Regularized continuous time structural equation models: A network perspective

Regularized continuous time structural equation models are proposed to address two recent challenges in longitudinal research: Unequally spaced measurement occasions and high model complexity. Unequally spaced measurement occasions are part of most longitudinal studies, sometimes intentionally (e.g....

Full description

Saved in:
Bibliographic Details
Published inPsychological methods Vol. 28; no. 6; p. 1286
Main Authors Orzek, Jannik H, Voelkle, Manuel C
Format Journal Article
LanguageEnglish
Published United States 01.12.2023
Subjects
Online AccessGet more information
ISSN1939-1463
DOI10.1037/met0000550

Cover

Loading…
Abstract Regularized continuous time structural equation models are proposed to address two recent challenges in longitudinal research: Unequally spaced measurement occasions and high model complexity. Unequally spaced measurement occasions are part of most longitudinal studies, sometimes intentionally (e.g., in experience sampling methods) sometimes unintentionally (e.g., due to missing data). Yet, prominent dynamic models, such as the autoregressive cross-lagged model, assume equally spaced measurement occasions. If this assumption is violated parameter estimates can be biased, potentially leading to false conclusions. Continuous time structural equation models (CTSEM) resolve this problem by taking the exact time point of a measurement into account. This allows for any arbitrary measurement scheme. We combine CTSEM with LASSO and adaptive LASSO regularization. Such regularization techniques are especially promising for the increasingly complex models in psychological research, the most prominent example being network models with often dozens or hundreds of parameters. Here, LASSO regularization can reduce the risk of overfitting and simplify the model interpretation. In this article we highlight unique challenges in regularizing continuous time dynamic models, such as standardization or the optimization of the objective function, and offer different solutions. Our approach is implemented in the R (R Core Team, 2022) package regCtsem. We demonstrate the use of regCtsem in a simulation study, showing that the proposed regularization improves the parameter estimates, especially in small samples. The approach correctly eliminates true-zero parameters while retaining true-nonzero parameters. We present two empirical examples and end with a discussion on current limitations and future research directions. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
AbstractList Regularized continuous time structural equation models are proposed to address two recent challenges in longitudinal research: Unequally spaced measurement occasions and high model complexity. Unequally spaced measurement occasions are part of most longitudinal studies, sometimes intentionally (e.g., in experience sampling methods) sometimes unintentionally (e.g., due to missing data). Yet, prominent dynamic models, such as the autoregressive cross-lagged model, assume equally spaced measurement occasions. If this assumption is violated parameter estimates can be biased, potentially leading to false conclusions. Continuous time structural equation models (CTSEM) resolve this problem by taking the exact time point of a measurement into account. This allows for any arbitrary measurement scheme. We combine CTSEM with LASSO and adaptive LASSO regularization. Such regularization techniques are especially promising for the increasingly complex models in psychological research, the most prominent example being network models with often dozens or hundreds of parameters. Here, LASSO regularization can reduce the risk of overfitting and simplify the model interpretation. In this article we highlight unique challenges in regularizing continuous time dynamic models, such as standardization or the optimization of the objective function, and offer different solutions. Our approach is implemented in the R (R Core Team, 2022) package regCtsem. We demonstrate the use of regCtsem in a simulation study, showing that the proposed regularization improves the parameter estimates, especially in small samples. The approach correctly eliminates true-zero parameters while retaining true-nonzero parameters. We present two empirical examples and end with a discussion on current limitations and future research directions. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Author Voelkle, Manuel C
Orzek, Jannik H
Author_xml – sequence: 1
  givenname: Jannik H
  orcidid: 0000-0002-3123-2248
  surname: Orzek
  fullname: Orzek, Jannik H
  organization: Department of Psychology, Humboldt-Universitat zu Berlin
– sequence: 2
  givenname: Manuel C
  orcidid: 0000-0001-5576-8103
  surname: Voelkle
  fullname: Voelkle, Manuel C
  organization: Department of Psychology, Humboldt-Universitat zu Berlin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36633976$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKxDAYRoMozkU3PoDkBapJ_yZN3A2Do8KIILoe0vaPRNum5qLo0zugns23O3xnQQ5HPyIhZ5xdcAb15YCJ7RGCHZA516ALXkmYkUWMr4zxClR1TGYgJYCu5ZzcP-JL7k1w39jR1o_JjdnnSJMbkMYUcptyMD3F92yS8yMdfId9vKIrOmL69OGNThjihG1yH3hCjqzpI57-7ZI8b66f1rfF9uHmbr3aFgZEmQpEa0zViNpyhFrbBrHkUjVKdyjB1kIBCmxLhP15ofddSiDYqmtEa4xW5ZKc_3qn3AzY7abgBhO-dv9d5Q_-eVDb
CitedBy_id crossref_primary_10_1016_j_neuron_2024_10_006
crossref_primary_10_15626_MP_2023_3796
crossref_primary_10_1080_10705511_2023_2189070
crossref_primary_10_1186_s40494_023_01088_y
crossref_primary_10_1080_10705511_2024_2380919
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1037/met0000550
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Psychology
EISSN 1939-1463
ExternalDocumentID 36633976
Genre Journal Article
GroupedDBID ---
--Z
-~X
.-4
07C
0R~
123
29P
354
53G
5VS
7RZ
ABIVO
ABNCP
ABVOZ
ACHQT
ACPQG
AEHFB
AETEA
ALMA_UNASSIGNED_HOLDINGS
AWKKM
AZXWR
CGNQK
CGR
CS3
CUY
CVF
ECM
EIF
EPA
F5P
FTD
HVGLF
HZ~
ISO
LW5
NPM
O9-
OHT
OPA
OVD
P2P
PHGZM
PHGZT
ROL
SES
SPA
TEORI
TN5
UHS
XJT
YNT
ZPI
ID FETCH-LOGICAL-a352t-eefaa4b57f1e379fbee2168b89de63f7583e5ec2e31465903785e3f4db5caa982
IngestDate Mon Jul 21 05:34:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a352t-eefaa4b57f1e379fbee2168b89de63f7583e5ec2e31465903785e3f4db5caa982
ORCID 0000-0001-5576-8103
0000-0002-3123-2248
PMID 36633976
ParticipantIDs pubmed_primary_36633976
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Psychological methods
PublicationTitleAlternate Psychol Methods
PublicationYear 2023
SSID ssj0014384
Score 2.449699
Snippet Regularized continuous time structural equation models are proposed to address two recent challenges in longitudinal research: Unequally spaced measurement...
SourceID pubmed
SourceType Index Database
StartPage 1286
SubjectTerms Humans
Longitudinal Studies
Models, Psychological
Title Regularized continuous time structural equation models: A network perspective
URI https://www.ncbi.nlm.nih.gov/pubmed/36633976
Volume 28
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMeXqiC9iO-37MGbRNt9ZBNPFlGKoIK00lvZpBMoramP9mA_vbPZpFmL4uMSQpaGdH_JZGYz8x9CjhkDwKhCeYqzyBNKCi-IarEneS8GLWtMZ5L5t3d-sy1uOrJTqVy41SXj6DSefllX8h-qeAy5mirZP5CdnRQP4D7yxS0Sxu2vGD9kjeRf-1PoZTnn_XRiMlpNv_gTKwybiWrAi9Xztm1v3mwxemrzv41usVttWTiqnw2j7TM9c7_vX6cwsDm2adoflAUOjyMYDvIEZZ1OYJgvwubLCow7KRpgTWHIQw_tKHdtJQuce8I1fPia87-0yLamHy_TvBmlFZl10Dw_ZWw4Oj7GM_p5dE4duxhaIAsYJ5jGp2a1Jv-KJHggCklars7Ki6iS5eKHc-FE5la0VslKHg_QhoW7RiqQrpPqbPbfN8itQ5mWlKmhTEvKtKBMLeVz2qA5Y-ow3iTt66vWZdPLm2B4Gn3jsQeQaC0iqZI6cBUmEQCr-0EUhD3weYLhHgcJMQOOrGSI_zOQwBPRi2SsdRiwLbKYjlLYIdSvxXVQWuEzCMJ8EVUqQRMsuagJkfD6Ltm2U9F9tkon3WKS9r4d2SfV8u45IEsJPlpwiH7aODrKYHwAxxRAkg
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularized+continuous+time+structural+equation+models%3A+A+network+perspective&rft.jtitle=Psychological+methods&rft.au=Orzek%2C+Jannik+H&rft.au=Voelkle%2C+Manuel+C&rft.date=2023-12-01&rft.eissn=1939-1463&rft.volume=28&rft.issue=6&rft.spage=1286&rft_id=info:doi/10.1037%2Fmet0000550&rft_id=info%3Apmid%2F36633976&rft_id=info%3Apmid%2F36633976&rft.externalDocID=36633976