Highly Effective Near-Infrared Activating Triplet–Triplet Annihilation Upconversion for Photoredox Catalysis
Organic triplet–triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. I...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 43; pp. 18460 - 18470 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
28.10.2020
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic triplet–triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T1) and singlet excited state energy (S1), two key annihilator factors to determine TTA-UC performance. Via this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 μM), the upconversion efficiency using the optimal annihilator (100 μM) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm2, 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials. |
---|---|
AbstractList | Organic triplet-triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T-1) and singlet excited state energy (S-1), two key annihilator factors to determine TTA-UC performance. Via this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 mu M), the upconversion efficiency using the optimal annihilator (100 mu M) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm(2), 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials. Organic triplet-triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T1) and singlet excited state energy (S1), two key annihilator factors to determine TTA-UC performance. Via this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 μM), the upconversion efficiency using the optimal annihilator (100 μM) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm2, 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials.Organic triplet-triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T1) and singlet excited state energy (S1), two key annihilator factors to determine TTA-UC performance. Via this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 μM), the upconversion efficiency using the optimal annihilator (100 μM) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm2, 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials. Organic triplet–triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T1) and singlet excited state energy (S1), two key annihilator factors to determine TTA-UC performance. Via this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 μM), the upconversion efficiency using the optimal annihilator (100 μM) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm2, 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials. Organic triplet–triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T₁) and singlet excited state energy (S₁), two key annihilator factors to determine TTA-UC performance. Via this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 μM), the upconversion efficiency using the optimal annihilator (100 μM) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm², 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials. Organic triplet-triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T ) and singlet excited state energy (S ), two key annihilator factors to determine TTA-UC performance. this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 μM), the upconversion efficiency using the optimal annihilator (100 μM) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm , 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials. |
Author | Wu, Wenting Han, Gang Zeng, Le Huang, Ling Lin, Wenhai Li, Yang Huang, Kai |
AuthorAffiliation | State Key Laboratory of Heavy Oil Processing School of Chemical Engineering Department of Biochemistry and Molecular Pharmacology |
AuthorAffiliation_xml | – name: State Key Laboratory of Heavy Oil Processing School of Chemical Engineering – name: Department of Biochemistry and Molecular Pharmacology |
Author_xml | – sequence: 1 givenname: Ling surname: Huang fullname: Huang, Ling organization: Department of Biochemistry and Molecular Pharmacology – sequence: 2 givenname: Wenting orcidid: 0000-0002-8380-7904 surname: Wu fullname: Wu, Wenting organization: State Key Laboratory of Heavy Oil Processing School of Chemical Engineering – sequence: 3 givenname: Yang orcidid: 0000-0002-9544-5840 surname: Li fullname: Li, Yang organization: Department of Biochemistry and Molecular Pharmacology – sequence: 4 givenname: Kai surname: Huang fullname: Huang, Kai organization: Department of Biochemistry and Molecular Pharmacology – sequence: 5 givenname: Le surname: Zeng fullname: Zeng, Le organization: Department of Biochemistry and Molecular Pharmacology – sequence: 6 givenname: Wenhai surname: Lin fullname: Lin, Wenhai organization: Department of Biochemistry and Molecular Pharmacology – sequence: 7 givenname: Gang orcidid: 0000-0002-2300-5862 surname: Han fullname: Han, Gang email: Gang.Han@umassmed.edu organization: Department of Biochemistry and Molecular Pharmacology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33074671$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksFu1DAQhi1URLeFG2eUIxKkjO3YTo6rqKWVKuDQniOvY3e9ytqL7RT2xjv0DXkSHDb0gEBwsmf8_WPpn_8EHTnvNEIvMZxhIPjdRqp4Bgp4I_gTtMCMQMkw4UdoAQCkFDWnx-gkxk0uK1LjZ-iYUhAVF3iB3KW9Ww_74twYrZK918UHLUN55UyQQffFcmrKZN1dcRPsbtDp-7eH-VYsnbNrO-Rn74rbnfLuXoc4FcaH4tPaJ59n-K9FK5Mc9tHG5-ipkUPUL-bzFN1enN-0l-X1x_dX7fK6lJTRVPbQkGYlGJYrkD1wQZhmVUUxyAakobXpBYaeG1UzBYw0BnNOCKtlL1cEC3qKXh_m7oL_POqYuq2NSg-DdNqPsSOMVETgBqp_o1VmmwZondFXMzqutrrvdsFuZdh3v-zMQH0AvuiVN1FZ7ZR-xLL_rCZcUDYtBlqbfjrX-tGlLH3z_9JMvz3QKvgYgzaPJIZuikU3xaKbY5Fx8huu5s9TkHb4m2g2Zmpu_Bhc3tif0R8l88es |
CitedBy_id | crossref_primary_10_1002_adfm_202422197 crossref_primary_10_1002_ange_202312600 crossref_primary_10_1038_s41467_022_29981_3 crossref_primary_10_1002_slct_202103851 crossref_primary_10_1016_j_jphotochemrev_2023_100618 crossref_primary_10_1002_ange_202311470 crossref_primary_10_1021_jacs_4c00936 crossref_primary_10_1021_acsnano_3c08915 crossref_primary_10_1021_acsnano_1c07241 crossref_primary_10_1039_D2DT01491B crossref_primary_10_1002_adom_202301879 crossref_primary_10_1021_jacs_4c14303 crossref_primary_10_1002_cssc_202401174 crossref_primary_10_1021_acs_jpca_4c05052 crossref_primary_10_1016_j_jcat_2024_115907 crossref_primary_10_1002_chem_202302520 crossref_primary_10_1002_ange_202113190 crossref_primary_10_1002_anie_202303093 crossref_primary_10_1016_j_ijbiomac_2024_130612 crossref_primary_10_1039_D4SC07004F crossref_primary_10_1063_5_0112032 crossref_primary_10_1016_j_cogsc_2023_100841 crossref_primary_10_1021_acs_nanolett_4c02529 crossref_primary_10_1021_acs_inorgchem_1c02846 crossref_primary_10_1021_acs_chemmater_3c01814 crossref_primary_10_1002_ange_202411003 crossref_primary_10_1021_acsaom_4c00285 crossref_primary_10_1002_cptc_202200128 crossref_primary_10_1021_jacs_2c09543 crossref_primary_10_1021_jacs_5c00686 crossref_primary_10_1002_anie_202215340 crossref_primary_10_1021_jacs_4c04997 crossref_primary_10_1364_OE_519313 crossref_primary_10_1039_D3QM00495C crossref_primary_10_1038_s41566_023_01156_6 crossref_primary_10_1002_anie_202311470 crossref_primary_10_1016_j_dyepig_2021_109754 crossref_primary_10_1021_jacs_4c06012 crossref_primary_10_1021_acs_orglett_4c03087 crossref_primary_10_1021_acs_jpclett_1c02717 crossref_primary_10_1039_D2SC05229F crossref_primary_10_1021_acs_nanolett_5c00117 crossref_primary_10_1021_acs_chemrev_1c00772 crossref_primary_10_1038_s41467_023_36679_7 crossref_primary_10_1002_anie_202312600 crossref_primary_10_1016_j_cej_2021_131282 crossref_primary_10_3390_molecules29102203 crossref_primary_10_1016_j_cclet_2022_05_029 crossref_primary_10_1002_adom_202301134 crossref_primary_10_1016_j_addr_2022_114479 crossref_primary_10_1039_D1SC04570A crossref_primary_10_1038_s41570_024_00585_3 crossref_primary_10_1002_ange_202312618 crossref_primary_10_1002_anie_202113190 crossref_primary_10_1021_acs_jpcb_3c04660 crossref_primary_10_1039_D1QO01476E crossref_primary_10_1021_acs_chemrev_1c00648 crossref_primary_10_1002_ange_202303093 crossref_primary_10_1002_adma_202307759 crossref_primary_10_1002_anie_202312618 crossref_primary_10_1007_s41664_023_00264_0 crossref_primary_10_1016_j_ccr_2024_215868 crossref_primary_10_3390_molecules28145474 crossref_primary_10_1021_jacs_4c16922 crossref_primary_10_1038_s41467_024_46541_z crossref_primary_10_1002_ange_202215340 crossref_primary_10_1039_D1TC00296A crossref_primary_10_1021_acsaom_4c00016 crossref_primary_10_1002_cptc_202400184 crossref_primary_10_1039_D4CS00571F crossref_primary_10_1039_D1SC00998B crossref_primary_10_1021_acsnano_3c00543 crossref_primary_10_1021_acs_accounts_2c00307 crossref_primary_10_1021_acs_langmuir_4c01297 crossref_primary_10_1021_jacs_3c02417 crossref_primary_10_1039_D1TC03551G crossref_primary_10_1002_adfm_202103908 crossref_primary_10_1021_acs_accounts_3c00184 crossref_primary_10_1021_jacs_1c00298 crossref_primary_10_1021_jacs_1c00331 crossref_primary_10_1021_jacs_0c12805 crossref_primary_10_1039_D3SC04580C crossref_primary_10_3390_ijms23148041 crossref_primary_10_1039_D3OB00107E crossref_primary_10_1039_D1SC04330G crossref_primary_10_1016_j_chempr_2021_10_010 crossref_primary_10_1021_acs_nanolett_5c00169 crossref_primary_10_1021_acsami_4c00990 crossref_primary_10_1039_D2CC03155H crossref_primary_10_1021_jacs_4c14248 crossref_primary_10_1039_D1TC01569A crossref_primary_10_1016_j_matlet_2022_132405 crossref_primary_10_1021_acs_inorgchem_1c01848 crossref_primary_10_1002_adom_202102180 crossref_primary_10_1021_acscatal_3c05441 crossref_primary_10_1016_j_chphma_2024_01_001 crossref_primary_10_1039_D1SC02085D crossref_primary_10_1016_j_dyepig_2023_111392 crossref_primary_10_1039_D3NR05265F crossref_primary_10_1063_5_0185259 crossref_primary_10_1063_5_0223478 crossref_primary_10_1002_adma_202301563 crossref_primary_10_1021_jacs_1c13222 crossref_primary_10_1002_anie_202411003 crossref_primary_10_1016_j_cjche_2025_02_005 crossref_primary_10_1021_jacs_2c12244 crossref_primary_10_1039_D2CC04707A crossref_primary_10_1021_acs_inorgchem_3c03610 crossref_primary_10_1016_j_checat_2024_100973 crossref_primary_10_1021_acsnano_4c03753 crossref_primary_10_1021_acs_orglett_3c04312 crossref_primary_10_1016_j_cej_2021_133377 crossref_primary_10_1002_cssc_202401786 crossref_primary_10_1021_acsphyschemau_3c00062 crossref_primary_10_1002_advs_202302631 crossref_primary_10_1039_D2CP04532J crossref_primary_10_1002_cptc_202400052 crossref_primary_10_3389_fbioe_2022_920162 |
Cites_doi | 10.1038/nature25175 10.1016/S1011-1344(00)00082-8 10.1088/1367-2630/10/1/013007 10.1039/b912178a 10.1039/C9TA02780G 10.1016/j.dyepig.2016.09.057 10.1038/s41570-018-0057-z 10.1021/jacs.7b07302 10.1002/adfm.201670304 10.1039/C4CP00744A 10.1038/s41557-020-0430-7 10.1039/C4RA03919J 10.1021/acs.accounts.7b00235 10.1038/nature21366 10.1002/anie.201608442 10.1002/anie.201911025 10.1039/c3cs35531d 10.1038/s41586-018-0835-2 10.1021/j100309a012 10.1021/cm070536k 10.1039/C4CS00155A 10.1021/ja405170j 10.1016/j.tetlet.2015.03.107 10.1021/nn505051d 10.1039/C4EE02481H 10.1016/j.biomaterials.2019.02.008 10.1021/jp0354705 10.1002/anie.201915762 10.1126/science.aad6378 10.1002/anie.200700414 10.1021/cr400478f 10.1039/c1ra00469g 10.1063/1.555770 10.1002/chem.201302492 10.1021/ja411316s 10.1002/smll.201904107 10.1002/anie.201107028 10.1039/C7NR01836C 10.1038/nnano.2009.326 10.1126/science.aaf3935 10.1039/C6CS00415F 10.1021/jo402718e 10.1021/acs.chemrev.5b00091 10.1039/C7CP03840B 10.1039/c3cc44479a 10.1021/jacs.9b05824 10.1021/cs300808r 10.1002/adom.201902157 10.1021/acsnano.5b06383 10.1002/smtd.201700370 10.1021/jo051580r 10.1039/C6CS00092D 10.1002/anie.201704430 10.1038/nphoton.2015.226 10.1039/tf9716701904 10.1021/acsenergylett.0c01150 10.1039/C7TC00827A 10.1039/C5TC02626A 10.1038/nchem.2906 10.1021/cr5007057 10.1021/jacs.6b04692 10.1039/C4CS00170B 10.1002/bio.2932 10.1021/ja5115248 10.1039/D0CC02240C 10.1039/C6EE03702J 10.1002/chem.200801305 10.1126/science.aav9713 10.1038/s41570-017-0077 10.1073/pnas.0904792106 10.1126/science.aaq1144 10.1038/s41566-019-0528-x 10.1021/jacs.8b11796 10.1039/C5CS00364D 10.1021/acs.accounts.9b00097 10.1021/jacs.7b02063 10.1021/ja105510k 10.1021/acsmaterialslett.9b00287 10.1039/C9TC06031F 10.1039/c4cs00170b 10.1039/c7tc00827a 10.1039/c6cs00415f 10.1002/adfm.201603303 10.1039/c6cs00092d 10.1039/c4cp00744a 10.1039/c4ra03919j 10.1039/c6ee03702j 10.1039/c9tc06031f 10.1039/c9ta02780g 10.1039/c5cs00364d 10.1038/NCHEM.2906 10.1039/d0cc02240c 10.1039/c7cp03840b 10.1038/NPHOTON.2015.226 10.1039/c4ee02481h 10.1039/c5tc02626a 10.1039/c4cs00155a 10.1039/c7nr01836c |
ContentType | Journal Article |
Copyright | 2020 American Chemical
Society |
Copyright_xml | – notice: 2020 American Chemical Society |
DBID | AAYXX CITATION 17B 1KM AOWDO BLEPL DTL EGQ NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.0c06976 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2020 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Web of Science PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Web of Science MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 18470 |
ExternalDocumentID | 33074671 000582673500020 10_1021_jacs_0c06976 a414005605 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: University of Massachusetts-Medical School |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH2 IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK XSW YQT ZCA ~02 17B 1KM AAYWT BLEPL DTL GROUPED_WOS_WEB_OF_SCIENCE NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a353t-d0929b751ab0ad06725e544310a90af38fd710d6fc85c0529f1662258adab2173 |
IEDL.DBID | ACS |
ISICitedReferencesCount | 126 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000582673500020 |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 02:15:30 EDT 2025 Thu Jul 10 22:46:00 EDT 2025 Thu Apr 03 07:04:39 EDT 2025 Fri Aug 29 15:51:42 EDT 2025 Wed Aug 06 07:35:14 EDT 2025 Tue Jul 01 00:44:33 EDT 2025 Thu Apr 24 22:56:34 EDT 2025 Fri Oct 30 04:40:53 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Keywords | RED LUMINESCENT MATERIALS NANOPARTICLES EXCITED-STATE LIGHT PHOTOSENSITIZERS SENSITIZERS BIOLOGICAL APPLICATIONS ARYLBORONIC ACIDS SINGLET |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-a353t-d0929b751ab0ad06725e544310a90af38fd710d6fc85c0529f1662258adab2173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2300-5862 0000-0002-8380-7904 0000-0002-9544-5840 0000-0003-4928-8183 |
PMID | 33074671 |
PQID | 2452499038 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1021_jacs_0c06976 pubmed_primary_33074671 acs_journals_10_1021_jacs_0c06976 webofscience_primary_000582673500020CitationCount webofscience_primary_000582673500020 proquest_miscellaneous_2524271904 crossref_citationtrail_10_1021_jacs_0c06976 proquest_miscellaneous_2452499038 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-28 |
PublicationDateYYYYMMDD | 2020-10-28 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | WASHINGTON |
PublicationPlace_xml | – name: WASHINGTON – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAbbrev | J AM CHEM SOC |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society Amer Chemical Soc |
Publisher_xml | – name: American Chemical Society – name: Amer Chemical Soc |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 Wei, YX (WOS:000408257700015) 2017; 19 FORD, WE (WOS:A1987L287200012) 1987; 91 Kwon, TH (WOS:000248073300019) 2007; 19 Ramasamy, P (WOS:000341287700020) 2014; 4 Theriot, JC (WOS:000376480800034) 2016; 352 Zhang, CS (WOS:000322103000069) 2013; 135 Zhao, JZ (WOS:000295920900001) 2011; 1 Peng, JJ (WOS:000349807000035) 2015; 137 Plesniak, MP (WOS:000415244400003) 2017; 1 Huang, L (WOS:000444545900005) 2018; 2 Wu, X (WOS:000369115800115) 2016; 10 Chen, S (WOS:000425117700039) 2018; 359 Lin, YHL (WOS:000403320300016) 2017; 10 Dong, H (WOS:000363002300008) 2015; 115 Wang, ZJ (WOS:000403631200030) 2017; 139 Belay, A (WOS:000368138000017) 2016; 31 Wang, L (WOS:000487482000001) 2021; 17 Yanai, N (WOS:000413392000009) 2017; 50 Lu, Y (WOS:000388252700034) 2016; 55 Liu, YJ (WOS:000395688700036) 2017; 543 Duan, PF (WOS:000329137300003) 2013; 135 Wu, SW (WOS:000267796100011) 2009; 106 Hossain, A (WOS:000466809600022) 2019; 364 Glaser, F (WOS:000524308600001) 2020; 59 Finikova, OS (WOS:000233209400057) 2005; 70 Maiti, B (WOS:000476568400013) 2019; 52 Punjabi, A (WOS:000343952600098) 2014; 8 Zhou, Y (WOS:000552668000026) 2020; 5 Paul, A (WOS:000353751000027) 2015; 56 Mongin, C (WOS:000423144000020) 2018; 10 Gulzar, A (WOS:000409215300003) 2017; 9 Schulze, TF (WOS:000346563600007) 2015; 8 Huang, L (WOS:000462418700007) 2019; 201 Wei, YX (WOS:000516836300001) 2020; 8 Wu, MF (WOS:000367200400010) 2016; 10 Sasaki, Y (WOS:000402872400004) 2017; 5 Zhao, JZ (WOS:000319527400030) 2013; 42 Peng, HQ (WOS:000359613600009) 2015; 115 Filatov, MA (WOS:000382023500003) 2016; 45 Huang, L (WOS:000327889800029) 2013; 19 Zhao, JZ (WOS:000365530400010) 2015; 44 Sasaki, Y (WOS:000491799500001) 2019; 58 Zou, YQ (WOS:000299034200037) 2012; 51 Zhong, FF (WOS:000387837200110) 2017; 136 Singh-Rachford, TN (WOS:000282660100058) 2010; 132 Pun, AB (WOS:000460996500005) 2019; 141 BENSASSON, R (WOS:A1971K565600006) 1971; 67 Radiunas, E (WOS:000547201400021) 2020; 8 Mongin, C (WOS:000368440500036) 2016; 351 Haruki, R (WOS:000542898200021) 2020; 56 Suzuki, K (WOS:000271033200029) 2009; 11 Fan, CY (WOS:000488322500020) 2019; 141 Wang, L (WOS:000470928800018) 2019; 7 Gray, V (WOS:000336781500008) 2014; 16 Stolik, S (WOS:000165876900002) 2000; 57 Smith, AM (WOS:000272413500010) 2009; 4 Silvi, M (WOS:000424048900028) 2018; 554 Zhu, XJ (WOS:000395875500001) 2017; 46 Baluschev, S (WOS:000253083900007) 2008; 10 Yang, DM (WOS:000351244800007) 2015; 44 Yakutkin, V (WOS:000261074800005) 2008; 14 Nishimura, N (WOS:000519825700011) 2019; 1 Chen, GY (WOS:000351244800017) 2015; 44 Mattiello, S (WOS:000390117800009) 2016; 26 Ravetz, BD (WOS:000455781600038) 2019; 565 Tang, YN (WOS:000315707700017) 2013; 3 Baluschev, S (WOS:000250249300035) 2007; 46 Amemori, S (WOS:000380295600011) 2016; 138 Wen, SH (WOS:000498865600007) 2019; 13 Cui, XN (WOS:000332756500017) 2014; 79 Deng, F (WOS:000322343100012) 2013; 49 Zhang, Y (WOS:000519841500004) 2020; 12 Askes, SHC (WOS:000452215000007) 2018; 2 Gray, V (WOS:000363663100020) 2015; 3 Huang, L (WOS:000414764600007) 2017; 56 Rogers, JE (WOS:000187446900009) 2003; 107 Zhou, J (WOS:000348093800009) 2015; 115 CARMICHAEL, I (WOS:A1986C107500001) 1986; 15 Li, YF (WOS:000412716900041) 2017; 139 |
References_xml | – ident: ref51/cit51 doi: 10.1038/nature25175 – ident: ref54/cit54 doi: 10.1016/S1011-1344(00)00082-8 – ident: ref47/cit47 doi: 10.1088/1367-2630/10/1/013007 – ident: ref69/cit69 doi: 10.1039/b912178a – ident: ref57/cit57 doi: 10.1039/C9TA02780G – ident: ref73/cit73 doi: 10.1016/j.dyepig.2016.09.057 – ident: ref22/cit22 doi: 10.1038/s41570-018-0057-z – ident: ref5/cit5 doi: 10.1021/jacs.7b07302 – ident: ref74/cit74 doi: 10.1002/adfm.201670304 – ident: ref10/cit10 doi: 10.1039/C4CP00744A – ident: ref65/cit65 doi: 10.1038/s41557-020-0430-7 – ident: ref9/cit9 doi: 10.1039/C4RA03919J – ident: ref35/cit35 doi: 10.1021/acs.accounts.7b00235 – ident: ref11/cit11 doi: 10.1038/nature21366 – ident: ref34/cit34 doi: 10.1002/anie.201608442 – ident: ref40/cit40 doi: 10.1002/anie.201911025 – ident: ref26/cit26 doi: 10.1039/c3cs35531d – ident: ref4/cit4 doi: 10.1038/s41586-018-0835-2 – ident: ref68/cit68 doi: 10.1021/j100309a012 – ident: ref75/cit75 doi: 10.1021/cm070536k – ident: ref7/cit7 doi: 10.1039/C4CS00155A – ident: ref70/cit70 doi: 10.1021/ja405170j – ident: ref78/cit78 doi: 10.1016/j.tetlet.2015.03.107 – ident: ref6/cit6 doi: 10.1021/nn505051d – ident: ref3/cit3 doi: 10.1039/C4EE02481H – ident: ref23/cit23 doi: 10.1016/j.biomaterials.2019.02.008 – ident: ref63/cit63 doi: 10.1021/jp0354705 – ident: ref59/cit59 doi: 10.1002/anie.201915762 – ident: ref18/cit18 doi: 10.1126/science.aad6378 – ident: ref46/cit46 doi: 10.1002/anie.200700414 – ident: ref2/cit2 doi: 10.1021/cr400478f – ident: ref29/cit29 doi: 10.1039/c1ra00469g – ident: ref67/cit67 doi: 10.1063/1.555770 – ident: ref79/cit79 doi: 10.1002/chem.201302492 – ident: ref33/cit33 doi: 10.1021/ja411316s – ident: ref58/cit58 doi: 10.1002/smll.201904107 – ident: ref77/cit77 doi: 10.1002/anie.201107028 – ident: ref16/cit16 doi: 10.1039/C7NR01836C – ident: ref55/cit55 doi: 10.1038/nnano.2009.326 – ident: ref53/cit53 doi: 10.1126/science.aaf3935 – ident: ref28/cit28 doi: 10.1039/C6CS00415F – ident: ref61/cit61 doi: 10.1021/jo402718e – ident: ref1/cit1 doi: 10.1021/acs.chemrev.5b00091 – ident: ref72/cit72 doi: 10.1039/C7CP03840B – ident: ref36/cit36 doi: 10.1039/c3cc44479a – ident: ref32/cit32 doi: 10.1021/jacs.9b05824 – ident: ref56/cit56 doi: 10.1021/cs300808r – ident: ref45/cit45 doi: 10.1002/adom.201902157 – ident: ref15/cit15 doi: 10.1021/acsnano.5b06383 – ident: ref25/cit25 doi: 10.1002/smtd.201700370 – ident: ref62/cit62 doi: 10.1021/jo051580r – ident: ref30/cit30 doi: 10.1039/C6CS00092D – ident: ref21/cit21 doi: 10.1002/anie.201704430 – ident: ref20/cit20 doi: 10.1038/nphoton.2015.226 – ident: ref66/cit66 doi: 10.1039/tf9716701904 – ident: ref76/cit76 doi: 10.1021/acsenergylett.0c01150 – ident: ref39/cit39 doi: 10.1039/C7TC00827A – ident: ref71/cit71 doi: 10.1039/C5TC02626A – ident: ref19/cit19 doi: 10.1038/nchem.2906 – ident: ref24/cit24 doi: 10.1021/cr5007057 – ident: ref38/cit38 doi: 10.1021/jacs.6b04692 – ident: ref17/cit17 doi: 10.1039/C4CS00170B – ident: ref64/cit64 doi: 10.1002/bio.2932 – ident: ref13/cit13 doi: 10.1021/ja5115248 – ident: ref41/cit41 doi: 10.1039/D0CC02240C – ident: ref8/cit8 doi: 10.1039/C6EE03702J – ident: ref48/cit48 doi: 10.1002/chem.200801305 – ident: ref50/cit50 doi: 10.1126/science.aav9713 – ident: ref52/cit52 doi: 10.1038/s41570-017-0077 – ident: ref12/cit12 doi: 10.1073/pnas.0904792106 – ident: ref14/cit14 doi: 10.1126/science.aaq1144 – ident: ref49/cit49 doi: 10.1038/s41566-019-0528-x – ident: ref42/cit42 doi: 10.1021/jacs.8b11796 – ident: ref27/cit27 doi: 10.1039/C5CS00364D – ident: ref60/cit60 doi: 10.1021/acs.accounts.9b00097 – ident: ref31/cit31 doi: 10.1021/jacs.7b02063 – ident: ref37/cit37 doi: 10.1021/ja105510k – ident: ref44/cit44 doi: 10.1021/acsmaterialslett.9b00287 – ident: ref43/cit43 doi: 10.1039/C9TC06031F – volume: 3 start-page: 405 year: 2013 ident: WOS:000315707700017 article-title: NIR-Responsive Photocatalytic Activity and Mechanism of NaYF4:Yb,Tm@TiO2 Core-Shell Nanoparticles publication-title: ACS CATALYSIS doi: 10.1021/cs300808r – volume: 44 start-page: 1680 year: 2015 ident: WOS:000351244800017 article-title: Light upconverting core-shell nanostructures: nanophotonic control for emerging applications publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c4cs00170b – volume: 5 start-page: 5063 year: 2017 ident: WOS:000402872400004 article-title: Near infrared-to-blue photon upconversion by exploiting direct S-T absorption of a molecular sensitizer publication-title: JOURNAL OF MATERIALS CHEMISTRY C doi: 10.1039/c7tc00827a – volume: 46 start-page: 1025 year: 2017 ident: WOS:000395875500001 article-title: Anti-Stokes shift luminescent materials for bio-applications publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c6cs00415f – volume: 51 start-page: 784 year: 2012 ident: WOS:000299034200037 article-title: Highly Efficient Aerobic Oxidative Hydroxylation of Arylboronic Acids: Photoredox Catalysis Using Visible Light publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201107028 – volume: 26 start-page: 8447 year: 2016 ident: WOS:000390117800009 article-title: Self-Assembled Dual Dye-Doped Nanosized Micelles for High-Contrast Up-Conversion Bioimaging publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201603303 – volume: 543 start-page: 229 year: 2017 ident: WOS:000395688700036 article-title: Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy publication-title: NATURE doi: 10.1038/nature21366 – volume: 115 start-page: 395 year: 2015 ident: WOS:000348093800009 article-title: Upconversion Luminescent Materials: Advances and Applications publication-title: CHEMICAL REVIEWS – volume: 2 start-page: ARTN 1700370 year: 2018 ident: WOS:000444545900005 article-title: Near Infrared Boron Dipyrromethene Nanoparticles for Optotheranostics publication-title: SMALL METHODS doi: 10.1002/smtd.201700370 – volume: 351 start-page: 369 year: 2016 ident: WOS:000368440500036 article-title: Direct observation of triplet energy transfer from semiconductor nanocrystals publication-title: SCIENCE doi: 10.1126/science.aad6378 – volume: 19 start-page: 17472 year: 2013 ident: WOS:000327889800029 article-title: Energy-Funneling-Based Broadband Visible-Light-Absorbing Bodipy-C-60 Triads and Tetrads as Dual Functional Heavy-Atom-Free Organic Triplet Photosensitizers for Photocatalytic Organic Reactions publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201302492 – volume: 49 start-page: 7406 year: 2013 ident: WOS:000322343100012 article-title: Near-IR phosphorescent metalloporphyrin as a photochemical upconversion sensitizer publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c3cc44479a – volume: 17 start-page: ARTN 1904107 year: 2021 ident: WOS:000487482000001 article-title: Near-Infrared-Driven Photocatalysts: Design, Construction, and Applications publication-title: SMALL doi: 10.1002/smll.201904107 – volume: 45 start-page: 4668 year: 2016 ident: WOS:000382023500003 article-title: Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c6cs00092d – volume: 8 start-page: 10621 year: 2014 ident: WOS:000343952600098 article-title: Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy publication-title: ACS NANO doi: 10.1021/nn505051d – volume: 10 start-page: 1060 year: 2016 ident: WOS:000369115800115 article-title: Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications publication-title: ACS NANO doi: 10.1021/acsnano.5b06383 – volume: 16 start-page: 10345 year: 2014 ident: WOS:000336781500008 article-title: Triplet-triplet annihilation photon-upconversion: towards solar energy applications publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS doi: 10.1039/c4cp00744a – volume: 4 start-page: 34873 year: 2014 ident: WOS:000341287700020 article-title: Upconversion nanophosphors for solar cell applications publication-title: RSC ADVANCES doi: 10.1039/c4ra03919j – volume: 107 start-page: 11331 year: 2003 ident: WOS:000187446900009 article-title: Observation and interpretation of annulated porphyrins: Studies on the photophysical properties of meso-tetraphenylmetalloporphyrins publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/jp0354705 – volume: 10 start-page: 1465 year: 2017 ident: WOS:000403320300016 article-title: Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet-triplet annihilation publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/c6ee03702j – volume: 8 start-page: 5525 year: 2020 ident: WOS:000547201400021 article-title: Understanding the limitations of NIR-to-visible photon upconversion in phthalocyanine-sensitized rubrene systems publication-title: JOURNAL OF MATERIALS CHEMISTRY C doi: 10.1039/c9tc06031f – volume: 91 start-page: 6373 year: 1987 ident: WOS:A1987L287200012 article-title: PHOTOCHEMISTRY OF 3,4,9,10-PERYLENETETRACARBOXYLIC DIANHYDRIDE DYES .3. SINGLET AND TRIPLET EXCITED-STATE PROPERTIES OF THE BIS(2,5-DI-TERT-BUTYLPHENYL)IMIDE DERIVATIVE publication-title: JOURNAL OF PHYSICAL CHEMISTRY – volume: 137 start-page: 2336 year: 2015 ident: WOS:000349807000035 article-title: High-Efficiency in Vitro and in Vivo Detection of Zn2+ by Dye-Assembled Upconversion Nanoparticles publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja5115248 – volume: 565 start-page: 343 year: 2019 ident: WOS:000455781600038 article-title: Photoredox catalysis using infrared light via triplet fusion upconversion publication-title: NATURE doi: 10.1038/s41586-018-0835-2 – volume: 554 start-page: 40 year: 2018 ident: WOS:000424048900028 article-title: Enhancing the potential of enantioselective organocatalysis with light publication-title: NATURE doi: 10.1038/nature25175 – volume: 7 start-page: 13629 year: 2019 ident: WOS:000470928800018 article-title: Boosting NIR-driven photocatalytic water splitting by constructing 2D/3D epitaxial heterostructures publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/c9ta02780g – volume: 44 start-page: 8904 year: 2015 ident: WOS:000365530400010 article-title: The triplet excited state of Bodipy: formation, modulation and application publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c5cs00364d – volume: 135 start-page: 10566 year: 2013 ident: WOS:000322103000069 article-title: Intramolecular RET Enhanced Visible Light-Absorbing Bodipy Organic Triplet Photosensitizers and Application in Photooxidation and Triplet-Triplet Annihilation Upconversion publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja405170j – volume: 57 start-page: 90 year: 2000 ident: WOS:000165876900002 article-title: Measurement of the penetration depths of red and near infrared light in human "ex vivo" tissues publication-title: JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY – volume: 58 start-page: 17827 year: 2019 ident: WOS:000491799500001 article-title: Near-Infrared Optogenetic Genome Engineering Based on Photon-Upconversion Hydrogels publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201911025 – volume: 70 start-page: 9562 year: 2005 ident: WOS:000233209400057 article-title: Synthesis and luminescence of soluble meso-unsubstituted tetrabenzo- and tetranaphtho[2,3]porphyrins publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo051580r – volume: 138 start-page: 8702 year: 2016 ident: WOS:000380295600011 article-title: Near-Infrared-to-Visible Photon Upconversion Sensitized by a Metal Complex with Spin-Forbidden yet Strong S-0-T-1 Absorption publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b04692 – volume: 59 start-page: 10266 year: 2020 ident: WOS:000524308600001 article-title: Multi-Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201915762 – volume: 10 start-page: 225 year: 2018 ident: WOS:000423144000020 article-title: Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.2906 – volume: 115 start-page: 10725 year: 2015 ident: WOS:000363002300008 article-title: Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.5b00091 – volume: 56 start-page: 14400 year: 2017 ident: WOS:000414764600007 article-title: Expanding Anti-Stokes Shifting in Triplet-Triplet Annihilation Upconversion for In Vivo Anticancer Prodrug Activation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201704430 – volume: 136 start-page: 909 year: 2017 ident: WOS:000387837200110 article-title: Phenyleneanthracene derivatives as triplet energy acceptor/emitter in red light excitable triplet-triplet-annihilation upconversion publication-title: DYES AND PIGMENTS doi: 10.1016/j.dyepig.2016.09.057 – volume: 56 start-page: 7017 year: 2020 ident: WOS:000542898200021 article-title: Leaping across the visible range: near-infrared-to-violet photon upconversion employing a silyl-substituted anthracene publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/d0cc02240c – volume: 115 start-page: 7502 year: 2015 ident: WOS:000359613600009 article-title: Biological Applications of Supramolecular Assemblies Designed for Excitation Energy Transfer publication-title: CHEMICAL REVIEWS doi: 10.1021/cr5007057 – volume: 10 start-page: ARTN 013007 year: 2008 ident: WOS:000253083900007 article-title: A general approach for non-coherently excited annihilation up-conversion: transforming the solar-spectrum publication-title: NEW JOURNAL OF PHYSICS doi: 10.1088/1367-2630/10/1/013007 – volume: 2 start-page: 437 year: 2018 ident: WOS:000452215000007 article-title: Solving the oxygen sensitivity of sensitized photon upconversion in life science applications publication-title: NATURE REVIEWS CHEMISTRY doi: 10.1038/s41570-018-0057-z – volume: 67 start-page: 1904 year: 1971 ident: WOS:A1971K565600006 article-title: TRIPLET-TRIPLET EXTINCTION COEFFICIENTS VIA ENERGY TRANSFER publication-title: TRANSACTIONS OF THE FARADAY SOCIETY – volume: 19 start-page: 22049 year: 2017 ident: WOS:000408257700015 article-title: Triplet-triplet annihilation upconversion kinetics of C-60-Bodipy dyads as organic triplet photosensitizers publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS doi: 10.1039/c7cp03840b – volume: 352 start-page: 1082 year: 2016 ident: WOS:000376480800034 article-title: Organocatalyzed atom transfer radical polymerization driven by visible light publication-title: SCIENCE doi: 10.1126/science.aaf3935 – volume: 12 start-page: 345 year: 2020 ident: WOS:000519841500004 article-title: Delayed fluorescence from a zirconium(iv) photosensitizer with ligand-to-metal charge-transfer excited states publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-020-0430-7 – volume: 14 start-page: 9846 year: 2008 ident: WOS:000261074800005 article-title: Towards the IR Limit of the Triplet-Triplet Annihilation-Supported Up-Conversion: Tetraanthraporphyrin publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.200801305 – volume: 141 start-page: 15070 year: 2019 ident: WOS:000488322500020 article-title: Efficient Triplet-Triplet Annihilation Upconversion with an Anti-Stokes Shift of 1.08 eV Achieved by Chemically Tuning Sensitizers publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b05824 – volume: 55 start-page: 14688 year: 2016 ident: WOS:000388252700034 article-title: Iridium(III) Complexes Bearing Pyrene-Functionalized 1,10-Phenanthroline Ligands as Highly Efficient Sensitizers for Triplet-Triplet Annihilation Upconversion publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201608442 – volume: 10 start-page: 31 year: 2016 ident: WOS:000367200400010 article-title: Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals publication-title: NATURE PHOTONICS doi: 10.1038/NPHOTON.2015.226 – volume: 8 start-page: 103 year: 2015 ident: WOS:000346563600007 article-title: Photochemical upconversion: present status and prospects for its application to solar energy conversion publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/c4ee02481h – volume: 135 start-page: 19056 year: 2013 ident: WOS:000329137300003 article-title: Photon Upconverting Liquids: Matrix-Free Molecular Upconversion Systems Functioning in Air publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja411316s – volume: 46 start-page: 7693 year: 2007 ident: WOS:000250249300035 article-title: Blue-green up-conversion: Noncoherent excitation by NIR light publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200700414 – volume: 13 start-page: 828 year: 2019 ident: WOS:000498865600007 article-title: Future and challenges for hybrid upconversion nanosystems publication-title: NATURE PHOTONICS doi: 10.1038/s41566-019-0528-x – volume: 1 start-page: 937 year: 2011 ident: WOS:000295920900001 article-title: Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields publication-title: RSC ADVANCES doi: 10.1039/c1ra00469g – volume: 50 start-page: 2487 year: 2017 ident: WOS:000413392000009 article-title: New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.7b00235 – volume: 106 start-page: 10917 year: 2009 ident: WOS:000267796100011 article-title: Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.0904792106 – volume: 19 start-page: 3673 year: 2007 ident: WOS:000248073300019 article-title: Highly efficient light-harvesting system based on a phosphorescent acceptor coupled with dendrimer donors via singlet-singlet and triplet-triplet energy transfer publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/cm070536k – volume: 1 start-page: ARTN 0077 year: 2017 ident: WOS:000415244400003 article-title: Radical cascade reactions triggered by single electron transfer publication-title: NATURE REVIEWS CHEMISTRY doi: 10.1038/s41570-017-0077 – volume: 139 start-page: 7831 year: 2017 ident: WOS:000403631200030 article-title: Radical-Enhanced Intersystem Crossing in New Bodipy Derivatives and Application for Efficient Triplet-Triplet Annihilation Upconversion publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b02063 – volume: 359 start-page: 679 year: 2018 ident: WOS:000425117700039 article-title: Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics publication-title: SCIENCE doi: 10.1126/science.aaq1144 – volume: 52 start-page: 1865 year: 2019 ident: WOS:000476568400013 article-title: The Prospect of Photochemical Reactions in Confined Gel Media publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.9b00097 – volume: 1 start-page: 660 year: 2019 ident: WOS:000519825700011 article-title: Photon Upconversion from Near-Infrared to Blue Light with TIPS-Anthracene as an Efficient Triplet-Triplet Annihilator publication-title: ACS MATERIALS LETTERS doi: 10.1021/acsmaterialslett.9b00287 – volume: 132 start-page: 14203 year: 2010 ident: WOS:000282660100058 article-title: Supermolecular-Chromophore-Sensitized Near-Infrared-to-Visible Photon Upconversion publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja105510k – volume: 56 start-page: 2496 year: 2015 ident: WOS:000353751000027 article-title: Metal free visible light photoredox activation of PhI(OAc)(2) for the conversion of arylboronic acids to phenols publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2015.03.107 – volume: 3 start-page: 11111 year: 2015 ident: WOS:000363663100020 article-title: Photophysical characterization of the 9,10-disubstituted anthracene chromophore and its applications in triplet-triplet annihilation photon upconversion publication-title: JOURNAL OF MATERIALS CHEMISTRY C doi: 10.1039/c5tc02626a – volume: 31 start-page: 118 year: 2016 ident: WOS:000368138000017 article-title: Effects of solvent polarity on the absorption and fluorescence spectra of chlorogenic acid and caffeic acid compounds: determination of the dipole moments publication-title: LUMINESCENCE doi: 10.1002/bio.2932 – volume: 141 start-page: 3777 year: 2019 ident: WOS:000460996500005 article-title: Tunable Emission from Triplet Fusion Upconversion in Diketopyrrolopyrroles publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b11796 – volume: 11 start-page: 9850 year: 2009 ident: WOS:000271033200029 article-title: Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS doi: 10.1039/b912178a – volume: 364 start-page: 450 year: 2019 ident: WOS:000466809600022 article-title: ORGANIC CHEMISTRY Copper's rapid ascent in visible-light photoredox catalysis publication-title: SCIENCE doi: 10.1126/science.aav9713 – volume: 4 start-page: 710 year: 2009 ident: WOS:000272413500010 article-title: BIOIMAGING Second window for in vivo imaging publication-title: NATURE NANOTECHNOLOGY doi: 10.1038/nnano.2009.326 – volume: 139 start-page: 13804 year: 2017 ident: WOS:000412716900041 article-title: Heterodimers Made of Upconversion Nanoparticles and Metal-Organic Frameworks publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b07302 – volume: 44 start-page: 1416 year: 2015 ident: WOS:000351244800007 article-title: Current advances in lanthanide ion (Ln(3+))-based upconversion nanomaterials for drug delivery publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c4cs00155a – volume: 79 start-page: 2038 year: 2014 ident: WOS:000332756500017 article-title: Perylene-Derived Triplet Acceptors with Optimized Excited State Energy Levels for Triplet-Triplet Annihilation Assisted Upconversion publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo402718e – volume: 9 start-page: 12248 year: 2017 ident: WOS:000409215300003 article-title: Upconversion processes: versatile biological applications and biosafety publication-title: NANOSCALE doi: 10.1039/c7nr01836c – volume: 5 start-page: 2322 year: 2020 ident: WOS:000552668000026 article-title: On the Quantum Yield of Photon Upconversion via Triplet-Triplet Annihilation publication-title: ACS ENERGY LETTERS doi: 10.1021/acsenergylett.0c01150 – volume: 201 start-page: 77 year: 2019 ident: WOS:000462418700007 article-title: Designing next generation of photon upconversion: Recent advances in organic triplet-triplet annihilation upconversion nanoparticles publication-title: BIOMATERIALS doi: 10.1016/j.biomaterials.2019.02.008 – volume: 8 start-page: ARTN 1902157 year: 2020 ident: WOS:000516836300001 article-title: Simultaneously High Upconversion Efficiency and Large Anti-Stokes Shift by Using Os(II) Complex Dyad as Triplet Photosensitizer publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.201902157 – volume: 42 start-page: 5323 year: 2013 ident: WOS:000319527400030 article-title: Triplet photosensitizers: from molecular design to applications publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c3cs35531d – volume: 15 start-page: 1 year: 1986 ident: WOS:A1986C107500001 article-title: TRIPLET-TRIPLET ABSORPTION-SPECTRA OF ORGANIC-MOLECULES IN CONDENSED PHASES publication-title: JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA |
SSID | ssj0004281 |
Score | 2.6276999 |
Snippet | Organic triplet–triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and... Organic triplet-triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18460 |
SubjectTerms | Chemistry Chemistry, Multidisciplinary endothermy energy heat production light photocatalysis photosensitizing agents Physical Sciences redox reactions Science & Technology solar energy solar radiation wavelengths |
Title | Highly Effective Near-Infrared Activating Triplet–Triplet Annihilation Upconversion for Photoredox Catalysis |
URI | http://dx.doi.org/10.1021/jacs.0c06976 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000582673500020 https://www.ncbi.nlm.nih.gov/pubmed/33074671 https://www.proquest.com/docview/2452499038 https://www.proquest.com/docview/2524271904 |
Volume | 142 |
WOS | 000582673500020 |
WOSCitedRecordID | wos000582673500020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remgv9A3pS0aipyqrOI4T57iKSilSUaWyErfIceyCQF60m5WAU_9D_yG_hJk8lhZKyy2PSSKPx5lvHp4B2EoSnTuDlmqV5C7EEx0qh0BOcWNdpIySbZvOr3vpziTZPZAH1wmyNyP4MdUHMvNRhK9DxfkAHsapysjIGhffr_c_xooPMDdTqegT3G8-TQrIzP9UQLdQ5V8VUKtstp_A52HLTpdjcjxaNNXIXNyu4PifcTyFtR5vsnEnIM9gxfrn8KgY2ry9AE-ZHifnrCtjjP8-tofCH37xbka56WxsugZo_gfbn5FXvrn8-as_YmPvjw6PunQ6NjltU9hb_xtDLMy-HU7Rorf19IwV5CWi4icvYbL9ab_YCfsmDKEWUjRhHSGAqjLJdRXpmgK30lLNPB7pPNJOKFcjSKlTh9NqKGzoeJriT0LpWldo74hXsOqn3m4AU7kVaZ1F3GQ2kXmtZYyq0so8cZo7mQewiTwq-0U0L9v4eIz2CV3tORfAx2H2StNXMadmGid3UH9YUp921TvuoNscBKFE9lPMRHs7XcxLCkyjURgJ9Q8aJIkzRFZJAOudFC2_JkTb0IUHsPW7WC3vE2ZGCy8Tsg0KB8DvQ1b0I6e6Bc3re7DtDTyOyVGASjdWb2G1mS3sO0RTTfW-XUpX1gcZNA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JbtRAEC2FcAgX9sWsHSk5IUe22223DxxGhmiGJCMkZqTcTNvuJhGRJxp7BOHEP3DmV_gYvoSqtj2BQFAukbh5KbV7KbtedZVfAWyEoUpMgZ5qHibGxRPlSoNATvqFNp4spLBlOvfG0XAavt4X-yvwrf8XBjtRY0u1DeKfsgsQTRBe9LBVtJ9dDuWOPvmIHlr9YvQSl3MzCLZfTdKh2xURcBUXvHFLDwFAHgtf5Z4qKfAoNHG--Z5KPGW4NCUa2TIy2K2Cwl7GjyJUcqlKlSNe59juFbiKuCcg326Qvj397TKQfo-uYxnxLq_-bG_J7hX173bvDzD7V7tnbdz2Dfi-nB2b2vJha9HkW8XnM8SR_-303YTrHbpmg_Z1uAUruroNa2lf1O4OVJTXcnTCWtJm_NKzMfbSHVVmTpn4bFC05d6q92wypxhE8-PL1-6IDarq8OCwTR5k02ObsG93Gxkif_bmYNbMiH71E0tpT4yoXu7C9FKGew9Wq1mlHwCTieZRGXt-EetQJKUSAQIDLZLQKN-IxIF1XJOs-2TUmc0GCNAbo6vdSjnwvFearOg426l0yNE50ptL6eOWq-QcufVe_zKcfooQqUrPFnVGYXh0gT0u_yGDIkGMODJ04H6rvMuncW7L1_gObPyqzcv75CGgPxtzYUPgDvgXEUu7kRNLQ_PwAtP2DNaGk73dbHc03nkE1wLaIkG4EcjHsNrMF_oJ4sgmf2rfZgbvLlv_fwJHL3l- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIgEX_gvh15XaE0qVxHHiHDisUlZdCqtKdKXegpPYtKLKrjZZQTnxDjwBr8Kj8CTMJM4ChaJeKnHLz8hx7HHmG8_kG4CNMFSJKdBTzcPEuHiiXGkQyEm_0MaThRRtmc7X42hnEr48EAcr8LX_FwY7UWNLdRvEp1U9K41lGCCqILzhYctoQ20e5a4--YBeWv18tI1TuhkEwxf76Y5rCwm4igveuKWHICCPha9yT5UUfBSaeN98TyWeMlyaEg1tGRnsWkGhL-NHESq6VKXKEbNzbPcSXKYIIfl3g_TNz18vA-n3CDuWEbe59ad7S7avqH-3fX8A2r_avtbODW_At-UItekt77cWTb5VfDpFHvlfD-FNuG5RNht0y-IWrOjqNlxN--J2d6Ci_JbjE9aRN-MXn42xl-6oMnPKyGeDoiv7Vr1j-3OKRTTfP3-xR2xQVUeHR10SIZvM2sT9dteRoQfA9g6nzZRoWD-ylPbGiPLlLkwu5HXXYLWaVvo-MJloHpWx5xexDkVSKhEgQNAiCY3yjUgcWMc5yeyno87arIAAvTK6amfKgWe94mSF5W6nEiLHZ0hvLqVnHWfJGXLrvQ5mOPwUKVKVni7qjMLx6Ap7XP5DBkWCGPFk6MC9ToGXT-O8LWPjO7Dxq0Yv75OngH5tzEUbCnfAP49Yat-c2BqaB-cYtqdwZW97mL0ajXcfwrWAdkoQdQTyEaw284V-jHCyyZ-0C5rB24tW_x-23XwB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Effective+Near-Infrared+Activating+Triplet-Triplet+Annihilation+Upconversion+for+Photoredox+Catalysis&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Huang%2C+Ling&rft.au=Wu%2C+Wenting&rft.au=Li%2C+Yang&rft.au=Huang%2C+Kai&rft.date=2020-10-28&rft.pub=Amer+Chemical+Soc&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=142&rft.issue=43&rft.spage=18460&rft.epage=18470&rft_id=info:doi/10.1021%2Fjacs.0c06976&rft_id=info%3Apmid%2F33074671&rft.externalDBID=n%2Fa&rft.externalDocID=000582673500020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |