Regularized continuous time structural equation models: A network perspective
Regularized continuous time structural equation models are proposed to address two recent challenges in longitudinal research: Unequally spaced measurement occasions and high model complexity. Unequally spaced measurement occasions are part of most longitudinal studies, sometimes intentionally (e.g....
Saved in:
Published in | Psychological methods Vol. 28; no. 6; p. 1286 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.12.2023
|
Subjects | |
Online Access | Get more information |
ISSN | 1939-1463 |
DOI | 10.1037/met0000550 |
Cover
Loading…
Abstract | Regularized continuous time structural equation models are proposed to address two recent challenges in longitudinal research: Unequally spaced measurement occasions and high model complexity. Unequally spaced measurement occasions are part of most longitudinal studies, sometimes intentionally (e.g., in experience sampling methods) sometimes unintentionally (e.g., due to missing data). Yet, prominent dynamic models, such as the autoregressive cross-lagged model, assume equally spaced measurement occasions. If this assumption is violated parameter estimates can be biased, potentially leading to false conclusions. Continuous time structural equation models (CTSEM) resolve this problem by taking the exact time point of a measurement into account. This allows for any arbitrary measurement scheme. We combine CTSEM with LASSO and adaptive LASSO regularization. Such regularization techniques are especially promising for the increasingly complex models in psychological research, the most prominent example being network models with often dozens or hundreds of parameters. Here, LASSO regularization can reduce the risk of overfitting and simplify the model interpretation. In this article we highlight unique challenges in regularizing continuous time dynamic models, such as standardization or the optimization of the objective function, and offer different solutions. Our approach is implemented in the R (R Core Team, 2022) package regCtsem. We demonstrate the use of regCtsem in a simulation study, showing that the proposed regularization improves the parameter estimates, especially in small samples. The approach correctly eliminates true-zero parameters while retaining true-nonzero parameters. We present two empirical examples and end with a discussion on current limitations and future research directions. (PsycInfo Database Record (c) 2024 APA, all rights reserved). |
---|---|
AbstractList | Regularized continuous time structural equation models are proposed to address two recent challenges in longitudinal research: Unequally spaced measurement occasions and high model complexity. Unequally spaced measurement occasions are part of most longitudinal studies, sometimes intentionally (e.g., in experience sampling methods) sometimes unintentionally (e.g., due to missing data). Yet, prominent dynamic models, such as the autoregressive cross-lagged model, assume equally spaced measurement occasions. If this assumption is violated parameter estimates can be biased, potentially leading to false conclusions. Continuous time structural equation models (CTSEM) resolve this problem by taking the exact time point of a measurement into account. This allows for any arbitrary measurement scheme. We combine CTSEM with LASSO and adaptive LASSO regularization. Such regularization techniques are especially promising for the increasingly complex models in psychological research, the most prominent example being network models with often dozens or hundreds of parameters. Here, LASSO regularization can reduce the risk of overfitting and simplify the model interpretation. In this article we highlight unique challenges in regularizing continuous time dynamic models, such as standardization or the optimization of the objective function, and offer different solutions. Our approach is implemented in the R (R Core Team, 2022) package regCtsem. We demonstrate the use of regCtsem in a simulation study, showing that the proposed regularization improves the parameter estimates, especially in small samples. The approach correctly eliminates true-zero parameters while retaining true-nonzero parameters. We present two empirical examples and end with a discussion on current limitations and future research directions. (PsycInfo Database Record (c) 2024 APA, all rights reserved). |
Author | Voelkle, Manuel C Orzek, Jannik H |
Author_xml | – sequence: 1 givenname: Jannik H orcidid: 0000-0002-3123-2248 surname: Orzek fullname: Orzek, Jannik H organization: Department of Psychology, Humboldt-Universitat zu Berlin – sequence: 2 givenname: Manuel C orcidid: 0000-0001-5576-8103 surname: Voelkle fullname: Voelkle, Manuel C organization: Department of Psychology, Humboldt-Universitat zu Berlin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36633976$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tKxDAYRoMozkU3PoDkBapJ_yZN3A2Do8KIILoe0vaPRNum5qLo0zugns23O3xnQQ5HPyIhZ5xdcAb15YCJ7RGCHZA516ALXkmYkUWMr4zxClR1TGYgJYCu5ZzcP-JL7k1w39jR1o_JjdnnSJMbkMYUcptyMD3F92yS8yMdfId9vKIrOmL69OGNThjihG1yH3hCjqzpI57-7ZI8b66f1rfF9uHmbr3aFgZEmQpEa0zViNpyhFrbBrHkUjVKdyjB1kIBCmxLhP15ofddSiDYqmtEa4xW5ZKc_3qn3AzY7abgBhO-dv9d5Q_-eVDb |
CitedBy_id | crossref_primary_10_1016_j_neuron_2024_10_006 crossref_primary_10_15626_MP_2023_3796 crossref_primary_10_1080_10705511_2023_2189070 crossref_primary_10_1186_s40494_023_01088_y crossref_primary_10_1080_10705511_2024_2380919 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1037/met0000550 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Psychology |
EISSN | 1939-1463 |
ExternalDocumentID | 36633976 |
Genre | Journal Article |
GroupedDBID | --- --Z -~X .-4 07C 0R~ 123 29P 354 53G 5VS 7RZ ABIVO ABNCP ABVOZ ACHQT ACPQG AEHFB AETEA ALMA_UNASSIGNED_HOLDINGS AWKKM AZXWR CGNQK CGR CS3 CUY CVF ECM EIF EPA F5P FTD HVGLF HZ~ ISO LW5 NPM O9- OHT OPA OVD P2P PHGZM PHGZT ROL SES SPA TEORI TN5 UHS XJT YNT ZPI |
ID | FETCH-LOGICAL-a352t-eefaa4b57f1e379fbee2168b89de63f7583e5ec2e31465903785e3f4db5caa982 |
IngestDate | Mon Jul 21 05:34:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a352t-eefaa4b57f1e379fbee2168b89de63f7583e5ec2e31465903785e3f4db5caa982 |
ORCID | 0000-0001-5576-8103 0000-0002-3123-2248 |
PMID | 36633976 |
ParticipantIDs | pubmed_primary_36633976 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Psychological methods |
PublicationTitleAlternate | Psychol Methods |
PublicationYear | 2023 |
SSID | ssj0014384 |
Score | 2.449699 |
Snippet | Regularized continuous time structural equation models are proposed to address two recent challenges in longitudinal research: Unequally spaced measurement... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1286 |
SubjectTerms | Humans Longitudinal Studies Models, Psychological |
Title | Regularized continuous time structural equation models: A network perspective |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36633976 |
Volume | 28 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMeXqiC9iO-37MGbRNt9ZBNPFlGKoIK00lvZpBMoramP9mA_vbPZpFmL4uMSQpaGdH_JZGYz8x9CjhkDwKhCeYqzyBNKCi-IarEneS8GLWtMZ5L5t3d-sy1uOrJTqVy41SXj6DSefllX8h-qeAy5mirZP5CdnRQP4D7yxS0Sxu2vGD9kjeRf-1PoZTnn_XRiMlpNv_gTKwybiWrAi9Xztm1v3mwxemrzv41usVttWTiqnw2j7TM9c7_vX6cwsDm2adoflAUOjyMYDvIEZZ1OYJgvwubLCow7KRpgTWHIQw_tKHdtJQuce8I1fPia87-0yLamHy_TvBmlFZl10Dw_ZWw4Oj7GM_p5dE4duxhaIAsYJ5jGp2a1Jv-KJHggCklars7Ki6iS5eKHc-FE5la0VslKHg_QhoW7RiqQrpPqbPbfN8itQ5mWlKmhTEvKtKBMLeVz2qA5Y-ow3iTt66vWZdPLm2B4Gn3jsQeQaC0iqZI6cBUmEQCr-0EUhD3weYLhHgcJMQOOrGSI_zOQwBPRi2SsdRiwLbKYjlLYIdSvxXVQWuEzCMJ8EVUqQRMsuagJkfD6Ltm2U9F9tkon3WKS9r4d2SfV8u45IEsJPlpwiH7aODrKYHwAxxRAkg |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularized+continuous+time+structural+equation+models%3A+A+network+perspective&rft.jtitle=Psychological+methods&rft.au=Orzek%2C+Jannik+H&rft.au=Voelkle%2C+Manuel+C&rft.date=2023-12-01&rft.eissn=1939-1463&rft.volume=28&rft.issue=6&rft.spage=1286&rft_id=info:doi/10.1037%2Fmet0000550&rft_id=info%3Apmid%2F36633976&rft_id=info%3Apmid%2F36633976&rft.externalDocID=36633976 |