Highly Effective Near-Infrared Activating Triplet–Triplet Annihilation Upconversion for Photoredox Catalysis

Organic triplet–triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. I...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 43; pp. 18460 - 18470
Main Authors Huang, Ling, Wu, Wenting, Li, Yang, Huang, Kai, Zeng, Le, Lin, Wenhai, Han, Gang
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 28.10.2020
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic triplet–triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T1) and singlet excited state energy (S1), two key annihilator factors to determine TTA-UC performance. Via this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 μM), the upconversion efficiency using the optimal annihilator (100 μM) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm2, 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials.
AbstractList Organic triplet-triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T-1) and singlet excited state energy (S-1), two key annihilator factors to determine TTA-UC performance. Via this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 mu M), the upconversion efficiency using the optimal annihilator (100 mu M) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm(2), 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials.
Organic triplet-triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T1) and singlet excited state energy (S1), two key annihilator factors to determine TTA-UC performance. Via this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 μM), the upconversion efficiency using the optimal annihilator (100 μM) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm2, 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials.Organic triplet-triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T1) and singlet excited state energy (S1), two key annihilator factors to determine TTA-UC performance. Via this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 μM), the upconversion efficiency using the optimal annihilator (100 μM) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm2, 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials.
Organic triplet–triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T1) and singlet excited state energy (S1), two key annihilator factors to determine TTA-UC performance. Via this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 μM), the upconversion efficiency using the optimal annihilator (100 μM) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm2, 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials.
Organic triplet–triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T₁) and singlet excited state energy (S₁), two key annihilator factors to determine TTA-UC performance. Via this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 μM), the upconversion efficiency using the optimal annihilator (100 μM) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm², 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials.
Organic triplet-triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T ) and singlet excited state energy (S ), two key annihilator factors to determine TTA-UC performance. this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 μM), the upconversion efficiency using the optimal annihilator (100 μM) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm , 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials.
Author Wu, Wenting
Han, Gang
Zeng, Le
Huang, Ling
Lin, Wenhai
Li, Yang
Huang, Kai
AuthorAffiliation State Key Laboratory of Heavy Oil Processing School of Chemical Engineering
Department of Biochemistry and Molecular Pharmacology
AuthorAffiliation_xml – name: State Key Laboratory of Heavy Oil Processing School of Chemical Engineering
– name: Department of Biochemistry and Molecular Pharmacology
Author_xml – sequence: 1
  givenname: Ling
  surname: Huang
  fullname: Huang, Ling
  organization: Department of Biochemistry and Molecular Pharmacology
– sequence: 2
  givenname: Wenting
  orcidid: 0000-0002-8380-7904
  surname: Wu
  fullname: Wu, Wenting
  organization: State Key Laboratory of Heavy Oil Processing School of Chemical Engineering
– sequence: 3
  givenname: Yang
  orcidid: 0000-0002-9544-5840
  surname: Li
  fullname: Li, Yang
  organization: Department of Biochemistry and Molecular Pharmacology
– sequence: 4
  givenname: Kai
  surname: Huang
  fullname: Huang, Kai
  organization: Department of Biochemistry and Molecular Pharmacology
– sequence: 5
  givenname: Le
  surname: Zeng
  fullname: Zeng, Le
  organization: Department of Biochemistry and Molecular Pharmacology
– sequence: 6
  givenname: Wenhai
  surname: Lin
  fullname: Lin, Wenhai
  organization: Department of Biochemistry and Molecular Pharmacology
– sequence: 7
  givenname: Gang
  orcidid: 0000-0002-2300-5862
  surname: Han
  fullname: Han, Gang
  email: Gang.Han@umassmed.edu
  organization: Department of Biochemistry and Molecular Pharmacology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33074671$$D View this record in MEDLINE/PubMed
BookMark eNqNksFu1DAQhi1URLeFG2eUIxKkjO3YTo6rqKWVKuDQniOvY3e9ytqL7RT2xjv0DXkSHDb0gEBwsmf8_WPpn_8EHTnvNEIvMZxhIPjdRqp4Bgp4I_gTtMCMQMkw4UdoAQCkFDWnx-gkxk0uK1LjZ-iYUhAVF3iB3KW9Ww_74twYrZK918UHLUN55UyQQffFcmrKZN1dcRPsbtDp-7eH-VYsnbNrO-Rn74rbnfLuXoc4FcaH4tPaJ59n-K9FK5Mc9tHG5-ipkUPUL-bzFN1enN-0l-X1x_dX7fK6lJTRVPbQkGYlGJYrkD1wQZhmVUUxyAakobXpBYaeG1UzBYw0BnNOCKtlL1cEC3qKXh_m7oL_POqYuq2NSg-DdNqPsSOMVETgBqp_o1VmmwZondFXMzqutrrvdsFuZdh3v-zMQH0AvuiVN1FZ7ZR-xLL_rCZcUDYtBlqbfjrX-tGlLH3z_9JMvz3QKvgYgzaPJIZuikU3xaKbY5Fx8huu5s9TkHb4m2g2Zmpu_Bhc3tif0R8l88es
CitedBy_id crossref_primary_10_1002_adfm_202422197
crossref_primary_10_1002_ange_202312600
crossref_primary_10_1038_s41467_022_29981_3
crossref_primary_10_1002_slct_202103851
crossref_primary_10_1016_j_jphotochemrev_2023_100618
crossref_primary_10_1002_ange_202311470
crossref_primary_10_1021_jacs_4c00936
crossref_primary_10_1021_acsnano_3c08915
crossref_primary_10_1021_acsnano_1c07241
crossref_primary_10_1039_D2DT01491B
crossref_primary_10_1002_adom_202301879
crossref_primary_10_1021_jacs_4c14303
crossref_primary_10_1002_cssc_202401174
crossref_primary_10_1021_acs_jpca_4c05052
crossref_primary_10_1016_j_jcat_2024_115907
crossref_primary_10_1002_chem_202302520
crossref_primary_10_1002_ange_202113190
crossref_primary_10_1002_anie_202303093
crossref_primary_10_1016_j_ijbiomac_2024_130612
crossref_primary_10_1039_D4SC07004F
crossref_primary_10_1063_5_0112032
crossref_primary_10_1016_j_cogsc_2023_100841
crossref_primary_10_1021_acs_nanolett_4c02529
crossref_primary_10_1021_acs_inorgchem_1c02846
crossref_primary_10_1021_acs_chemmater_3c01814
crossref_primary_10_1002_ange_202411003
crossref_primary_10_1021_acsaom_4c00285
crossref_primary_10_1002_cptc_202200128
crossref_primary_10_1021_jacs_2c09543
crossref_primary_10_1021_jacs_5c00686
crossref_primary_10_1002_anie_202215340
crossref_primary_10_1021_jacs_4c04997
crossref_primary_10_1364_OE_519313
crossref_primary_10_1039_D3QM00495C
crossref_primary_10_1038_s41566_023_01156_6
crossref_primary_10_1002_anie_202311470
crossref_primary_10_1016_j_dyepig_2021_109754
crossref_primary_10_1021_jacs_4c06012
crossref_primary_10_1021_acs_orglett_4c03087
crossref_primary_10_1021_acs_jpclett_1c02717
crossref_primary_10_1039_D2SC05229F
crossref_primary_10_1021_acs_nanolett_5c00117
crossref_primary_10_1021_acs_chemrev_1c00772
crossref_primary_10_1038_s41467_023_36679_7
crossref_primary_10_1002_anie_202312600
crossref_primary_10_1016_j_cej_2021_131282
crossref_primary_10_3390_molecules29102203
crossref_primary_10_1016_j_cclet_2022_05_029
crossref_primary_10_1002_adom_202301134
crossref_primary_10_1016_j_addr_2022_114479
crossref_primary_10_1039_D1SC04570A
crossref_primary_10_1038_s41570_024_00585_3
crossref_primary_10_1002_ange_202312618
crossref_primary_10_1002_anie_202113190
crossref_primary_10_1021_acs_jpcb_3c04660
crossref_primary_10_1039_D1QO01476E
crossref_primary_10_1021_acs_chemrev_1c00648
crossref_primary_10_1002_ange_202303093
crossref_primary_10_1002_adma_202307759
crossref_primary_10_1002_anie_202312618
crossref_primary_10_1007_s41664_023_00264_0
crossref_primary_10_1016_j_ccr_2024_215868
crossref_primary_10_3390_molecules28145474
crossref_primary_10_1021_jacs_4c16922
crossref_primary_10_1038_s41467_024_46541_z
crossref_primary_10_1002_ange_202215340
crossref_primary_10_1039_D1TC00296A
crossref_primary_10_1021_acsaom_4c00016
crossref_primary_10_1002_cptc_202400184
crossref_primary_10_1039_D4CS00571F
crossref_primary_10_1039_D1SC00998B
crossref_primary_10_1021_acsnano_3c00543
crossref_primary_10_1021_acs_accounts_2c00307
crossref_primary_10_1021_acs_langmuir_4c01297
crossref_primary_10_1021_jacs_3c02417
crossref_primary_10_1039_D1TC03551G
crossref_primary_10_1002_adfm_202103908
crossref_primary_10_1021_acs_accounts_3c00184
crossref_primary_10_1021_jacs_1c00298
crossref_primary_10_1021_jacs_1c00331
crossref_primary_10_1021_jacs_0c12805
crossref_primary_10_1039_D3SC04580C
crossref_primary_10_3390_ijms23148041
crossref_primary_10_1039_D3OB00107E
crossref_primary_10_1039_D1SC04330G
crossref_primary_10_1016_j_chempr_2021_10_010
crossref_primary_10_1021_acs_nanolett_5c00169
crossref_primary_10_1021_acsami_4c00990
crossref_primary_10_1039_D2CC03155H
crossref_primary_10_1021_jacs_4c14248
crossref_primary_10_1039_D1TC01569A
crossref_primary_10_1016_j_matlet_2022_132405
crossref_primary_10_1021_acs_inorgchem_1c01848
crossref_primary_10_1002_adom_202102180
crossref_primary_10_1021_acscatal_3c05441
crossref_primary_10_1016_j_chphma_2024_01_001
crossref_primary_10_1039_D1SC02085D
crossref_primary_10_1016_j_dyepig_2023_111392
crossref_primary_10_1039_D3NR05265F
crossref_primary_10_1063_5_0185259
crossref_primary_10_1063_5_0223478
crossref_primary_10_1002_adma_202301563
crossref_primary_10_1021_jacs_1c13222
crossref_primary_10_1002_anie_202411003
crossref_primary_10_1016_j_cjche_2025_02_005
crossref_primary_10_1021_jacs_2c12244
crossref_primary_10_1039_D2CC04707A
crossref_primary_10_1021_acs_inorgchem_3c03610
crossref_primary_10_1016_j_checat_2024_100973
crossref_primary_10_1021_acsnano_4c03753
crossref_primary_10_1021_acs_orglett_3c04312
crossref_primary_10_1016_j_cej_2021_133377
crossref_primary_10_1002_cssc_202401786
crossref_primary_10_1021_acsphyschemau_3c00062
crossref_primary_10_1002_advs_202302631
crossref_primary_10_1039_D2CP04532J
crossref_primary_10_1002_cptc_202400052
crossref_primary_10_3389_fbioe_2022_920162
Cites_doi 10.1038/nature25175
10.1016/S1011-1344(00)00082-8
10.1088/1367-2630/10/1/013007
10.1039/b912178a
10.1039/C9TA02780G
10.1016/j.dyepig.2016.09.057
10.1038/s41570-018-0057-z
10.1021/jacs.7b07302
10.1002/adfm.201670304
10.1039/C4CP00744A
10.1038/s41557-020-0430-7
10.1039/C4RA03919J
10.1021/acs.accounts.7b00235
10.1038/nature21366
10.1002/anie.201608442
10.1002/anie.201911025
10.1039/c3cs35531d
10.1038/s41586-018-0835-2
10.1021/j100309a012
10.1021/cm070536k
10.1039/C4CS00155A
10.1021/ja405170j
10.1016/j.tetlet.2015.03.107
10.1021/nn505051d
10.1039/C4EE02481H
10.1016/j.biomaterials.2019.02.008
10.1021/jp0354705
10.1002/anie.201915762
10.1126/science.aad6378
10.1002/anie.200700414
10.1021/cr400478f
10.1039/c1ra00469g
10.1063/1.555770
10.1002/chem.201302492
10.1021/ja411316s
10.1002/smll.201904107
10.1002/anie.201107028
10.1039/C7NR01836C
10.1038/nnano.2009.326
10.1126/science.aaf3935
10.1039/C6CS00415F
10.1021/jo402718e
10.1021/acs.chemrev.5b00091
10.1039/C7CP03840B
10.1039/c3cc44479a
10.1021/jacs.9b05824
10.1021/cs300808r
10.1002/adom.201902157
10.1021/acsnano.5b06383
10.1002/smtd.201700370
10.1021/jo051580r
10.1039/C6CS00092D
10.1002/anie.201704430
10.1038/nphoton.2015.226
10.1039/tf9716701904
10.1021/acsenergylett.0c01150
10.1039/C7TC00827A
10.1039/C5TC02626A
10.1038/nchem.2906
10.1021/cr5007057
10.1021/jacs.6b04692
10.1039/C4CS00170B
10.1002/bio.2932
10.1021/ja5115248
10.1039/D0CC02240C
10.1039/C6EE03702J
10.1002/chem.200801305
10.1126/science.aav9713
10.1038/s41570-017-0077
10.1073/pnas.0904792106
10.1126/science.aaq1144
10.1038/s41566-019-0528-x
10.1021/jacs.8b11796
10.1039/C5CS00364D
10.1021/acs.accounts.9b00097
10.1021/jacs.7b02063
10.1021/ja105510k
10.1021/acsmaterialslett.9b00287
10.1039/C9TC06031F
10.1039/c4cs00170b
10.1039/c7tc00827a
10.1039/c6cs00415f
10.1002/adfm.201603303
10.1039/c6cs00092d
10.1039/c4cp00744a
10.1039/c4ra03919j
10.1039/c6ee03702j
10.1039/c9tc06031f
10.1039/c9ta02780g
10.1039/c5cs00364d
10.1038/NCHEM.2906
10.1039/d0cc02240c
10.1039/c7cp03840b
10.1038/NPHOTON.2015.226
10.1039/c4ee02481h
10.1039/c5tc02626a
10.1039/c4cs00155a
10.1039/c7nr01836c
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
17B
1KM
AOWDO
BLEPL
DTL
EGQ
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.0c06976
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2020
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Web of Science
MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 18470
ExternalDocumentID 33074671
000582673500020
10_1021_jacs_0c06976
a414005605
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: University of Massachusetts-Medical School
GroupedDBID -
.K2
02
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
ZCA
~02
17B
1KM
AAYWT
BLEPL
DTL
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a353t-d0929b751ab0ad06725e544310a90af38fd710d6fc85c0529f1662258adab2173
IEDL.DBID ACS
ISICitedReferencesCount 126
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000582673500020
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 02:15:30 EDT 2025
Thu Jul 10 22:46:00 EDT 2025
Thu Apr 03 07:04:39 EDT 2025
Fri Aug 29 15:51:42 EDT 2025
Wed Aug 06 07:35:14 EDT 2025
Tue Jul 01 00:44:33 EDT 2025
Thu Apr 24 22:56:34 EDT 2025
Fri Oct 30 04:40:53 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 43
Keywords RED
LUMINESCENT MATERIALS
NANOPARTICLES
EXCITED-STATE
LIGHT
PHOTOSENSITIZERS
SENSITIZERS
BIOLOGICAL APPLICATIONS
ARYLBORONIC ACIDS
SINGLET
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-a353t-d0929b751ab0ad06725e544310a90af38fd710d6fc85c0529f1662258adab2173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2300-5862
0000-0002-8380-7904
0000-0002-9544-5840
0000-0003-4928-8183
PMID 33074671
PQID 2452499038
PQPubID 23479
PageCount 11
ParticipantIDs crossref_primary_10_1021_jacs_0c06976
pubmed_primary_33074671
acs_journals_10_1021_jacs_0c06976
webofscience_primary_000582673500020CitationCount
webofscience_primary_000582673500020
proquest_miscellaneous_2524271904
crossref_citationtrail_10_1021_jacs_0c06976
proquest_miscellaneous_2452499038
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-28
PublicationDateYYYYMMDD 2020-10-28
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-28
  day: 28
PublicationDecade 2020
PublicationPlace WASHINGTON
PublicationPlace_xml – name: WASHINGTON
– name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAbbrev J AM CHEM SOC
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2020
Publisher American Chemical Society
Amer Chemical Soc
Publisher_xml – name: American Chemical Society
– name: Amer Chemical Soc
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
Wei, YX (WOS:000408257700015) 2017; 19
FORD, WE (WOS:A1987L287200012) 1987; 91
Kwon, TH (WOS:000248073300019) 2007; 19
Ramasamy, P (WOS:000341287700020) 2014; 4
Theriot, JC (WOS:000376480800034) 2016; 352
Zhang, CS (WOS:000322103000069) 2013; 135
Zhao, JZ (WOS:000295920900001) 2011; 1
Peng, JJ (WOS:000349807000035) 2015; 137
Plesniak, MP (WOS:000415244400003) 2017; 1
Huang, L (WOS:000444545900005) 2018; 2
Wu, X (WOS:000369115800115) 2016; 10
Chen, S (WOS:000425117700039) 2018; 359
Lin, YHL (WOS:000403320300016) 2017; 10
Dong, H (WOS:000363002300008) 2015; 115
Wang, ZJ (WOS:000403631200030) 2017; 139
Belay, A (WOS:000368138000017) 2016; 31
Wang, L (WOS:000487482000001) 2021; 17
Yanai, N (WOS:000413392000009) 2017; 50
Lu, Y (WOS:000388252700034) 2016; 55
Liu, YJ (WOS:000395688700036) 2017; 543
Duan, PF (WOS:000329137300003) 2013; 135
Wu, SW (WOS:000267796100011) 2009; 106
Hossain, A (WOS:000466809600022) 2019; 364
Glaser, F (WOS:000524308600001) 2020; 59
Finikova, OS (WOS:000233209400057) 2005; 70
Maiti, B (WOS:000476568400013) 2019; 52
Punjabi, A (WOS:000343952600098) 2014; 8
Zhou, Y (WOS:000552668000026) 2020; 5
Paul, A (WOS:000353751000027) 2015; 56
Mongin, C (WOS:000423144000020) 2018; 10
Gulzar, A (WOS:000409215300003) 2017; 9
Schulze, TF (WOS:000346563600007) 2015; 8
Huang, L (WOS:000462418700007) 2019; 201
Wei, YX (WOS:000516836300001) 2020; 8
Wu, MF (WOS:000367200400010) 2016; 10
Sasaki, Y (WOS:000402872400004) 2017; 5
Zhao, JZ (WOS:000319527400030) 2013; 42
Peng, HQ (WOS:000359613600009) 2015; 115
Filatov, MA (WOS:000382023500003) 2016; 45
Huang, L (WOS:000327889800029) 2013; 19
Zhao, JZ (WOS:000365530400010) 2015; 44
Sasaki, Y (WOS:000491799500001) 2019; 58
Zou, YQ (WOS:000299034200037) 2012; 51
Zhong, FF (WOS:000387837200110) 2017; 136
Singh-Rachford, TN (WOS:000282660100058) 2010; 132
Pun, AB (WOS:000460996500005) 2019; 141
BENSASSON, R (WOS:A1971K565600006) 1971; 67
Radiunas, E (WOS:000547201400021) 2020; 8
Mongin, C (WOS:000368440500036) 2016; 351
Haruki, R (WOS:000542898200021) 2020; 56
Suzuki, K (WOS:000271033200029) 2009; 11
Fan, CY (WOS:000488322500020) 2019; 141
Wang, L (WOS:000470928800018) 2019; 7
Gray, V (WOS:000336781500008) 2014; 16
Stolik, S (WOS:000165876900002) 2000; 57
Smith, AM (WOS:000272413500010) 2009; 4
Silvi, M (WOS:000424048900028) 2018; 554
Zhu, XJ (WOS:000395875500001) 2017; 46
Baluschev, S (WOS:000253083900007) 2008; 10
Yang, DM (WOS:000351244800007) 2015; 44
Yakutkin, V (WOS:000261074800005) 2008; 14
Nishimura, N (WOS:000519825700011) 2019; 1
Chen, GY (WOS:000351244800017) 2015; 44
Mattiello, S (WOS:000390117800009) 2016; 26
Ravetz, BD (WOS:000455781600038) 2019; 565
Tang, YN (WOS:000315707700017) 2013; 3
Baluschev, S (WOS:000250249300035) 2007; 46
Amemori, S (WOS:000380295600011) 2016; 138
Wen, SH (WOS:000498865600007) 2019; 13
Cui, XN (WOS:000332756500017) 2014; 79
Deng, F (WOS:000322343100012) 2013; 49
Zhang, Y (WOS:000519841500004) 2020; 12
Askes, SHC (WOS:000452215000007) 2018; 2
Gray, V (WOS:000363663100020) 2015; 3
Huang, L (WOS:000414764600007) 2017; 56
Rogers, JE (WOS:000187446900009) 2003; 107
Zhou, J (WOS:000348093800009) 2015; 115
CARMICHAEL, I (WOS:A1986C107500001) 1986; 15
Li, YF (WOS:000412716900041) 2017; 139
References_xml – ident: ref51/cit51
  doi: 10.1038/nature25175
– ident: ref54/cit54
  doi: 10.1016/S1011-1344(00)00082-8
– ident: ref47/cit47
  doi: 10.1088/1367-2630/10/1/013007
– ident: ref69/cit69
  doi: 10.1039/b912178a
– ident: ref57/cit57
  doi: 10.1039/C9TA02780G
– ident: ref73/cit73
  doi: 10.1016/j.dyepig.2016.09.057
– ident: ref22/cit22
  doi: 10.1038/s41570-018-0057-z
– ident: ref5/cit5
  doi: 10.1021/jacs.7b07302
– ident: ref74/cit74
  doi: 10.1002/adfm.201670304
– ident: ref10/cit10
  doi: 10.1039/C4CP00744A
– ident: ref65/cit65
  doi: 10.1038/s41557-020-0430-7
– ident: ref9/cit9
  doi: 10.1039/C4RA03919J
– ident: ref35/cit35
  doi: 10.1021/acs.accounts.7b00235
– ident: ref11/cit11
  doi: 10.1038/nature21366
– ident: ref34/cit34
  doi: 10.1002/anie.201608442
– ident: ref40/cit40
  doi: 10.1002/anie.201911025
– ident: ref26/cit26
  doi: 10.1039/c3cs35531d
– ident: ref4/cit4
  doi: 10.1038/s41586-018-0835-2
– ident: ref68/cit68
  doi: 10.1021/j100309a012
– ident: ref75/cit75
  doi: 10.1021/cm070536k
– ident: ref7/cit7
  doi: 10.1039/C4CS00155A
– ident: ref70/cit70
  doi: 10.1021/ja405170j
– ident: ref78/cit78
  doi: 10.1016/j.tetlet.2015.03.107
– ident: ref6/cit6
  doi: 10.1021/nn505051d
– ident: ref3/cit3
  doi: 10.1039/C4EE02481H
– ident: ref23/cit23
  doi: 10.1016/j.biomaterials.2019.02.008
– ident: ref63/cit63
  doi: 10.1021/jp0354705
– ident: ref59/cit59
  doi: 10.1002/anie.201915762
– ident: ref18/cit18
  doi: 10.1126/science.aad6378
– ident: ref46/cit46
  doi: 10.1002/anie.200700414
– ident: ref2/cit2
  doi: 10.1021/cr400478f
– ident: ref29/cit29
  doi: 10.1039/c1ra00469g
– ident: ref67/cit67
  doi: 10.1063/1.555770
– ident: ref79/cit79
  doi: 10.1002/chem.201302492
– ident: ref33/cit33
  doi: 10.1021/ja411316s
– ident: ref58/cit58
  doi: 10.1002/smll.201904107
– ident: ref77/cit77
  doi: 10.1002/anie.201107028
– ident: ref16/cit16
  doi: 10.1039/C7NR01836C
– ident: ref55/cit55
  doi: 10.1038/nnano.2009.326
– ident: ref53/cit53
  doi: 10.1126/science.aaf3935
– ident: ref28/cit28
  doi: 10.1039/C6CS00415F
– ident: ref61/cit61
  doi: 10.1021/jo402718e
– ident: ref1/cit1
  doi: 10.1021/acs.chemrev.5b00091
– ident: ref72/cit72
  doi: 10.1039/C7CP03840B
– ident: ref36/cit36
  doi: 10.1039/c3cc44479a
– ident: ref32/cit32
  doi: 10.1021/jacs.9b05824
– ident: ref56/cit56
  doi: 10.1021/cs300808r
– ident: ref45/cit45
  doi: 10.1002/adom.201902157
– ident: ref15/cit15
  doi: 10.1021/acsnano.5b06383
– ident: ref25/cit25
  doi: 10.1002/smtd.201700370
– ident: ref62/cit62
  doi: 10.1021/jo051580r
– ident: ref30/cit30
  doi: 10.1039/C6CS00092D
– ident: ref21/cit21
  doi: 10.1002/anie.201704430
– ident: ref20/cit20
  doi: 10.1038/nphoton.2015.226
– ident: ref66/cit66
  doi: 10.1039/tf9716701904
– ident: ref76/cit76
  doi: 10.1021/acsenergylett.0c01150
– ident: ref39/cit39
  doi: 10.1039/C7TC00827A
– ident: ref71/cit71
  doi: 10.1039/C5TC02626A
– ident: ref19/cit19
  doi: 10.1038/nchem.2906
– ident: ref24/cit24
  doi: 10.1021/cr5007057
– ident: ref38/cit38
  doi: 10.1021/jacs.6b04692
– ident: ref17/cit17
  doi: 10.1039/C4CS00170B
– ident: ref64/cit64
  doi: 10.1002/bio.2932
– ident: ref13/cit13
  doi: 10.1021/ja5115248
– ident: ref41/cit41
  doi: 10.1039/D0CC02240C
– ident: ref8/cit8
  doi: 10.1039/C6EE03702J
– ident: ref48/cit48
  doi: 10.1002/chem.200801305
– ident: ref50/cit50
  doi: 10.1126/science.aav9713
– ident: ref52/cit52
  doi: 10.1038/s41570-017-0077
– ident: ref12/cit12
  doi: 10.1073/pnas.0904792106
– ident: ref14/cit14
  doi: 10.1126/science.aaq1144
– ident: ref49/cit49
  doi: 10.1038/s41566-019-0528-x
– ident: ref42/cit42
  doi: 10.1021/jacs.8b11796
– ident: ref27/cit27
  doi: 10.1039/C5CS00364D
– ident: ref60/cit60
  doi: 10.1021/acs.accounts.9b00097
– ident: ref31/cit31
  doi: 10.1021/jacs.7b02063
– ident: ref37/cit37
  doi: 10.1021/ja105510k
– ident: ref44/cit44
  doi: 10.1021/acsmaterialslett.9b00287
– ident: ref43/cit43
  doi: 10.1039/C9TC06031F
– volume: 3
  start-page: 405
  year: 2013
  ident: WOS:000315707700017
  article-title: NIR-Responsive Photocatalytic Activity and Mechanism of NaYF4:Yb,Tm@TiO2 Core-Shell Nanoparticles
  publication-title: ACS CATALYSIS
  doi: 10.1021/cs300808r
– volume: 44
  start-page: 1680
  year: 2015
  ident: WOS:000351244800017
  article-title: Light upconverting core-shell nanostructures: nanophotonic control for emerging applications
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c4cs00170b
– volume: 5
  start-page: 5063
  year: 2017
  ident: WOS:000402872400004
  article-title: Near infrared-to-blue photon upconversion by exploiting direct S-T absorption of a molecular sensitizer
  publication-title: JOURNAL OF MATERIALS CHEMISTRY C
  doi: 10.1039/c7tc00827a
– volume: 46
  start-page: 1025
  year: 2017
  ident: WOS:000395875500001
  article-title: Anti-Stokes shift luminescent materials for bio-applications
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c6cs00415f
– volume: 51
  start-page: 784
  year: 2012
  ident: WOS:000299034200037
  article-title: Highly Efficient Aerobic Oxidative Hydroxylation of Arylboronic Acids: Photoredox Catalysis Using Visible Light
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201107028
– volume: 26
  start-page: 8447
  year: 2016
  ident: WOS:000390117800009
  article-title: Self-Assembled Dual Dye-Doped Nanosized Micelles for High-Contrast Up-Conversion Bioimaging
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201603303
– volume: 543
  start-page: 229
  year: 2017
  ident: WOS:000395688700036
  article-title: Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy
  publication-title: NATURE
  doi: 10.1038/nature21366
– volume: 115
  start-page: 395
  year: 2015
  ident: WOS:000348093800009
  article-title: Upconversion Luminescent Materials: Advances and Applications
  publication-title: CHEMICAL REVIEWS
– volume: 2
  start-page: ARTN 1700370
  year: 2018
  ident: WOS:000444545900005
  article-title: Near Infrared Boron Dipyrromethene Nanoparticles for Optotheranostics
  publication-title: SMALL METHODS
  doi: 10.1002/smtd.201700370
– volume: 351
  start-page: 369
  year: 2016
  ident: WOS:000368440500036
  article-title: Direct observation of triplet energy transfer from semiconductor nanocrystals
  publication-title: SCIENCE
  doi: 10.1126/science.aad6378
– volume: 19
  start-page: 17472
  year: 2013
  ident: WOS:000327889800029
  article-title: Energy-Funneling-Based Broadband Visible-Light-Absorbing Bodipy-C-60 Triads and Tetrads as Dual Functional Heavy-Atom-Free Organic Triplet Photosensitizers for Photocatalytic Organic Reactions
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201302492
– volume: 49
  start-page: 7406
  year: 2013
  ident: WOS:000322343100012
  article-title: Near-IR phosphorescent metalloporphyrin as a photochemical upconversion sensitizer
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c3cc44479a
– volume: 17
  start-page: ARTN 1904107
  year: 2021
  ident: WOS:000487482000001
  article-title: Near-Infrared-Driven Photocatalysts: Design, Construction, and Applications
  publication-title: SMALL
  doi: 10.1002/smll.201904107
– volume: 45
  start-page: 4668
  year: 2016
  ident: WOS:000382023500003
  article-title: Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c6cs00092d
– volume: 8
  start-page: 10621
  year: 2014
  ident: WOS:000343952600098
  article-title: Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy
  publication-title: ACS NANO
  doi: 10.1021/nn505051d
– volume: 10
  start-page: 1060
  year: 2016
  ident: WOS:000369115800115
  article-title: Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications
  publication-title: ACS NANO
  doi: 10.1021/acsnano.5b06383
– volume: 16
  start-page: 10345
  year: 2014
  ident: WOS:000336781500008
  article-title: Triplet-triplet annihilation photon-upconversion: towards solar energy applications
  publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  doi: 10.1039/c4cp00744a
– volume: 4
  start-page: 34873
  year: 2014
  ident: WOS:000341287700020
  article-title: Upconversion nanophosphors for solar cell applications
  publication-title: RSC ADVANCES
  doi: 10.1039/c4ra03919j
– volume: 107
  start-page: 11331
  year: 2003
  ident: WOS:000187446900009
  article-title: Observation and interpretation of annulated porphyrins: Studies on the photophysical properties of meso-tetraphenylmetalloporphyrins
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY A
  doi: 10.1021/jp0354705
– volume: 10
  start-page: 1465
  year: 2017
  ident: WOS:000403320300016
  article-title: Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet-triplet annihilation
  publication-title: ENERGY & ENVIRONMENTAL SCIENCE
  doi: 10.1039/c6ee03702j
– volume: 8
  start-page: 5525
  year: 2020
  ident: WOS:000547201400021
  article-title: Understanding the limitations of NIR-to-visible photon upconversion in phthalocyanine-sensitized rubrene systems
  publication-title: JOURNAL OF MATERIALS CHEMISTRY C
  doi: 10.1039/c9tc06031f
– volume: 91
  start-page: 6373
  year: 1987
  ident: WOS:A1987L287200012
  article-title: PHOTOCHEMISTRY OF 3,4,9,10-PERYLENETETRACARBOXYLIC DIANHYDRIDE DYES .3. SINGLET AND TRIPLET EXCITED-STATE PROPERTIES OF THE BIS(2,5-DI-TERT-BUTYLPHENYL)IMIDE DERIVATIVE
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY
– volume: 137
  start-page: 2336
  year: 2015
  ident: WOS:000349807000035
  article-title: High-Efficiency in Vitro and in Vivo Detection of Zn2+ by Dye-Assembled Upconversion Nanoparticles
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja5115248
– volume: 565
  start-page: 343
  year: 2019
  ident: WOS:000455781600038
  article-title: Photoredox catalysis using infrared light via triplet fusion upconversion
  publication-title: NATURE
  doi: 10.1038/s41586-018-0835-2
– volume: 554
  start-page: 40
  year: 2018
  ident: WOS:000424048900028
  article-title: Enhancing the potential of enantioselective organocatalysis with light
  publication-title: NATURE
  doi: 10.1038/nature25175
– volume: 7
  start-page: 13629
  year: 2019
  ident: WOS:000470928800018
  article-title: Boosting NIR-driven photocatalytic water splitting by constructing 2D/3D epitaxial heterostructures
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/c9ta02780g
– volume: 44
  start-page: 8904
  year: 2015
  ident: WOS:000365530400010
  article-title: The triplet excited state of Bodipy: formation, modulation and application
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c5cs00364d
– volume: 135
  start-page: 10566
  year: 2013
  ident: WOS:000322103000069
  article-title: Intramolecular RET Enhanced Visible Light-Absorbing Bodipy Organic Triplet Photosensitizers and Application in Photooxidation and Triplet-Triplet Annihilation Upconversion
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja405170j
– volume: 57
  start-page: 90
  year: 2000
  ident: WOS:000165876900002
  article-title: Measurement of the penetration depths of red and near infrared light in human "ex vivo" tissues
  publication-title: JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY
– volume: 58
  start-page: 17827
  year: 2019
  ident: WOS:000491799500001
  article-title: Near-Infrared Optogenetic Genome Engineering Based on Photon-Upconversion Hydrogels
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201911025
– volume: 70
  start-page: 9562
  year: 2005
  ident: WOS:000233209400057
  article-title: Synthesis and luminescence of soluble meso-unsubstituted tetrabenzo- and tetranaphtho[2,3]porphyrins
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/jo051580r
– volume: 138
  start-page: 8702
  year: 2016
  ident: WOS:000380295600011
  article-title: Near-Infrared-to-Visible Photon Upconversion Sensitized by a Metal Complex with Spin-Forbidden yet Strong S-0-T-1 Absorption
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b04692
– volume: 59
  start-page: 10266
  year: 2020
  ident: WOS:000524308600001
  article-title: Multi-Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201915762
– volume: 10
  start-page: 225
  year: 2018
  ident: WOS:000423144000020
  article-title: Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/NCHEM.2906
– volume: 115
  start-page: 10725
  year: 2015
  ident: WOS:000363002300008
  article-title: Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.5b00091
– volume: 56
  start-page: 14400
  year: 2017
  ident: WOS:000414764600007
  article-title: Expanding Anti-Stokes Shifting in Triplet-Triplet Annihilation Upconversion for In Vivo Anticancer Prodrug Activation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201704430
– volume: 136
  start-page: 909
  year: 2017
  ident: WOS:000387837200110
  article-title: Phenyleneanthracene derivatives as triplet energy acceptor/emitter in red light excitable triplet-triplet-annihilation upconversion
  publication-title: DYES AND PIGMENTS
  doi: 10.1016/j.dyepig.2016.09.057
– volume: 56
  start-page: 7017
  year: 2020
  ident: WOS:000542898200021
  article-title: Leaping across the visible range: near-infrared-to-violet photon upconversion employing a silyl-substituted anthracene
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/d0cc02240c
– volume: 115
  start-page: 7502
  year: 2015
  ident: WOS:000359613600009
  article-title: Biological Applications of Supramolecular Assemblies Designed for Excitation Energy Transfer
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr5007057
– volume: 10
  start-page: ARTN 013007
  year: 2008
  ident: WOS:000253083900007
  article-title: A general approach for non-coherently excited annihilation up-conversion: transforming the solar-spectrum
  publication-title: NEW JOURNAL OF PHYSICS
  doi: 10.1088/1367-2630/10/1/013007
– volume: 2
  start-page: 437
  year: 2018
  ident: WOS:000452215000007
  article-title: Solving the oxygen sensitivity of sensitized photon upconversion in life science applications
  publication-title: NATURE REVIEWS CHEMISTRY
  doi: 10.1038/s41570-018-0057-z
– volume: 67
  start-page: 1904
  year: 1971
  ident: WOS:A1971K565600006
  article-title: TRIPLET-TRIPLET EXTINCTION COEFFICIENTS VIA ENERGY TRANSFER
  publication-title: TRANSACTIONS OF THE FARADAY SOCIETY
– volume: 19
  start-page: 22049
  year: 2017
  ident: WOS:000408257700015
  article-title: Triplet-triplet annihilation upconversion kinetics of C-60-Bodipy dyads as organic triplet photosensitizers
  publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  doi: 10.1039/c7cp03840b
– volume: 352
  start-page: 1082
  year: 2016
  ident: WOS:000376480800034
  article-title: Organocatalyzed atom transfer radical polymerization driven by visible light
  publication-title: SCIENCE
  doi: 10.1126/science.aaf3935
– volume: 12
  start-page: 345
  year: 2020
  ident: WOS:000519841500004
  article-title: Delayed fluorescence from a zirconium(iv) photosensitizer with ligand-to-metal charge-transfer excited states
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-020-0430-7
– volume: 14
  start-page: 9846
  year: 2008
  ident: WOS:000261074800005
  article-title: Towards the IR Limit of the Triplet-Triplet Annihilation-Supported Up-Conversion: Tetraanthraporphyrin
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.200801305
– volume: 141
  start-page: 15070
  year: 2019
  ident: WOS:000488322500020
  article-title: Efficient Triplet-Triplet Annihilation Upconversion with an Anti-Stokes Shift of 1.08 eV Achieved by Chemically Tuning Sensitizers
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b05824
– volume: 55
  start-page: 14688
  year: 2016
  ident: WOS:000388252700034
  article-title: Iridium(III) Complexes Bearing Pyrene-Functionalized 1,10-Phenanthroline Ligands as Highly Efficient Sensitizers for Triplet-Triplet Annihilation Upconversion
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201608442
– volume: 10
  start-page: 31
  year: 2016
  ident: WOS:000367200400010
  article-title: Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals
  publication-title: NATURE PHOTONICS
  doi: 10.1038/NPHOTON.2015.226
– volume: 8
  start-page: 103
  year: 2015
  ident: WOS:000346563600007
  article-title: Photochemical upconversion: present status and prospects for its application to solar energy conversion
  publication-title: ENERGY & ENVIRONMENTAL SCIENCE
  doi: 10.1039/c4ee02481h
– volume: 135
  start-page: 19056
  year: 2013
  ident: WOS:000329137300003
  article-title: Photon Upconverting Liquids: Matrix-Free Molecular Upconversion Systems Functioning in Air
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja411316s
– volume: 46
  start-page: 7693
  year: 2007
  ident: WOS:000250249300035
  article-title: Blue-green up-conversion: Noncoherent excitation by NIR light
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200700414
– volume: 13
  start-page: 828
  year: 2019
  ident: WOS:000498865600007
  article-title: Future and challenges for hybrid upconversion nanosystems
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-019-0528-x
– volume: 1
  start-page: 937
  year: 2011
  ident: WOS:000295920900001
  article-title: Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields
  publication-title: RSC ADVANCES
  doi: 10.1039/c1ra00469g
– volume: 50
  start-page: 2487
  year: 2017
  ident: WOS:000413392000009
  article-title: New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.7b00235
– volume: 106
  start-page: 10917
  year: 2009
  ident: WOS:000267796100011
  article-title: Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  doi: 10.1073/pnas.0904792106
– volume: 19
  start-page: 3673
  year: 2007
  ident: WOS:000248073300019
  article-title: Highly efficient light-harvesting system based on a phosphorescent acceptor coupled with dendrimer donors via singlet-singlet and triplet-triplet energy transfer
  publication-title: CHEMISTRY OF MATERIALS
  doi: 10.1021/cm070536k
– volume: 1
  start-page: ARTN 0077
  year: 2017
  ident: WOS:000415244400003
  article-title: Radical cascade reactions triggered by single electron transfer
  publication-title: NATURE REVIEWS CHEMISTRY
  doi: 10.1038/s41570-017-0077
– volume: 139
  start-page: 7831
  year: 2017
  ident: WOS:000403631200030
  article-title: Radical-Enhanced Intersystem Crossing in New Bodipy Derivatives and Application for Efficient Triplet-Triplet Annihilation Upconversion
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b02063
– volume: 359
  start-page: 679
  year: 2018
  ident: WOS:000425117700039
  article-title: Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics
  publication-title: SCIENCE
  doi: 10.1126/science.aaq1144
– volume: 52
  start-page: 1865
  year: 2019
  ident: WOS:000476568400013
  article-title: The Prospect of Photochemical Reactions in Confined Gel Media
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.9b00097
– volume: 1
  start-page: 660
  year: 2019
  ident: WOS:000519825700011
  article-title: Photon Upconversion from Near-Infrared to Blue Light with TIPS-Anthracene as an Efficient Triplet-Triplet Annihilator
  publication-title: ACS MATERIALS LETTERS
  doi: 10.1021/acsmaterialslett.9b00287
– volume: 132
  start-page: 14203
  year: 2010
  ident: WOS:000282660100058
  article-title: Supermolecular-Chromophore-Sensitized Near-Infrared-to-Visible Photon Upconversion
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja105510k
– volume: 56
  start-page: 2496
  year: 2015
  ident: WOS:000353751000027
  article-title: Metal free visible light photoredox activation of PhI(OAc)(2) for the conversion of arylboronic acids to phenols
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2015.03.107
– volume: 3
  start-page: 11111
  year: 2015
  ident: WOS:000363663100020
  article-title: Photophysical characterization of the 9,10-disubstituted anthracene chromophore and its applications in triplet-triplet annihilation photon upconversion
  publication-title: JOURNAL OF MATERIALS CHEMISTRY C
  doi: 10.1039/c5tc02626a
– volume: 31
  start-page: 118
  year: 2016
  ident: WOS:000368138000017
  article-title: Effects of solvent polarity on the absorption and fluorescence spectra of chlorogenic acid and caffeic acid compounds: determination of the dipole moments
  publication-title: LUMINESCENCE
  doi: 10.1002/bio.2932
– volume: 141
  start-page: 3777
  year: 2019
  ident: WOS:000460996500005
  article-title: Tunable Emission from Triplet Fusion Upconversion in Diketopyrrolopyrroles
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b11796
– volume: 11
  start-page: 9850
  year: 2009
  ident: WOS:000271033200029
  article-title: Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector
  publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  doi: 10.1039/b912178a
– volume: 364
  start-page: 450
  year: 2019
  ident: WOS:000466809600022
  article-title: ORGANIC CHEMISTRY Copper's rapid ascent in visible-light photoredox catalysis
  publication-title: SCIENCE
  doi: 10.1126/science.aav9713
– volume: 4
  start-page: 710
  year: 2009
  ident: WOS:000272413500010
  article-title: BIOIMAGING Second window for in vivo imaging
  publication-title: NATURE NANOTECHNOLOGY
  doi: 10.1038/nnano.2009.326
– volume: 139
  start-page: 13804
  year: 2017
  ident: WOS:000412716900041
  article-title: Heterodimers Made of Upconversion Nanoparticles and Metal-Organic Frameworks
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b07302
– volume: 44
  start-page: 1416
  year: 2015
  ident: WOS:000351244800007
  article-title: Current advances in lanthanide ion (Ln(3+))-based upconversion nanomaterials for drug delivery
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c4cs00155a
– volume: 79
  start-page: 2038
  year: 2014
  ident: WOS:000332756500017
  article-title: Perylene-Derived Triplet Acceptors with Optimized Excited State Energy Levels for Triplet-Triplet Annihilation Assisted Upconversion
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/jo402718e
– volume: 9
  start-page: 12248
  year: 2017
  ident: WOS:000409215300003
  article-title: Upconversion processes: versatile biological applications and biosafety
  publication-title: NANOSCALE
  doi: 10.1039/c7nr01836c
– volume: 5
  start-page: 2322
  year: 2020
  ident: WOS:000552668000026
  article-title: On the Quantum Yield of Photon Upconversion via Triplet-Triplet Annihilation
  publication-title: ACS ENERGY LETTERS
  doi: 10.1021/acsenergylett.0c01150
– volume: 201
  start-page: 77
  year: 2019
  ident: WOS:000462418700007
  article-title: Designing next generation of photon upconversion: Recent advances in organic triplet-triplet annihilation upconversion nanoparticles
  publication-title: BIOMATERIALS
  doi: 10.1016/j.biomaterials.2019.02.008
– volume: 8
  start-page: ARTN 1902157
  year: 2020
  ident: WOS:000516836300001
  article-title: Simultaneously High Upconversion Efficiency and Large Anti-Stokes Shift by Using Os(II) Complex Dyad as Triplet Photosensitizer
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.201902157
– volume: 42
  start-page: 5323
  year: 2013
  ident: WOS:000319527400030
  article-title: Triplet photosensitizers: from molecular design to applications
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c3cs35531d
– volume: 15
  start-page: 1
  year: 1986
  ident: WOS:A1986C107500001
  article-title: TRIPLET-TRIPLET ABSORPTION-SPECTRA OF ORGANIC-MOLECULES IN CONDENSED PHASES
  publication-title: JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA
SSID ssj0004281
Score 2.6276999
Snippet Organic triplet–triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and...
Organic triplet-triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18460
SubjectTerms Chemistry
Chemistry, Multidisciplinary
endothermy
energy
heat production
light
photocatalysis
photosensitizing agents
Physical Sciences
redox reactions
Science & Technology
solar energy
solar radiation
wavelengths
Title Highly Effective Near-Infrared Activating Triplet–Triplet Annihilation Upconversion for Photoredox Catalysis
URI http://dx.doi.org/10.1021/jacs.0c06976
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000582673500020
https://www.ncbi.nlm.nih.gov/pubmed/33074671
https://www.proquest.com/docview/2452499038
https://www.proquest.com/docview/2524271904
Volume 142
WOS 000582673500020
WOSCitedRecordID wos000582673500020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remgv9A3pS0aipyqrOI4T57iKSilSUaWyErfIceyCQF60m5WAU_9D_yG_hJk8lhZKyy2PSSKPx5lvHp4B2EoSnTuDlmqV5C7EEx0qh0BOcWNdpIySbZvOr3vpziTZPZAH1wmyNyP4MdUHMvNRhK9DxfkAHsapysjIGhffr_c_xooPMDdTqegT3G8-TQrIzP9UQLdQ5V8VUKtstp_A52HLTpdjcjxaNNXIXNyu4PifcTyFtR5vsnEnIM9gxfrn8KgY2ry9AE-ZHifnrCtjjP8-tofCH37xbka56WxsugZo_gfbn5FXvrn8-as_YmPvjw6PunQ6NjltU9hb_xtDLMy-HU7Rorf19IwV5CWi4icvYbL9ab_YCfsmDKEWUjRhHSGAqjLJdRXpmgK30lLNPB7pPNJOKFcjSKlTh9NqKGzoeJriT0LpWldo74hXsOqn3m4AU7kVaZ1F3GQ2kXmtZYyq0so8cZo7mQewiTwq-0U0L9v4eIz2CV3tORfAx2H2StNXMadmGid3UH9YUp921TvuoNscBKFE9lPMRHs7XcxLCkyjURgJ9Q8aJIkzRFZJAOudFC2_JkTb0IUHsPW7WC3vE2ZGCy8Tsg0KB8DvQ1b0I6e6Bc3re7DtDTyOyVGASjdWb2G1mS3sO0RTTfW-XUpX1gcZNA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JbtRAEC2FcAgX9sWsHSk5IUe22223DxxGhmiGJCMkZqTcTNvuJhGRJxp7BOHEP3DmV_gYvoSqtj2BQFAukbh5KbV7KbtedZVfAWyEoUpMgZ5qHibGxRPlSoNATvqFNp4spLBlOvfG0XAavt4X-yvwrf8XBjtRY0u1DeKfsgsQTRBe9LBVtJ9dDuWOPvmIHlr9YvQSl3MzCLZfTdKh2xURcBUXvHFLDwFAHgtf5Z4qKfAoNHG--Z5KPGW4NCUa2TIy2K2Cwl7GjyJUcqlKlSNe59juFbiKuCcg326Qvj397TKQfo-uYxnxLq_-bG_J7hX173bvDzD7V7tnbdz2Dfi-nB2b2vJha9HkW8XnM8SR_-303YTrHbpmg_Z1uAUruroNa2lf1O4OVJTXcnTCWtJm_NKzMfbSHVVmTpn4bFC05d6q92wypxhE8-PL1-6IDarq8OCwTR5k02ObsG93Gxkif_bmYNbMiH71E0tpT4yoXu7C9FKGew9Wq1mlHwCTieZRGXt-EetQJKUSAQIDLZLQKN-IxIF1XJOs-2TUmc0GCNAbo6vdSjnwvFearOg426l0yNE50ptL6eOWq-QcufVe_zKcfooQqUrPFnVGYXh0gT0u_yGDIkGMODJ04H6rvMuncW7L1_gObPyqzcv75CGgPxtzYUPgDvgXEUu7kRNLQ_PwAtP2DNaGk73dbHc03nkE1wLaIkG4EcjHsNrMF_oJ4sgmf2rfZgbvLlv_fwJHL3l-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIgEX_gvh15XaE0qVxHHiHDisUlZdCqtKdKXegpPYtKLKrjZZQTnxDjwBr8Kj8CTMJM4ChaJeKnHLz8hx7HHmG8_kG4CNMFSJKdBTzcPEuHiiXGkQyEm_0MaThRRtmc7X42hnEr48EAcr8LX_FwY7UWNLdRvEp1U9K41lGCCqILzhYctoQ20e5a4--YBeWv18tI1TuhkEwxf76Y5rCwm4igveuKWHICCPha9yT5UUfBSaeN98TyWeMlyaEg1tGRnsWkGhL-NHESq6VKXKEbNzbPcSXKYIIfl3g_TNz18vA-n3CDuWEbe59ad7S7avqH-3fX8A2r_avtbODW_At-UItekt77cWTb5VfDpFHvlfD-FNuG5RNht0y-IWrOjqNlxN--J2d6Ci_JbjE9aRN-MXn42xl-6oMnPKyGeDoiv7Vr1j-3OKRTTfP3-xR2xQVUeHR10SIZvM2sT9dteRoQfA9g6nzZRoWD-ylPbGiPLlLkwu5HXXYLWaVvo-MJloHpWx5xexDkVSKhEgQNAiCY3yjUgcWMc5yeyno87arIAAvTK6amfKgWe94mSF5W6nEiLHZ0hvLqVnHWfJGXLrvQ5mOPwUKVKVni7qjMLx6Ap7XP5DBkWCGPFk6MC9ToGXT-O8LWPjO7Dxq0Yv75OngH5tzEUbCnfAP49Yat-c2BqaB-cYtqdwZW97mL0ajXcfwrWAdkoQdQTyEaw284V-jHCyyZ-0C5rB24tW_x-23XwB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Effective+Near-Infrared+Activating+Triplet-Triplet+Annihilation+Upconversion+for+Photoredox+Catalysis&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Huang%2C+Ling&rft.au=Wu%2C+Wenting&rft.au=Li%2C+Yang&rft.au=Huang%2C+Kai&rft.date=2020-10-28&rft.pub=Amer+Chemical+Soc&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=142&rft.issue=43&rft.spage=18460&rft.epage=18470&rft_id=info:doi/10.1021%2Fjacs.0c06976&rft_id=info%3Apmid%2F33074671&rft.externalDBID=n%2Fa&rft.externalDocID=000582673500020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon