Modelling rainfall‐induced phosphorus loss with eroded clay and surface runoff

Phosphorus (P) loss via runoff will reduce soil fertility and cause water eutrophication. Although P is lost as both particulate phosphorus (PP) and soluble phosphorus (SP), the existing P transport models for landscapes rarely consider PP and its exchange with surface runoff. We developed an integr...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 37; no. 2
Main Authors Chen, Minghong, Li, Yun, Wang, Chaozi, Walter, M. Todd, Huang, Lei
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.02.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phosphorus (P) loss via runoff will reduce soil fertility and cause water eutrophication. Although P is lost as both particulate phosphorus (PP) and soluble phosphorus (SP), the existing P transport models for landscapes rarely consider PP and its exchange with surface runoff. We developed an integrated P transport model which coupled both SP and PP transport mechanisms based on the Rose–Gao model and assessed it via laboratory experiments. We also introduced a temporal varying P partition coefficient Kd into the model to reveal the impacts of rapid changes in the water environment on P adsorption and desorption. Experiments using kaolinite mixed soil and montmorillonite mixed soil were conducted under artificial rainfall events. The results show that the P transport model simulates the concentrations of eroded sediment, SP, and PP in surface runoff, with good agreement with the measured values (all R2 > 0.88). Kaolinite mixed soil had larger sediment and SP concentrations in the runoff than montmorillonite mixed soil. In addition, compared with the no Kd model (Gao model) and the constant Kd model, our model provided simulation results that most closely matched the experimental data. Considering the influence of eroded sediment and the P dynamic partitioning between sediment and water to the surface, the P transport model can provide an effective tool for P dynamics with water and sediment in surface runoff. An integrated phosphorus (P) transport model is developed based on the Rose–Gao model. A dynamic partition coefficient Kd is introduced into the P transport model. Soils mixed with kaolinite and montmorillonite were tested for model validation. The importance of eroded sediment on the P transport is presented and analysed.
AbstractList Phosphorus (P) loss via runoff will reduce soil fertility and cause water eutrophication. Although P is lost as both particulate phosphorus (PP) and soluble phosphorus (SP), the existing P transport models for landscapes rarely consider PP and its exchange with surface runoff. We developed an integrated P transport model which coupled both SP and PP transport mechanisms based on the Rose–Gao model and assessed it via laboratory experiments. We also introduced a temporal varying P partition coefficient Kd into the model to reveal the impacts of rapid changes in the water environment on P adsorption and desorption. Experiments using kaolinite mixed soil and montmorillonite mixed soil were conducted under artificial rainfall events. The results show that the P transport model simulates the concentrations of eroded sediment, SP, and PP in surface runoff, with good agreement with the measured values (all R2 > 0.88). Kaolinite mixed soil had larger sediment and SP concentrations in the runoff than montmorillonite mixed soil. In addition, compared with the no Kd model (Gao model) and the constant Kd model, our model provided simulation results that most closely matched the experimental data. Considering the influence of eroded sediment and the P dynamic partitioning between sediment and water to the surface, the P transport model can provide an effective tool for P dynamics with water and sediment in surface runoff. An integrated phosphorus (P) transport model is developed based on the Rose–Gao model. A dynamic partition coefficient Kd is introduced into the P transport model. Soils mixed with kaolinite and montmorillonite were tested for model validation. The importance of eroded sediment on the P transport is presented and analysed.
Phosphorus (P) loss via runoff will reduce soil fertility and cause water eutrophication. Although P is lost as both particulate phosphorus (PP) and soluble phosphorus (SP), the existing P transport models for landscapes rarely consider PP and its exchange with surface runoff. We developed an integrated P transport model which coupled both SP and PP transport mechanisms based on the Rose–Gao model and assessed it via laboratory experiments. We also introduced a temporal varying P partition coefficient Kd into the model to reveal the impacts of rapid changes in the water environment on P adsorption and desorption. Experiments using kaolinite mixed soil and montmorillonite mixed soil were conducted under artificial rainfall events. The results show that the P transport model simulates the concentrations of eroded sediment, SP, and PP in surface runoff, with good agreement with the measured values (all R² > 0.88). Kaolinite mixed soil had larger sediment and SP concentrations in the runoff than montmorillonite mixed soil. In addition, compared with the no Kd model (Gao model) and the constant Kd model, our model provided simulation results that most closely matched the experimental data. Considering the influence of eroded sediment and the P dynamic partitioning between sediment and water to the surface, the P transport model can provide an effective tool for P dynamics with water and sediment in surface runoff.
Phosphorus (P) loss via runoff will reduce soil fertility and cause water eutrophication. Although P is lost as both particulate phosphorus (PP) and soluble phosphorus (SP), the existing P transport models for landscapes rarely consider PP and its exchange with surface runoff. We developed an integrated P transport model which coupled both SP and PP transport mechanisms based on the Rose–Gao model and assessed it via laboratory experiments. We also introduced a temporal varying P partition coefficient Kd into the model to reveal the impacts of rapid changes in the water environment on P adsorption and desorption. Experiments using kaolinite mixed soil and montmorillonite mixed soil were conducted under artificial rainfall events. The results show that the P transport model simulates the concentrations of eroded sediment, SP, and PP in surface runoff, with good agreement with the measured values (all R2 > 0.88). Kaolinite mixed soil had larger sediment and SP concentrations in the runoff than montmorillonite mixed soil. In addition, compared with the no Kd model (Gao model) and the constant Kd model, our model provided simulation results that most closely matched the experimental data. Considering the influence of eroded sediment and the P dynamic partitioning between sediment and water to the surface, the P transport model can provide an effective tool for P dynamics with water and sediment in surface runoff.
Phosphorus (P) loss via runoff will reduce soil fertility and cause water eutrophication. Although P is lost as both particulate phosphorus (PP) and soluble phosphorus (SP), the existing P transport models for landscapes rarely consider PP and its exchange with surface runoff. We developed an integrated P transport model which coupled both SP and PP transport mechanisms based on the Rose–Gao model and assessed it via laboratory experiments. We also introduced a temporal varying P partition coefficient K d into the model to reveal the impacts of rapid changes in the water environment on P adsorption and desorption. Experiments using kaolinite mixed soil and montmorillonite mixed soil were conducted under artificial rainfall events. The results show that the P transport model simulates the concentrations of eroded sediment, SP, and PP in surface runoff, with good agreement with the measured values (all R 2  > 0.88). Kaolinite mixed soil had larger sediment and SP concentrations in the runoff than montmorillonite mixed soil. In addition, compared with the no K d model (Gao model) and the constant K d model, our model provided simulation results that most closely matched the experimental data. Considering the influence of eroded sediment and the P dynamic partitioning between sediment and water to the surface, the P transport model can provide an effective tool for P dynamics with water and sediment in surface runoff.
Author Li, Yun
Huang, Lei
Wang, Chaozi
Walter, M. Todd
Chen, Minghong
Author_xml – sequence: 1
  givenname: Minghong
  orcidid: 0000-0001-8991-8384
  surname: Chen
  fullname: Chen, Minghong
  email: chenminghong@cau.edu.cn
  organization: Tsinghua University
– sequence: 2
  givenname: Yun
  surname: Li
  fullname: Li, Yun
  organization: China Agricultural University
– sequence: 3
  givenname: Chaozi
  surname: Wang
  fullname: Wang, Chaozi
  organization: Cornell University
– sequence: 4
  givenname: M. Todd
  surname: Walter
  fullname: Walter, M. Todd
  organization: Cornell University
– sequence: 5
  givenname: Lei
  surname: Huang
  fullname: Huang, Lei
  organization: Tsinghua University
BookMark eNp1kL1KBDEUhYMouP4UvkHARovRm0kykylF_ANFCy2sQjY_bmRM1mSGZTsfwWf0SYyulWhxuXD5zuGes4XWQwwWoT0CRwSgPp4t50eECdKuoQmBrqsICL6OJiAErxoQ7SbayvkZABgImKC7m2hs3_vwhJPywam-_3h798GM2ho8n8VcJo0Z9zFnvPDDDNtUJAbrXi2xCgbnMTmlLU5jiM7toI1iku3uz95GD-dn96eX1fXtxdXpyXWlKKdt5ciUGK44aCoax7SCaeNcwzmxVnespoZ1gjKrOlEDUazcp7TgRjWGUwF0Gx2sfOcpvo42D_LFZ12iqGDjmGUtCOkEow0r6P4v9DmOKZTvZN22XUcFr0WhjleUTiVqsk5qP6jBxzCUZnpJQH41LEvD8rvhojj8pZgn_6LS8k_2x33he7v8H5SXj3crxSeKV43N
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_174905
crossref_primary_10_1016_j_jhydrol_2024_132534
Cites_doi 10.1016/j.agee.2020.107135
10.1016/j.gca.2014.03.033
10.1007/s11356-016-7093-3
10.1016/j.jhydrol.2007.09.033
10.1016/s0022-1694(00)00400-5
10.1016/j.jhydrol.2013.06.055
10.1007/s11368-019-02370-y
10.2136/sssaj1988.03615995005200030002x
10.1007/s11629-016-4354-z
10.1016/j.envpol.2016.04.029
10.1016/j.still.2016.04.018
10.1016/s1001-6279(13)60035-9
10.1002/ldr.2538
10.1029/2021WR031292
10.1016/j.jher.2015.06.002
10.1016/j.ecoleng.2014.05.007
10.1007/s10457-007-9085-2
10.1016/j.scitotenv.2016.06.094
10.2166/wst.1999.0527
10.1002/hyp.7722
10.1002/hyp.11497
10.2136/sssaj1990.03615995005400020003x
10.1016/j.catena.2019.01.039
10.2134/jeq2011.0242
10.1038/s41598-018-34144-w
10.1016/j.jhydrol.2022.127732
10.1007/s11356-016-7555-7
10.3882/J.ISSN.1674-2370.2013.03.003
10.1007/s11356-016-6452-4
10.1016/j.geoderma.2010.12.019
10.1016/s0016-7037(97)00096-3
10.1016/j.jhydrol.2007.06.003
10.1016/j.envpol.2019.113235
10.1016/j.jhydrol.2004.11.007
10.1007/s11356-020-09587-2
10.1088/1755-1315/157/1/012005
10.1007/s11356-020-12206-9
10.1016/j.advwatres.2017.10.028
10.1016/j.watres.2015.08.049
10.1016/j.scitotenv.2017.02.227
10.1016/j.chemosphere.2020.128334
10.2136/sssaj2003.4580
10.1007/s11431-012-5094-0
10.1016/j.watres.2005.01.026
10.1016/j.colsurfa.2005.08.022
10.1007/s11356-020-10602-9
10.1016/j.jhydrol.2020.125514
10.1016/j.jhydrol.2004.03.026
10.1016/j.jcis.2005.03.081
10.1155/2019/2760204
10.1007/s10236-013-0641-1
10.1016/j.scitotenv.2021.145108
10.1016/j.pce.2017.06.005
10.1016/j.watres.2020.115779
10.1061/(asce)he.1943-5584.0000622
10.1002/hyp.13233
10.1038/srep44082
10.1007/s10021-001-0020-5
10.2136/sssaj1991.03615995005500020003x
10.1016/j.jhydrol.2017.01.035
10.1016/j.jhydrol.2011.03.011
10.1016/j.jcis.2004.12.032
10.1016/j.catena.2020.104473
10.1016/j.scitotenv.2016.11.123
10.3390/ijerph15112355
10.1007/s11356-020-08879-x
10.1007/s11356-018-2999-6
10.1016/j.still.2020.104585
10.1016/s0043-1354(02)00358-5
10.1134/s0097807814050170
10.1016/j.scitotenv.2019.06.030
10.2134/jeq1992.00472425002100010003x
10.1021/acs.est.5b05395
10.1016/j.watres.2020.116193
10.1016/j.scitotenv.2019.06.073
10.1007/s11368-021-02971-6
10.1016/j.scitotenv.2019.135220
10.1016/j.advwatres.2016.10.016
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7S9
L.6
DOI 10.1002/hyp.14817
DatabaseName CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage n/a
ExternalDocumentID 10_1002_hyp_14817
HYP14817
Genre article
GrantInformation_xml – fundername: the Joint Institute of Internet of Water and Digital Water Governance, Tsinghua ‐ Ningxia Yinchuan
  funderid: sklhse‐2020‐Iow03
– fundername: National Natural Science Foundation of China
  funderid: 52079137
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-a3537-f1b1d5a50c386f4ca0b6ff6551eec9423d49834ea98201a451eb3a50da6d53803
IEDL.DBID DR2
ISSN 0885-6087
IngestDate Fri Jul 11 18:27:56 EDT 2025
Tue Aug 12 22:19:49 EDT 2025
Tue Jul 01 01:46:53 EDT 2025
Thu Apr 24 23:09:10 EDT 2025
Wed Aug 20 07:27:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3537-f1b1d5a50c386f4ca0b6ff6551eec9423d49834ea98201a451eb3a50da6d53803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8991-8384
PQID 2779938528
PQPubID 2034139
PageCount 12
ParticipantIDs proquest_miscellaneous_2811984364
proquest_journals_2779938528
crossref_citationtrail_10_1002_hyp_14817
crossref_primary_10_1002_hyp_14817
wiley_primary_10_1002_hyp_14817_HYP14817
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Hydrological processes
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 7
1990; 54
2019; 2019
2021; 21
2014; 70
2013; 28
2007; 347
2020; 20
1991; 55
2021; 28
2007; 342
2013; 63
2019; 687
2019; 686
2017; 592
2008; 72
2013; 6
2021; 1–11
2014; 135
2011; 402
2013; 18
2018; 8
2010; 24
2013; 56
2004; 295
2015; 85
2019; 26
1987
2022; 609
2005; 308
2020; 177
2016; 569–570
2019; 711
2018; 32
2011; 161
2005; 39
2001; 244
1997; 61
2020; 184
2010
2018; 103
2016; 10
2006; 273
2003; 37
2020; 304
2016; 50
2021; 263
2020; 189
1988; 52
2014; 41
2018; 25
2017; 579
2016; 162
2017; 549
2018; 111
2005; 285
2021; 772
2017; 14
2001; 4
2005; 289
2018; 157
1999; 39
2020; 590
2020; 27
2022; 58
2013; 499
2020; 199
2016; 214
1992; 21
2016; 27
2019; 177
2018; 15
2019; 255
2016; 23
2012; 41
2017; 106
2003; 67
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 103
  start-page: 19
  year: 2018
  end-page: 27
  article-title: Phosphorus fraction and phosphate sorption‐release characteristics of the wetland sediments in the Yellow River Delta
  publication-title: Physics and Chemistry of the Earth
– volume: 25
  start-page: 23515
  issue: 24
  year: 2018
  end-page: 23528
  article-title: Long trend reduction of phosphorus wastewater loading in the seine: Determination of phosphorus speciation and sorption for modeling algal growth
  publication-title: Environmental Science and Pollution Research
– volume: 72
  start-page: 173
  issue: 3
  year: 2008
  end-page: 185
  article-title: Soil properties and physiographic factors controlling the natural vegetation re‐growth in a disturbed catchment of the central Spanish Pyrenees
  publication-title: Agroforestry Systems
– volume: 162
  start-page: 46
  year: 2016
  end-page: 54
  article-title: Adsorption and desorption kinetics and phosphorus hysteresis in highly weathered soil by stirred flow chamber experiments
  publication-title: Soil and Tillage Research
– volume: 161
  start-page: 194
  issue: 3–4
  year: 2011
  end-page: 201
  article-title: Phosphorus leaching in a sandy soil as affected by organic and inorganic fertilizer sources
  publication-title: Geoderma
– volume: 39
  start-page: 41
  issue: 12
  year: 1999
  end-page: 45
  article-title: The effect of rainfall intensity on soil erosion and particulate phosphorus transfer from arable soils
  publication-title: Water Science and Technology
– volume: 177
  start-page: 13
  year: 2019
  end-page: 21
  article-title: KINEROS2‐based simulation of total nitrogen loss on slopes under rainfall events
  publication-title: Catena
– volume: 7
  start-page: 44082
  year: 2017
  article-title: Mathematical model of sediment and solute transport along slope land in different rainfall pattern conditions
  publication-title: Scientific Reports
– volume: 20
  start-page: 153
  issue: 1
  year: 2020
  end-page: 165
  article-title: Determining the depth of mixing layer in which soil solute releasing from soil to surface runoff on the unsaturated loess slope under artificial rainfall condition
  publication-title: Journal of Soils and Sediments
– volume: 687
  start-page: 128
  issue: OCT.15
  year: 2019
  end-page: 136
  article-title: Determination sources of nitrates into the three gorges reservoir using nitrogen and oxygen isotopes
  publication-title: Science of the Total Environment
– volume: 41
  start-page: 604
  issue: 5
  year: 2014
  end-page: 611
  article-title: Soil erosion and pollutant transport during rainfall‐runoff processes
  publication-title: Water Resources
– volume: 23
  start-page: 12444
  issue: 12
  year: 2016
  end-page: 12455
  article-title: Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water
  publication-title: Environmental Science and Pollution Research
– volume: 255
  issue: Pt 2
  year: 2019
  article-title: The potential role of sediment organic phosphorus in algal growth in a low nutrient lake
  publication-title: Environmental Pollution
– volume: 263
  year: 2021
  article-title: Implications of phosphorus partitioning at the suspended particle‐water interface for lake eutrophication in China's largest freshwater lake
  publication-title: Poyang Lake. Chemosphere
– volume: 590
  year: 2020
  article-title: A new soil mixing layer model for simulating conservative solute loss from initially saturated soil to surface runoff
  publication-title: Journal of Hydrology
– volume: 189
  year: 2020
  article-title: Development of an ammonia nitrogen transport model from surface soil to runoff via raindrop splashing
  publication-title: Catena
– volume: 157
  issue: 1
  year: 2018
  article-title: Soil physicochemical properties to evaluate soil degradation under different land use types in a high rainfall tropical region: A case study from South Sulawesi, Indonesia
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 63
  start-page: 1113
  issue: 9–10
  year: 2013
  end-page: 1121
  article-title: Surface charge distribution and its impact on interactions between sediment particles
  publication-title: Ocean Dynamics
– volume: 67
  start-page: 458
  issue: 2
  year: 2003
  end-page: 470
  article-title: Dissolved phosphorus from undisturbed soil cores: Related to adsorption strength, flow rate, or soil structure?
  publication-title: Soil Science Society of America Journal
– volume: 135
  start-page: 190
  year: 2014
  end-page: 202
  article-title: Landscape types and pH control organic matter mediated mobilization of Al, Fe, U and La in boreal catchments
  publication-title: Geochimica et Cosmochimica Acta
– volume: 27
  start-page: 33975
  issue: 27
  year: 2020
  end-page: 33989
  article-title: Quantitative assessment of non‐point source pollution load of PN/PP based on RUSLE model: A case study in Beiluo River basin in China
  publication-title: Environmental Science and Pollution Research
– volume: 58
  issue: 3
  year: 2022
  article-title: Transport of phosphorus in the hyporheic zone
  publication-title: Water Resources Research
– volume: 18
  start-page: 527
  issue: 5
  year: 2013
  end-page: 535
  article-title: Modeling soil solute release into runoff and transport with runoff on a loess slope
  publication-title: Journal of Hydrologic Engineering
– volume: 184
  year: 2020
  article-title: Particulate organic carbon dynamics with sediment transport in the upper Yangtze River
  publication-title: Water Research
– volume: 61
  start-page: 2389
  issue: 12
  year: 1997
  end-page: 2396
  article-title: Phosphate and sulfate adsorption on goethite: Single anion and competitive adsorption
  publication-title: Geochimica et Cosmochimica Acta
– volume: 27
  start-page: 1547
  issue: 6
  year: 2016
  end-page: 1551
  article-title: Soil conservation in Europe: Wish or reality?
  publication-title: Land Degradation & Development
– volume: 6
  start-page: 262
  issue: 3
  year: 2013
  end-page: 271
  article-title: Characteristics of phosphorus adsorption by sediment mineral matrices with different particle sizes
  publication-title: Water Science and Engineering
– volume: 686
  start-page: 838
  year: 2019
  end-page: 846
  article-title: Effects of past land use on soil organic carbon changes after dam construction
  publication-title: Science of the Total Environment
– volume: 37
  start-page: 627
  issue: 3
  year: 2003
  end-page: 633
  article-title: Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir‐type empirical model
  publication-title: Water Research
– volume: 308
  start-page: 313
  issue: 1–4
  year: 2005
  end-page: 320
  article-title: Investigating raindrop effects on transport of sediment and non‐sorbed chemicals from soil to surface runoff
  publication-title: Journal of Hydrology
– volume: 70
  start-page: 140
  year: 2014
  end-page: 145
  article-title: Particulate phosphorus speciation and phosphate adsorption characteristics associated with sediment grain size
  publication-title: Ecological Engineering
– volume: 14
  start-page: 1577
  issue: 8
  year: 2017
  end-page: 1590
  article-title: Seasonal variations of organic carbon and nitrogen in the upper basins of Yangtze and yellow Rivers
  publication-title: Journal of Mountain Science
– volume: 24
  start-page: 3065
  issue: 21
  year: 2010
  end-page: 3073
  article-title: Experimental study and mathematical modelling of soluble chemical transfer from unsaturated/saturated soil to surface runoff
  publication-title: Hydrological Processes
– volume: 402
  start-page: 159
  issue: 1–2
  year: 2011
  end-page: 164
  article-title: A laboratory study of colloid and solute transport in surface runoff on saturated soil
  publication-title: Journal of Hydrology
– volume: 4
  start-page: 421
  issue: 5
  year: 2001
  end-page: 429
  article-title: The influence of soil biodiversity on hydrological pathways and the transfer of materials between terrestrial and aquatic ecosystems
  publication-title: Ecosystems
– volume: 32
  start-page: 1391
  issue: 10
  year: 2018
  end-page: 1400
  article-title: Modelling soil solute release and transport in run‐off on a loessial slope with and without surface stones
  publication-title: Hydrological Processes
– volume: 273
  start-page: 193
  issue: 1–3
  year: 2006
  end-page: 201
  article-title: Delamination and flocculation efficiency of sodium‐activated kaolin and montmorillonite
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
– volume: 32
  start-page: 3140
  issue: 20
  year: 2018
  end-page: 3157
  article-title: Assessment of alternative adsorption models and global sensitivity analysis to characterize hexavalent chromium loss from soil to surface runoff
  publication-title: Hydrological Processes
– volume: 10
  start-page: 1
  year: 2016
  end-page: 11
  article-title: Factors influencing phosphorus adsorption onto sediment in a dynamic environment
  publication-title: Journal of Hydro‐Environment Research
– year: 1987
– volume: 85
  start-page: 393
  year: 2015
  end-page: 403
  article-title: Mathematical model for interactions and transport of phosphorus and sediment in the three gorges reservoir
  publication-title: Water Research
– volume: 199
  year: 2020
  article-title: A new analytical model for predicting soil erosion and nutrient loss during crop growth on the Chinese loess plateau
  publication-title: Soil & Tillage Research
– volume: 41
  start-page: 1642
  issue: 5
  year: 2012
  end-page: 1652
  article-title: Watershed‐level comparison of predictability and sensitivity of two phosphorus models
  publication-title: Journal of Environmental Quality
– volume: 569–570
  start-page: 332
  year: 2016
  end-page: 341
  article-title: A mathematical model for the transfer of soil solutes to runoff under water scouring
  publication-title: Science of the Total Environment
– volume: 609
  year: 2022
  article-title: Modeling of rainfall induced phosphorus transport from soil to runoff with consideration of phosphorus‐sediment interactions
  publication-title: Journal of Hydrology
– volume: 52
  start-page: 612
  issue: 3
  year: 1988
  end-page: 618
  article-title: Transfer of chemicals from soil solution to surface runoff: A diffusion‐based soil model
  publication-title: Soil Science Society of America Journal
– volume: 56
  start-page: 280
  issue: 2
  year: 2013
  end-page: 285
  article-title: Analysis of the complex morphology of sediment particle surface based on electron microscope images
  publication-title: Science China‐Technological Sciences
– volume: 28
  start-page: 246
  issue: 2
  year: 2013
  end-page: 253
  article-title: Effects of sediment particle morphology on adsorption of phosphorus elements
  publication-title: International Journal of Sediment Research
– volume: 26
  start-page: 33963
  issue: 33
  year: 2019
  end-page: 33975
  article-title: Influence of rainfall intensity and slope on suspended solids and phosphorus losses in runoff
  publication-title: Environmental Science and Pollution Research
– volume: 55
  start-page: 320
  issue: 2
  year: 1991
  end-page: 324
  article-title: Rainfall detachment and deposition: Sediment transport in the absence of flow‐driven processes
  publication-title: Soil Science Society of America Journal
– volume: 106
  start-page: 144
  year: 2017
  end-page: 153
  article-title: Modeling the release of from soil into overland flow under raindrop impact
  publication-title: Advances in Water Resources
– volume: 285
  start-page: 476
  issue: 2
  year: 2005
  end-page: 486
  article-title: Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface
  publication-title: Journal of Colloid and Interface Science
– volume: 342
  start-page: 331
  issue: 3–4
  year: 2007
  end-page: 335
  article-title: Reduced raindrop‐impact driven soil erosion by infiltration
  publication-title: Journal of Hydrology
– volume: 54
  start-page: 312
  issue: 2
  year: 1990
  end-page: 321
  article-title: Modeling soluble chemical transfer to runoff with rainfall impact as a diffusion process
  publication-title: Soil Science Society of America Journal
– volume: 579
  start-page: 1298
  year: 2017
  end-page: 1315
  article-title: Mapping monthly rainfall erosivity in Europe
  publication-title: Science of the Total Environment
– volume: 177
  year: 2020
  article-title: Long‐term (1980–2015) changes in net anthropogenic phosphorus inputs and riverine phosphorus export in the Yangtze River basin
  publication-title: Water Research
– year: 2010
– volume: 592
  start-page: 649
  year: 2017
  end-page: 661
  article-title: Stochastic modeling of phosphorus transport in the three gorges reservoir by incorporating variability associated with the phosphorus partition coefficient
  publication-title: Science of the Total Environment
– volume: 50
  start-page: 3371
  issue: 7
  year: 2016
  end-page: 3381
  article-title: A holistic approach to understanding the desorption of phosphorus in soils
  publication-title: Environmental Science & Technology
– volume: 244
  start-page: 9
  issue: 1–2
  year: 2001
  end-page: 16
  article-title: Testing a mechanistic soil erosion model with a simple experiment
  publication-title: Journal of Hydrology
– volume: 289
  start-page: 339
  issue: 2
  year: 2005
  end-page: 346
  article-title: Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China
  publication-title: Journal of Colloid and Interface Science
– volume: 1–11
  start-page: 17495
  year: 2021
  end-page: 17505
  article-title: Phosphorus adsorption by sediment considering mineral composition and environmental factors
  publication-title: Environmental Science and Pollution Research
– volume: 304
  year: 2020
  article-title: Raindrop‐induced ejection at soil‐water interface contributes substantially to nutrient runoff losses from rice paddies
  publication-title: Agriculture, Ecosystems and Environment
– volume: 28
  start-page: 4404
  issue: 4
  year: 2021
  end-page: 4416
  article-title: Using an ensemble Kalman filter method to calibrate parameters of a prediction model for chemical transport from soil to surface runoff
  publication-title: Environmental Science and Pollution Research
– volume: 21
  start-page: 3310
  issue: 10
  year: 2021
  end-page: 3325
  article-title: Effects of effluents from wastewater treatment plants on the abiotic and biotic uptake of phosphorus by streambed sediments
  publication-title: Journal of Soils and Sediments
– volume: 111
  start-page: 1
  year: 2018
  end-page: 5
  article-title: Release of Escherichia coli under raindrop impact: The role of clay
  publication-title: Advances in Water Resources
– volume: 23
  start-page: 18883
  issue: 18
  year: 2016
  end-page: 18891
  article-title: Phosphorus adsorption on natural sediments with different pH incorporating surface morphology characterization
  publication-title: Environmental Science and Pollution Research
– volume: 499
  start-page: 140
  year: 2013
  end-page: 145
  article-title: Modeling simple experiments of biochar erosion from soil
  publication-title: Journal of Hydrology
– volume: 549
  start-page: 754
  year: 2017
  end-page: 768
  article-title: Numerical simulation and experimental study on farmland nitrogen loss to surface runoff in a raindrop driven process
  publication-title: Journal of Hydrology
– volume: 711
  year: 2019
  article-title: Use of iron oxide nanoparticles for immobilizing phosphorus in‐situ: Increase in soil reactive surface area and effect on soluble phosphorus
  publication-title: Science of the Total Environment
– volume: 772
  year: 2021
  article-title: Land use, geology and soil properties control nutrient concentrations in headwater streams
  publication-title: Science of the Total Environment
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 10
  article-title: Study of the phosphorus adsorption on the sediments
  publication-title: Journal of Chemistry
– volume: 21
  start-page: 30
  issue: 1
  year: 1992
  end-page: 35
  article-title: The transport of bioavailable phosphorus in agricultural runoff
  publication-title: Journal of Environmental Quality
– volume: 347
  start-page: 430
  issue: 3–4
  year: 2007
  end-page: 437
  article-title: Modeling soil solute release into runoff with infiltration
  publication-title: Journal of Hydrology
– volume: 39
  start-page: 1245
  issue: 7
  year: 2005
  end-page: 1254
  article-title: Phosphorus adsorption on natural sediments: Modeling and effects of pH and sediment composition
  publication-title: Water Research
– volume: 295
  start-page: 291
  issue: 1–4
  year: 2004
  end-page: 304
  article-title: Rainfall induced chemical transport from soil to runoff: Theory and experiments
  publication-title: Journal of Hydrology
– volume: 28
  start-page: 1837
  issue: 2
  year: 2021
  end-page: 1849
  article-title: Using sediment resuspension to immobilize sedimentary phosphorus
  publication-title: Environmental Science and Pollution Research
– volume: 15
  start-page: 2355
  issue: 11
  year: 2018
  article-title: Spatial and temporal distribution of particulate phosphorus and their correlation with environmental factors in a shallow eutrophic chinese lake (lake taihu)
  publication-title: International Journal of Environmental Research and Public Health
– volume: 214
  start-page: 282
  year: 2016
  end-page: 289
  article-title: The fate of phosphorus in sediments after the full operation of the three gorges reservoir, China
  publication-title: Environmental Pollution
– volume: 8
  start-page: 15619
  issue: 1
  year: 2018
  article-title: Investigation on the adsorption of phosphorus in all fractions from sediment by modified maifanite
  publication-title: Scientific Reports
– ident: e_1_2_10_71_1
  doi: 10.1016/j.agee.2020.107135
– ident: e_1_2_10_36_1
  doi: 10.1016/j.gca.2014.03.033
– ident: e_1_2_10_31_1
  doi: 10.1007/s11356-016-7093-3
– ident: e_1_2_10_65_1
  doi: 10.1016/j.jhydrol.2007.09.033
– ident: e_1_2_10_29_1
  doi: 10.1016/s0022-1694(00)00400-5
– ident: e_1_2_10_68_1
  doi: 10.1016/j.jhydrol.2013.06.055
– ident: e_1_2_10_78_1
  doi: 10.1007/s11368-019-02370-y
– ident: e_1_2_10_64_1
  doi: 10.2136/sssaj1988.03615995005200030002x
– ident: e_1_2_10_41_1
  doi: 10.1007/s11629-016-4354-z
– ident: e_1_2_10_72_1
  doi: 10.1016/j.envpol.2016.04.029
– ident: e_1_2_10_25_1
  doi: 10.1016/j.still.2016.04.018
– ident: e_1_2_10_19_1
  doi: 10.1016/s1001-6279(13)60035-9
– ident: e_1_2_10_53_1
  doi: 10.1002/ldr.2538
– ident: e_1_2_10_34_1
  doi: 10.1029/2021WR031292
– ident: e_1_2_10_44_1
  doi: 10.1016/j.jher.2015.06.002
– ident: e_1_2_10_47_1
  doi: 10.1016/j.ecoleng.2014.05.007
– ident: e_1_2_10_49_1
  doi: 10.1007/s10457-007-9085-2
– ident: e_1_2_10_75_1
  doi: 10.1016/j.scitotenv.2016.06.094
– ident: e_1_2_10_20_1
  doi: 10.2166/wst.1999.0527
– ident: e_1_2_10_60_1
  doi: 10.1002/hyp.7722
– ident: e_1_2_10_17_1
  doi: 10.1002/hyp.11497
– ident: e_1_2_10_3_1
  doi: 10.2136/sssaj1990.03615995005400020003x
– ident: e_1_2_10_6_1
  doi: 10.1016/j.catena.2019.01.039
– ident: e_1_2_10_55_1
  doi: 10.2134/jeq2011.0242
– ident: e_1_2_10_45_1
  doi: 10.1038/s41598-018-34144-w
– ident: e_1_2_10_81_1
  doi: 10.1016/j.jhydrol.2022.127732
– ident: e_1_2_10_4_1
  doi: 10.1007/s11356-016-7555-7
– ident: e_1_2_10_74_1
  doi: 10.3882/J.ISSN.1674-2370.2013.03.003
– ident: e_1_2_10_59_1
  doi: 10.1007/s11356-016-6452-4
– ident: e_1_2_10_35_1
  doi: 10.1016/j.geoderma.2010.12.019
– ident: e_1_2_10_23_1
  doi: 10.1016/s0016-7037(97)00096-3
– ident: e_1_2_10_63_1
  doi: 10.1016/j.jhydrol.2007.06.003
– ident: e_1_2_10_50_1
  doi: 10.1016/j.envpol.2019.113235
– ident: e_1_2_10_22_1
  doi: 10.1016/j.jhydrol.2004.11.007
– ident: e_1_2_10_27_1
  doi: 10.1007/s11356-020-09587-2
– ident: e_1_2_10_2_1
  doi: 10.1088/1755-1315/157/1/012005
– ident: e_1_2_10_42_1
  doi: 10.1007/s11356-020-12206-9
– ident: e_1_2_10_67_1
  doi: 10.1016/j.advwatres.2017.10.028
– ident: e_1_2_10_32_1
  doi: 10.1016/j.watres.2015.08.049
– ident: e_1_2_10_33_1
  doi: 10.1016/j.scitotenv.2017.02.227
– ident: e_1_2_10_54_1
  doi: 10.1016/j.chemosphere.2020.128334
– ident: e_1_2_10_5_1
  doi: 10.2136/sssaj2003.4580
– ident: e_1_2_10_13_1
  doi: 10.1007/s11431-012-5094-0
– ident: e_1_2_10_80_1
  doi: 10.1016/j.watres.2005.01.026
– ident: e_1_2_10_62_1
  doi: 10.1016/j.colsurfa.2005.08.022
– ident: e_1_2_10_24_1
  doi: 10.1007/s11356-020-10602-9
– ident: e_1_2_10_61_1
  doi: 10.1016/j.jhydrol.2020.125514
– ident: e_1_2_10_21_1
  doi: 10.1016/j.jhydrol.2004.03.026
– ident: e_1_2_10_69_1
  doi: 10.1016/j.jcis.2005.03.081
– ident: e_1_2_10_51_1
  doi: 10.1155/2019/2760204
– ident: e_1_2_10_12_1
  doi: 10.1007/s10236-013-0641-1
– ident: e_1_2_10_16_1
  doi: 10.1016/j.scitotenv.2021.145108
– ident: e_1_2_10_15_1
  doi: 10.1016/j.pce.2017.06.005
– ident: e_1_2_10_30_1
  doi: 10.1016/j.watres.2020.115779
– ident: e_1_2_10_18_1
  doi: 10.1061/(asce)he.1943-5584.0000622
– ident: e_1_2_10_73_1
  doi: 10.1002/hyp.13233
– ident: e_1_2_10_58_1
  doi: 10.1038/srep44082
– ident: e_1_2_10_10_1
  doi: 10.1007/s10021-001-0020-5
– ident: e_1_2_10_26_1
  doi: 10.2136/sssaj1991.03615995005500020003x
– ident: e_1_2_10_39_1
  doi: 10.1016/j.jhydrol.2017.01.035
– ident: e_1_2_10_76_1
  doi: 10.1016/j.jhydrol.2011.03.011
– ident: e_1_2_10_7_1
  doi: 10.1016/j.jcis.2004.12.032
– ident: e_1_2_10_8_1
  doi: 10.1016/j.catena.2020.104473
– ident: e_1_2_10_9_1
  doi: 10.1016/j.scitotenv.2016.11.123
– ident: e_1_2_10_37_1
  doi: 10.3390/ijerph15112355
– ident: e_1_2_10_48_1
  doi: 10.1007/s11356-020-08879-x
– ident: e_1_2_10_77_1
  doi: 10.1007/s11356-018-2999-6
– ident: e_1_2_10_57_1
  doi: 10.1016/j.still.2020.104585
– ident: e_1_2_10_52_1
  doi: 10.1016/s0043-1354(02)00358-5
– ident: e_1_2_10_14_1
– ident: e_1_2_10_28_1
  doi: 10.1134/s0097807814050170
– ident: e_1_2_10_43_1
  doi: 10.1016/j.scitotenv.2019.06.030
– ident: e_1_2_10_56_1
  doi: 10.2134/jeq1992.00472425002100010003x
– ident: e_1_2_10_46_1
  doi: 10.1021/acs.est.5b05395
– ident: e_1_2_10_70_1
  doi: 10.1016/j.watres.2020.116193
– ident: e_1_2_10_79_1
  doi: 10.1016/j.scitotenv.2019.06.073
– ident: e_1_2_10_40_1
  doi: 10.1007/s11368-021-02971-6
– ident: e_1_2_10_11_1
– ident: e_1_2_10_38_1
  doi: 10.1016/j.scitotenv.2019.135220
– ident: e_1_2_10_66_1
  doi: 10.1016/j.advwatres.2016.10.016
SSID ssj0004080
Score 2.4139462
Snippet Phosphorus (P) loss via runoff will reduce soil fertility and cause water eutrophication. Although P is lost as both particulate phosphorus (PP) and soluble...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms adsorption
clay
desorption
dynamic partition
Eutrophication
Fertility
Kaolinite
Laboratory experimentation
Laboratory experiments
Modelling
Montmorillonite
Montmorillonites
Phosphorus
phosphorus transport
Precipitation
rain
Rainfall
Rainmaking
Rose–Gao model
Runoff
Sediment
Sediments
Soil
Soil fertility
Soils
soluble phosphorus
Surface runoff
Transport
Title Modelling rainfall‐induced phosphorus loss with eroded clay and surface runoff
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.14817
https://www.proquest.com/docview/2779938528
https://www.proquest.com/docview/2811984364
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iRS--xdVVonjwUk3btEnxJKIsHkREQUEoebJg6S7b7WE9-RP8jf4SJ33sqiiIh0JppuQxmcmX1zcIHRoVaWHB-1GfSI8aJjyuBAOL59waIpiu2T6v4949vXqIHubQaXsXpuaHmC64Ocuo_LUzcCGLkxlpaH8yBDPnvrtJ7s5qOUB0O6OOoqSKmgZZRl5MOGtZhUhwMv3z61g0A5ifYWo1zlwuo6e2hPXxkufjciyP1cs38sZ_VmEFLTX4E5_VHWYVzZl8DS00odD7k3V046KjVUTd2EWPsCLL3l_fYOYOfUDjYX9QwDMqC5xBlbBbxsUGnDCkqUxMsMg1LsqRFcrgUZkPrN1A95cXd-c9rwm74IkwCplnfenrSEREhTy2VAkiY2tjgFbGqATgl6YJD6kRiUMPgsJ3GYK4FrEG90nCTTSfD3KzhTDVzMIMjkkaMWqJ5lQGXCdxYnSiQUUddNQqIFUNJ7kLjZGlNZtykEITpVUTddDBVHRYE3H8JNRttZg2tlikAWMAwngU8A7anyaDFbmtEZGbQQky3PcTTsOYQpEqlf2eSdp7vKletv8uuoMWXZz6-rh3F82PR6XZBTQzlntVt_0AHHvyDQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL2idEE3BfoQw9Otuugm4CRO7EhsUFU0pRShCiS6QJHjh0ZqlBnNTBbDik_gG_slvXaSmYJAqlhEiuIb-XF97WPHOQfgk1GJlhZHPxbSImCGy0AoyTHihbCGSq4bts-ztH_JTq6SqyU47P6Fafgh5htuLjL8eO0C3G1IHyxYQwezEca5CPkLeOkUvf2C6ueCPIpRr5uGmSZBSgXveIVodDB_9f5stICY_wJVP9Mcr8J1V8bmgMnv_Xpa7KubB_SNz63EGrxuISg5avrMOiyZ6g2stGrog9lbOHcCaZ6rmzgBCSvL8s_tHS7esRtoMhoMJ3iN6wkpsU7E7eQSg-MwpqlSzoisNJnUYyuVIeO6Glr7Di6Pv1586Qet8kIg4yTmgQ2LUCcyoSoWqWVK0iK1NkV0ZYzKEIFplomYGZk5ACEZPi9iNNcy1TiC0vg9LFfDymwAYZpbXMTxgiWcWaoFKyKhszQzOtPoox587jyQq5aW3KljlHlDqBzl2ES5b6IefJybjhoujseMtjs35m04TvKIc8RhIolEDz7MkzGQ3NcRWZlhjTYiDDPB4pRhkbzPns4k7_869zeb_2-6Byv9ix-n-em3s-9b8MrJ1jenv7dheTquzQ6Cm2mx6_vwXzUv9ig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD6oBfVFW6241rZT6UNfopNkkpngk2iX1RZZREFBCJO5sGDILrubh_XJn9Df2F_SM7ns1mKh9CEQMifM5Vzmm8nkOwCfjYq0tBj9mE8zjxkuPaEkR48Xwhoqua7ZPi_j3g27uI1ul-C4_Rem5oeYb7g5z6jitXPwkbZHC9LQwWyEbi58vgyvWEyFM-mzqwV3FKNV2jSsM_KwmLe0QjQ4mr_6fDJaIMzfcWo10XQ34b5tYn2-5OGwnGaH6vEP9sb_7MNr2GgAKDmpLeYNLJliC9aaXOiD2Tb0XXq0iqmbuPQRVub5z6cfuHRHI9BkNBhO8BqXE5Jjl4jbxyUGozCWqVzOiCw0mZRjK5Uh47IYWvsWbrpfr097XpN3wZNhFHLP-pmvIxlRFYrYMiVpFlsbI7YyRiWIvzRLRMiMTBx8kAyfZyGKaxlrjJ803IGVYliYXSBMc4tLOJ6xiDNLtWBZIHQSJ0YnGlXUgS-tAlLVkJK73Bh5WtMpBykOUVoNUQcO5qKjmonjJaH9Votp44yTNOAcUZiIAtGBT_NidCP3bUQWZliijPD9RLAwZtikSmV_ryTt3fWrm71_F_0Iq_2zbvr9_PLbO1h3Oevro9_7sDIdl-Y9Iptp9qGy4F985_Tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+rainfall%E2%80%90induced+phosphorus+loss+with+eroded+clay+and+surface+runoff&rft.jtitle=Hydrological+processes&rft.au=Chen%2C+Minghong&rft.au=Li%2C+Yun&rft.au=Wang%2C+Chaozi&rft.au=Walter%2C+M+Todd&rft.date=2023-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1099-1085&rft.volume=37&rft.issue=2&rft_id=info:doi/10.1002%2Fhyp.14817&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon