121055 crossref_primary_10_1021_acsami_2c16543 crossref_primary_10_1007_s40843_022_2296_1 crossref_primary_10_1021_acsanm_3c04938 crossref_primary_10_1021_acsanm_1c02224 crossref_primary_10_3389_fchem_2024_1374878 crossref_primary_10_1016_j_apsusc_2024_161353 crossref_primary_10_1016_j_jcis_2022_04_127 crossref_primary_10_1039_D1NR06764H crossref_primary_10_1016_j_jcis_2023_09_185 crossref_primary_10_1016_j_jallcom_2025_178575 crossref_primary_10_1021_acsmaterialslett_0c00549 crossref_primary_10_1039_D2TA03325A crossref_primary_10_1021_acs_inorgchem_3c00686 crossref_primary_10_1021_acsomega_2c08288 crossref_primary_10_1007_s40843_024_3201_3 crossref_primary_10_1016_j_est_2023_108728 crossref_primary_10_1002_eem2_12573 crossref_primary_10_1016_j_jcis_2025_02_067 crossref_primary_10_1016_j_ijhydene_2022_11_316 crossref_primary_10_1063_5_0174615 crossref_primary_10_1002_aenm_202203002 crossref_primary_10_1039_D4TA02785J crossref_primary_10_1016_j_electacta_2021_139648 crossref_primary_10_1002_cctc_202100129 crossref_primary_10_1039_D3NJ05125K crossref_primary_10_1016_S1872_2067_21_63939_6 crossref_primary_10_1021_acsnano_3c12049 crossref_primary_10_1002_cssc_202201656 crossref_primary_10_1007_s12274_022_4605_y crossref_primary_10_1016_j_jallcom_2024_174762 crossref_primary_10_1007_s11581_023_04904_4 crossref_primary_10_1016_j_jallcom_2021_162409 crossref_primary_10_1039_D2QI02629E crossref_primary_10_1016_j_ijhydene_2022_08_261 crossref_primary_10_1039_D2DT00639A crossref_primary_10_26599_NRE_2024_9120129 crossref_primary_10_1016_j_est_2023_107708 crossref_primary_10_1021_acscatal_4c07903 crossref_primary_10_1016_j_colsurfa_2022_128248 crossref_primary_10_1016_j_inoche_2023_111142 crossref_primary_10_1021_acsmaterialslett_3c01414 crossref_primary_10_1016_j_ijhydene_2022_09_070 crossref_primary_10_1002_smll_202206859 crossref_primary_10_1016_j_rser_2022_112887 crossref_primary_10_1016_j_cej_2023_141727 crossref_primary_10_1016_j_ijhydene_2023_04_136 crossref_primary_10_1002_adma_202100537 crossref_primary_10_1016_j_ijhydene_2022_01_161 crossref_primary_10_1021_acsmaterialslett_4c00456 crossref_primary_10_1039_D3TA08052H crossref_primary_10_1016_j_nanoen_2024_109869 crossref_primary_10_1016_j_apmt_2024_102466 crossref_primary_10_1002_cphc_202400640 crossref_primary_10_1016_j_ijhydene_2023_09_308 crossref_primary_10_1016_j_mtchem_2023_101758 crossref_primary_10_1039_D4TA05919K crossref_primary_10_1016_j_cej_2022_141120 crossref_primary_10_1016_j_electacta_2021_139554 crossref_primary_10_1139_cjc_2023_0016 crossref_primary_10_1016_j_apcatb_2024_124465 crossref_primary_10_1021_acsami_4c19097 crossref_primary_10_1002_adfm_202405867 crossref_primary_10_1021_acs_chemmater_4c00379 crossref_primary_10_1039_D3CP05158G crossref_primary_10_1016_j_ijhydene_2025_02_050 crossref_primary_10_1016_j_jphotochem_2023_114649 crossref_primary_10_1016_j_jallcom_2022_164670 crossref_primary_10_1016_j_ijhydene_2024_11_174 crossref_primary_10_3389_fchem_2022_1030803 crossref_primary_10_1039_D2TA02989H crossref_primary_10_1021_acsami_4c05382 crossref_primary_10_1039_D2TC04267C crossref_primary_10_3389_fchem_2022_1064906 crossref_primary_10_1016_j_est_2023_109794 crossref_primary_10_1016_j_matchemphys_2024_130331 crossref_primary_10_1016_j_jcis_2025_137409 crossref_primary_10_1002_adsu_202300008 crossref_primary_10_1016_j_apcatb_2023_123343 crossref_primary_10_1016_j_jcis_2023_09_173 crossref_primary_10_1039_D3EY00157A crossref_primary_10_1021_acsami_3c13210 crossref_primary_10_1016_j_ijhydene_2023_03_327 crossref_primary_10_1021_acsmaterialslett_1c00762 crossref_primary_10_3389_fenrg_2022_901395 crossref_primary_10_1039_D3NJ03346E crossref_primary_10_1016_j_electacta_2024_145188 crossref_primary_10_1021_acsami_1c22092 crossref_primary_10_1002_celc_202100984 crossref_primary_10_1016_j_cclet_2023_108285 crossref_primary_10_1002_smtd_202101017 crossref_primary_10_1021_acs_chemrev_3c00229 crossref_primary_10_1016_j_jcis_2022_04_160 crossref_primary_10_1007_s12598_024_03082_0 crossref_primary_10_20517_energymater_2024_41 crossref_primary_10_1039_D1TA02783B crossref_primary_10_1016_j_jallcom_2024_173647 crossref_primary_10_1002_adsu_202300379 crossref_primary_10_1021_acs_energyfuels_3c02567 crossref_primary_10_1016_j_cej_2023_142224 crossref_primary_10_1021_acscatal_3c04498 crossref_primary_10_1021_acsnano_2c11094 crossref_primary_10_1016_j_mtcata_2023_100025 crossref_primary_10_1088_2632_959X_ad9ac0 crossref_primary_10_1016_j_jallcom_2023_171746 crossref_primary_10_1016_j_jallcom_2023_171508 crossref_primary_10_1016_j_electacta_2024_144005 crossref_primary_10_1021_acsaem_1c03282 crossref_primary_10_3390_catal11111338 crossref_primary_10_1021_acs_jpcc_2c03819 crossref_primary_10_1016_j_ijhydene_2022_04_200 crossref_primary_10_1016_j_ijhydene_2024_12_387 crossref_primary_10_1016_j_apcatb_2022_121088 crossref_primary_10_1021_acssuschemeng_4c05477 crossref_primary_10_1016_j_ccr_2022_214916 crossref_primary_10_1016_j_apcatb_2024_123706 crossref_primary_10_1039_D3DT01745A crossref_primary_10_1007_s10562_024_04647_5 crossref_primary_10_1016_j_jhazmat_2022_130651 crossref_primary_10_1021_acsmaterialslett_4c00544 crossref_primary_10_1039_D2GC03377A crossref_primary_10_1016_j_ijhydene_2024_10_278 crossref_primary_10_1016_j_mtener_2021_100887 crossref_primary_10_1016_j_cej_2025_161095 crossref_primary_10_1002_aenm_202404151 crossref_primary_10_1016_j_mtener_2021_100902 crossref_primary_10_1039_D4TA02869D crossref_primary_10_1002_aenm_202303614 crossref_primary_10_1039_D2CE00124A crossref_primary_10_1007_s10854_024_12332_x crossref_primary_10_1021_acsami_1c19936 crossref_primary_10_1063_5_0054273 crossref_primary_10_1021_acsaem_3c02306 crossref_primary_10_1021_acs_inorgchem_2c02666 crossref_primary_10_1002_adfm_202410193 crossref_primary_10_1016_j_electacta_2023_142133 crossref_primary_10_1002_cctc_202401687 crossref_primary_10_1002_smll_202105680 crossref_primary_10_1039_D2TA00686C crossref_primary_10_1002_smll_202300368 crossref_primary_10_1039_D3DT00160A crossref_primary_10_1002_smll_202303912 crossref_primary_10_1016_j_jelechem_2022_116363 crossref_primary_10_1016_j_snb_2024_135944 crossref_primary_10_1002_aenm_202101937 crossref_primary_10_1016_j_molstruc_2022_133121 crossref_primary_10_1016_j_jpowsour_2023_233307 crossref_primary_10_1016_j_pmatsci_2024_101408 crossref_primary_10_1002_admi_202202499 crossref_primary_10_1002_advs_202305630 crossref_primary_10_1002_aenm_202200827 crossref_primary_10_1002_smll_202308594 crossref_primary_10_1002_tcr_202200212 crossref_primary_10_1002_smll_202207852 crossref_primary_10_1021_acs_iecr_3c02144 crossref_primary_10_1002_smll_202409097 crossref_primary_10_1016_j_jcis_2024_05_179 crossref_primary_10_1021_acs_energyfuels_2c03022 crossref_primary_10_1016_j_cej_2024_151697 crossref_primary_10_1016_j_ijhydene_2023_09_066 crossref_primary_10_1039_D2TA08073G crossref_primary_10_1007_s42247_025_01065_0 crossref_primary_10_1021_acs_jpcc_3c04283 crossref_primary_10_1021_acsanm_1c00850 crossref_primary_10_1002_smll_202105972 crossref_primary_10_1016_S1872_2067_23_64486_9 crossref_primary_10_1155_2023_5570480 crossref_primary_10_3390_inorganics11070305 crossref_primary_10_1002_smll_202207295 crossref_primary_10_1002_adfm_202405270 crossref_primary_10_1016_j_ijhydene_2024_08_040 crossref_primary_10_1016_j_jallcom_2025_179378 crossref_primary_10_1039_D1DT03633E |
Cites_doi | 10.1039/C4EE03004D 10.1126/sciadv.1603206 10.1039/C7NR04381C 10.1002/anie.201902411 10.1002/anie.201900428 10.1016/j.mtener.2017.07.016 10.1021/acsmaterialslett.0c00114 10.1002/aenm.201902703 10.1021/acscatal.6b02573 10.1039/C8EE00611C 10.1038/ncomms7616 10.1021/jacs.8b10722 10.1039/C7TA08720A 10.1016/j.apcatb.2019.118240 10.1002/adfm.201806229 10.1002/adma.201704574 10.1021/cr1002326 10.1039/C5CS00434A 10.1016/j.apcatb.2019.04.017 10.1103/PhysRevB.43.5243 10.1021/ja509348t 10.1038/ncomms8261 10.1021/acsami.0c03462 10.1039/D0RA04828C 10.1021/ja1023767 10.1002/adma.201500894 10.1002/anie.201409333 10.1021/acsami.7b13939 10.1039/C9CP01463B 10.1021/acs.inorgchem.6b02929 10.1039/B802885K 10.1039/C9CS00607A 10.1038/s41467-019-12859-2 10.1021/acscatal.7b03198 10.1039/C8NR06459H 10.1039/C5RA00995B 10.1039/C9TA00061E 10.1002/adma.201900883 10.1038/nmat4564 10.1002/adma.201506314 10.1038/ncomms9311 10.1038/nmat4588 10.1021/jacs.9b09932 10.1038/s41467-019-13519-1 10.1016/j.jnoncrysol.2019.119476 10.1038/nmat2897 10.1021/acsnano.9b05571 10.1002/anie.201803136 10.1002/aenm.201700919 10.1038/s41467-020-16111-0 10.1038/nmat4660 10.1002/adma.201902964 10.1016/0022-0728(88)80013-5 10.1021/ja1069272 10.1021/acsnano.5b05652 10.1016/S0022-3115(99)00023-9 10.1039/C8TA05552A 10.1039/C9EE00950G 10.1039/C9EE02388G 10.1002/aenm.201401880 10.1002/anie.201809921 10.1021/jp408585z 10.1038/ncomms14548 10.1021/ja413147e 10.1039/C9EE01202H 10.1021/acsnano.8b00693 10.1002/anie.201407031 10.1021/jz301414z 10.1038/s41929-018-0203-5 10.1002/adfm.201808632 10.1063/1.1808484 10.1016/j.ejps.2018.02.012 10.1002/celc.201900880 10.1002/smll.201703514 10.1007/s12274-017-1783-0 10.1038/s41467-018-03429-z 10.1002/adma.201805513 10.1021/cs401245q 10.1002/aenm.201602122 10.1002/anie.201307543 10.1002/aenm.201600221 10.1002/aenm.201903120 10.1038/ncomms9625 10.1002/smll.201906766 10.1016/S0022-3093(98)00694-2 10.1021/acscatal.5b02369 10.1016/j.mtener.2019.02.004 10.1002/adma.202003414 10.1002/adma.201202920 10.1002/anie.201900167 10.1016/j.electacta.2010.11.062 10.1002/anie.201506727 10.1002/adma.201501884 10.1021/nn503760c 10.1002/smll.201905779 10.1002/anie.201909939 10.1002/aenm.201701475 10.1038/s41929-018-0072-y 10.1038/ncomms13638 |
ContentType | Journal Article |
Copyright | 2020 American Chemical Society |
Copyright_xml | – notice: 2020 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsmaterialslett.0c00502 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2639-4979 |
EndPage | 147 |
ExternalDocumentID | 10_1021_acsmaterialslett_0c00502 a363118786 |
GroupedDBID | ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 AAYXX ABBLG ABJNI ABLBI ABQRX BAANH CITATION CUPRZ M~E |
ID | FETCH-LOGICAL-a354t-468a689b0441b2c27b8da682c574fb8387d326c5befb1d9a3484404137d9be3 |
IEDL.DBID | ACS |
ISSN | 2639-4979 |
IngestDate | Tue Jul 01 04:21:51 EDT 2025 Thu Apr 24 23:12:43 EDT 2025 Thu Jan 13 12:42:27 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a354t-468a689b0441b2c27b8da682c574fb8387d326c5befb1d9a3484404137d9be3 |
ORCID | 0000-0003-1237-4555 |
OpenAccessLink | https://dr.ntu.edu.sg/bitstream/10356/146208/3/ACS%20Mater%20Lett%20-%20R3.pdf |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1021_acsmaterialslett_0c00502 crossref_primary_10_1021_acsmaterialslett_0c00502 acs_journals_10_1021_acsmaterialslett_0c00502 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210104 2021-01-04 |
PublicationDateYYYYMMDD | 2021-01-04 |
PublicationDate_xml | – month: 01 year: 2021 text: 20210104 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | ACS materials letters |
PublicationTitleAlternate | ACS Materials Lett |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref13/cit13 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref11/cit11 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref25/cit25 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref39/cit39 doi: 10.1039/C4EE03004D – ident: ref42/cit42 doi: 10.1126/sciadv.1603206 – ident: ref36/cit36 doi: 10.1039/C7NR04381C – ident: ref66/cit66 doi: 10.1002/anie.201902411 – ident: ref31/cit31 doi: 10.1002/anie.201900428 – ident: ref6/cit6 doi: 10.1016/j.mtener.2017.07.016 – ident: ref71/cit71 doi: 10.1021/acsmaterialslett.0c00114 – ident: ref84/cit84 doi: 10.1002/aenm.201902703 – ident: ref22/cit22 doi: 10.1021/acscatal.6b02573 – ident: ref38/cit38 doi: 10.1039/C8EE00611C – ident: ref54/cit54 doi: 10.1038/ncomms7616 – ident: ref75/cit75 doi: 10.1021/jacs.8b10722 – ident: ref49/cit49 doi: 10.1039/C7TA08720A – ident: ref65/cit65 doi: 10.1016/j.apcatb.2019.118240 – ident: ref90/cit90 doi: 10.1002/adfm.201806229 – ident: ref48/cit48 doi: 10.1002/adma.201704574 – ident: ref1/cit1 doi: 10.1021/cr1002326 – ident: ref5/cit5 doi: 10.1039/C5CS00434A – ident: ref21/cit21 doi: 10.1016/j.apcatb.2019.04.017 – ident: ref58/cit58 doi: 10.1103/PhysRevB.43.5243 – ident: ref45/cit45 doi: 10.1021/ja509348t – ident: ref14/cit14 doi: 10.1038/ncomms8261 – ident: ref57/cit57 doi: 10.1021/acsami.0c03462 – ident: ref95/cit95 doi: 10.1039/D0RA04828C – ident: ref98/cit98 doi: 10.1021/ja1023767 – ident: ref19/cit19 doi: 10.1002/adma.201500894 – ident: ref69/cit69 doi: 10.1002/anie.201409333 – ident: ref51/cit51 doi: 10.1021/acsami.7b13939 – ident: ref59/cit59 doi: 10.1039/C9CP01463B – ident: ref99/cit99 doi: 10.1021/acs.inorgchem.6b02929 – ident: ref97/cit97 doi: 10.1039/B802885K – ident: ref3/cit3 doi: 10.1039/C9CS00607A – ident: ref40/cit40 doi: 10.1038/s41467-019-12859-2 – ident: ref43/cit43 doi: 10.1021/acscatal.7b03198 – ident: ref2/cit2 doi: 10.1039/C8NR06459H – ident: ref68/cit68 doi: 10.1039/C5RA00995B – ident: ref78/cit78 doi: 10.1039/C9TA00061E – ident: ref74/cit74 doi: 10.1002/adma.201900883 – ident: ref27/cit27 doi: 10.1038/nmat4564 – ident: ref18/cit18 doi: 10.1002/adma.201506314 – ident: ref87/cit87 doi: 10.1038/ncomms9311 – ident: ref89/cit89 doi: 10.1038/nmat4588 – ident: ref29/cit29 doi: 10.1021/jacs.9b09932 – ident: ref37/cit37 doi: 10.1038/s41467-019-13519-1 – ident: ref56/cit56 doi: 10.1016/j.jnoncrysol.2019.119476 – ident: ref91/cit91 doi: 10.1038/nmat2897 – ident: ref81/cit81 doi: 10.1021/acsnano.9b05571 – ident: ref30/cit30 doi: 10.1002/anie.201803136 – ident: ref93/cit93 doi: 10.1002/aenm.201700919 – ident: ref13/cit13 doi: 10.1038/s41467-020-16111-0 – ident: ref26/cit26 doi: 10.1038/nmat4660 – ident: ref41/cit41 doi: 10.1002/adma.201902964 – ident: ref50/cit50 doi: 10.1016/0022-0728(88)80013-5 – ident: ref10/cit10 doi: 10.1021/ja1069272 – ident: ref46/cit46 doi: 10.1021/acsnano.5b05652 – ident: ref62/cit62 doi: 10.1016/S0022-3115(99)00023-9 – ident: ref94/cit94 doi: 10.1039/C8TA05552A – ident: ref85/cit85 doi: 10.1039/C9EE00950G – ident: ref83/cit83 doi: 10.1039/C9EE02388G – ident: ref55/cit55 doi: 10.1002/aenm.201401880 – ident: ref63/cit63 doi: 10.1002/anie.201809921 – ident: ref73/cit73 doi: 10.1021/jp408585z – ident: ref86/cit86 doi: 10.1038/ncomms14548 – ident: ref96/cit96 doi: 10.1021/ja413147e – ident: ref8/cit8 doi: 10.1039/C9EE01202H – ident: ref28/cit28 doi: 10.1021/acsnano.8b00693 – ident: ref88/cit88 doi: 10.1002/anie.201407031 – ident: ref72/cit72 doi: 10.1021/jz301414z – ident: ref15/cit15 doi: 10.1038/s41929-018-0203-5 – ident: ref80/cit80 doi: 10.1002/adfm.201808632 – ident: ref61/cit61 doi: 10.1063/1.1808484 – ident: ref60/cit60 doi: 10.1016/j.ejps.2018.02.012 – ident: ref70/cit70 doi: 10.1002/celc.201900880 – ident: ref33/cit33 doi: 10.1002/smll.201703514 – ident: ref52/cit52 doi: 10.1007/s12274-017-1783-0 – ident: ref12/cit12 doi: 10.1038/s41467-018-03429-z – ident: ref4/cit4 doi: 10.1002/adma.201805513 – ident: ref9/cit9 doi: 10.1021/cs401245q – ident: ref20/cit20 doi: 10.1002/aenm.201602122 – ident: ref82/cit82 doi: 10.1002/anie.201307543 – ident: ref23/cit23 doi: 10.1002/aenm.201600221 – ident: ref11/cit11 doi: 10.1002/aenm.201903120 – ident: ref34/cit34 doi: 10.1038/ncomms9625 – ident: ref77/cit77 doi: 10.1002/smll.201906766 – ident: ref64/cit64 doi: 10.1016/S0022-3093(98)00694-2 – ident: ref47/cit47 doi: 10.1021/acscatal.5b02369 – ident: ref79/cit79 doi: 10.1016/j.mtener.2019.02.004 – ident: ref32/cit32 doi: 10.1002/adma.202003414 – ident: ref25/cit25 doi: 10.1002/adma.201202920 – ident: ref92/cit92 doi: 10.1002/anie.201900167 – ident: ref35/cit35 doi: 10.1016/j.electacta.2010.11.062 – ident: ref16/cit16 doi: 10.1002/anie.201506727 – ident: ref24/cit24 doi: 10.1002/adma.201501884 – ident: ref44/cit44 doi: 10.1021/nn503760c – ident: ref7/cit7 doi: 10.1002/smll.201905779 – ident: ref76/cit76 doi: 10.1002/anie.201909939 – ident: ref53/cit53 doi: 10.1002/aenm.201701475 – ident: ref67/cit67 doi: 10.1038/s41929-018-0072-y – ident: ref17/cit17 doi: 10.1038/ncomms13638 |
SSID | ssj0002161944 |
Score | 2.5555296 |
SecondaryResourceType | review_article |
Snippet | Electrochemical water splitting has been regarded a promising technology to provide a mobile and sustainable energy supply in the form of hydrogen fuel. The... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 136 |
Title | Progress and Challenge of Amorphous Catalysts for Electrochemical Water Splitting |
URI | http://dx.doi.org/10.1021/acsmaterialslett.0c00502 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELaqssDAG1Fe8sCa0tiOH2MVtaqQQKCC6Bb5kS5Agkg6wMBv55ykVQXi0cVDpEucu4vv8_nyHULnPKIutdNeoGxEA6apCjSlJqBEasnBibSu2D6v-eieXU6iSQuRH07wSXihbQHYrTYHvErZ7VlPWgLL7hrhUvgNVz8eL_IqJPT7cn-YTDitGqippoDnt5v52GSLpdi0FGSGW_WPf0XFTehrSx67s9J07ft35sYV5r-NNhvMifu1k-ygVprtoo0lJsI9dHvj67Rg1cM6czied1jB-RT3n3OwRT4rcOxTPW9FWWBAunhQN9CxDeMAfvCPx2MAtVUp9T4aDwd38Shoui2AcSJWBoxLzaUyPQBIhlgijHRwgdhIsKmRVAoHUM9GJp2a0ClNmfTcgiEVTpmUHqB2lmfpIcLaRso4J6zWjgkjJBe90CoNA2dKyw4KQCdJ860USXUMTsLkq6KSRlEdJOZWSWxDXO77Zzz9QzJcSL7U5B1_yhytOLtjtE58mYvPyrAT1C5fZ-kp4JTSnFWOCePVx-AT-frqbw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhoxEB5Rcmh7aJMmUelP6kN7XMLa3rV96AHRIAgEtYIonLryz3JJAlV3UZW-UF4lj9XxslDEIUkPHHrZgyV7bc_Y_jwz_gbgYxwxl9pJI1A2YgHXTAWaMRMwKrWMUYm0Ltg-B3HnnJ-Oo3EFbpdvYbATGbaUFU78v-wC4TGWIYRbSAVHlNcb1nOX0DKespfe_MLbWva5-wVF-4nS9smo1QnKhAL4_4jnAY-ljqUyDcQAhloqjHRYQG0k-MRIJoVDNGMjk05M6JRmXHr6vJAJp0zKsNUnsIMIiPpbXrM1XBlzaOiNAd6DTWNWZG1TZdTQfV33B6LN1g7EtZOt_RLuVnNSBLRc1ue5qdvfG3SR_8Gk7cKLEl2T5mI57EElnb6C52uci_vw7auPSMP9neipI61lLhkym5Dm9Qy1bjbPSMsbtW6yPCOI6cnJIlWQLbkVyIUfLBkifC-Cxg9guIURHUJ1Opumr4FoGynjnLBaOy6MkLFohFZp_MRcaVmDACWQlLtClhQOfxomm2JJSrHUQCxVIbElRbvPFHL1iJrhquaPBU3Jg3Xe_GPvPsDTzuisn_S7g95beEZ9cI-3RfF3UM1_ztP3iM5yc1SsDALft6tTfwAs8Ei8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BlRAc2vJSoQ98gGOWje3E9oHDah-CghBoQXAi8iO5tN1FJCtE_xJ_hR_FOOtdrThAe-DAJQdLtsaesf15ZvINwE6aMJfbohkpm7CIa6YizZiJGJVapmhEWtdsnyfpwQX_eZVczcHD5F8YFKLEkco6iO939Y0rAsNAvIftCOPGmsFZVY2m9fwlNORUHuX3d_hiK_cPO6jeXUp73fP2QRSKCqAMCa8inkqdSmWaiAMMtVQY6bCB2kTwwkgmhUNEYxOTFyZ2SjMuPYVezIRTJmc46jx88LFC_9JrtftThw6NvUPAR7FpyurKbSpkDr0kur8UbTlzKc7cbr1P8Dhdlzqp5VdjVJmG_fuMMvKdLNxn-BhQNmmNt8UKzOWDVVie4V5cg7NTn5mG5zzRA0fak5oyZFiQ1p8hWt9wVJK2d27dl1VJENuT7rhkkA0cC-TST5b0EcbXyePr0H-DGW3AwmA4yL8A0TZRxjlhtXZcGCFT0Yyt0vhJudJyEyLUQBZOhzKrA_80zp6rJQtq2QQxMYfMBqp2XzHk9z_0jKc9b8Z0Ja_22fpP6bZh8bTTy44PT46-whL1OT7eJcW_wUJ1O8q_I0irzI96cxC4fluTegLpZEs_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+and+Challenge+of+Amorphous+Catalysts+for+Electrochemical+Water+Splitting&rft.jtitle=ACS+materials+letters&rft.au=Zhou%2C+Yao&rft.au=Fan%2C+Hong+Jin&rft.date=2021-01-04&rft.issn=2639-4979&rft.eissn=2639-4979&rft.volume=3&rft.issue=1&rft.spage=136&rft.epage=147&rft_id=info:doi/10.1021%2Facsmaterialslett.0c00502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsmaterialslett_0c00502 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-4979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-4979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-4979&client=summon |